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Abstract: Arrhythmogenic Right Ventricular Cardiomyopathy (ARVC) is a hereditary condition that
can cause sudden cardiac death in young, frequently athletic individuals under the age of 35 due to
malignant arrhythmias. Competitive and endurance exercise may hasten the onset and progression of
ARVC, leading to right ventricular dysfunction and potentially fatal ventricular arrhythmias earlier
in life. In this article, we present a novel, pathogenic, early truncating heterozygous variant in the
PKP2 gene that causes biventricular arrhythmogenic cardiomyopathy and affects a family, of which
the only member with the positive phenotype is a competitive endurance athlete.
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1. Introduction

Arrhythmogenic Right Ventricular Cardiomyopathy (ARVC) (OMIM: 609040) is a
hereditary condition that causes malignant arrhythmias in young, often athletic subjects
below the age of 35 years and can lead to sudden cardiac death (SCD) [1]. Human cardiac
tissue and animal models lacking plakophilin-2 (PKP2) were found to have defective cell–cell
coupling, decreased conduction velocity and a pathological activation of the Hippo pathway
leading to enhanced adipogenesis [2]. Sports activity plays a key role in the penetrance of
the disease, formation of arrhythmic events and progression to heart failure [3]. Competitive
sports activity is not recommended in both the index patient and phenotypically unaffected
family members carrying the same pathogenic variant [4]. However, exercise testing can
be performed safely in this group of patients and can provide important information in
patients who appear phenotypically unaffected [5,6]. In this report we describe a family
who harbors a novel, pathogenic, heterozygous early truncating variant in the PKP2 gene
in which the only phenotype-positive member is a competitive endurance athlete.

2. Materials and Methods

A thorough medical and family history covering three generations was obtained from
the index patient. We also performed a 12-lead electrocardiogram (ECG), exercise stress
testing, transthoracic echocardiography (TTE), flourine-18 fluorodeoxyglucose positron
emission tomography/computed tomography (18F-FDG PET/CT), 48 h Holter ECG, and
cardiac magnetic resonance imaging (MRI). His first-degree relatives are asymptomatic and
their cardiologic workup including exercise test, TTE and genetic cascade screening was
carried out.
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The Prepito (Perkin Elmer, Waltham, MA, USA) DNA Blood250 kit was used to extract
DNA from an ethylenediaminetetraacetic acid (EDTA) blood sample. For molecular genetic
analyses, the SwissDNAlysis Cardiopanel (Agilent, SureSelectQXTTarget Enrichment,
Santa Clara, CA, USA) was used, and high-throughput sequencing (Illumina MiSeq) was
performed, with 92.3% of bases sequenced with a Q-score ≥ Q30. 98.8% of the analyzed
gene segments had a coverage of≥20×. The average sequencing depth of the analyzed gene
segments was 270.7×. The patient was examined for 173 genes related with inherited heart
disease, of which 16 are associated with ARVC (CTNNA3, DES, DSC2, DSG2, DSP, JUP,
LDB3, LMNA, PKP2, PLN, RYR2, SCN5A, TGFB3, TMEM43, TP63, and TTN) according to
the evidence-based evaluation of gene validity for ARVC by the most recent 2022 European
Society of Cardiology guidelines [7].

The sequences were aligned and realigned locally against the human reference genome
(GRCh37hg19) using lllumina alignment software version 2.5.42.7 (Burrows–Wheeler
algorithm and Genome Analysis Toolkit for variant calling). Variants with an allele
frequency <5% in the coding regions including the flanking intronic regions (±8 bp) were
scored. Data interpretation was performed using Variant Studio 3.0, Varsome Clinical,
dbSNP153, the gnomAD database, PubMed, and ClinVar. Using standard Sanger sequenc-
ing, all variations in this study were confirmed. Multiplex Ligation dependent Probe
Amplification (MLPA) was used for relative copy number analysis to detect deletions and
duplications (copy number variation analysis) in the RYR2 (Exon 3 und 97), DSP (Exon 1, 5,
7, 21 und 24), PKP2 (Intr. 1, up, Exon 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14), TGFB3 (Exon
1, 6, 7), JUP (Exon 2,9,12), DSC2 (Exon 1, 7 und 17) und DSG2 (Exon 1, 6 und 15) genes
(MRC Holland; SALSA P168 (D1-0520)). Data analysis was performed with Coffalyser.Net
(v.140721.1958, MRC-Holland, Amsterdam, The Netherlands).

For the genetic testing of the family members, genetic analysis of exon 3 of the PKP2-gene
(NM_004572.3; LRG 398t1; rs752060568) was performed using a plasma polymerase chain
reaction (PCR) followed by direct Sanger sequencing. The primers were as follows: Forward,
5′-CATACCACAGACAGTACCAGCA-3′ and reverse, 5′-CCAGAAGTGCCAGCTCAT GC-3′.

3. Results

The index patient was a 31-year-old male and suffered from paroxysmal palpitations
in the last 3 years, which occurred particularly during and shortly after physical activity.
The patient was very athletic since early adulthood and took part in marathons on a
regular basis. His family history of three generations was unremarkable. A first cardiologic
investigation was carried out in a peripheral hospital. The 12-lead surface ECG showed
T wave inversions in V1-V3 (Figure 1A). During bicycle ergometry several monomorphic
premature ventricular complexes (PVC) and non-sustained ventricular tachycardia (VT)
episodes (left-bundle branch block morphology, inferior axis, maximum 6 beats, around
200 beats/min) evolved, which persisted in the recovery phase (Figure 1B, black arrow).
Of note, under maximal physical stress, a second PVC with a right-bundle branch block
morphology occurred (Figure 1B, red arrow) suggesting left ventricular (LV) involvement.
At the end of the recovery period, the PVC frequency decreased again. Based on these
findings, the referring cardiologist suspected for ARVC and transferred the patient to our
referral center for further investigations. Our echocardiographic evaluation showed a
dilated right ventricle (RV) (parasternal long axis RV outflow tract = 36 mm (17.5 mm/m2)
parasternal short axis RV outflow tract = 38 mm (18.5 mm/m2) with reduced area of
shortening (fac = 27%) and normal longitudinal function (TAM = 18 mm; S’ = 10 cm/s).
On the RV inflow view, a subtricuspid aneurysm and multiple sacculations of the RV
free wall were noticeable (Figure 1C,D, white markers). Circumscribed akinesia of the
LV lateral apical wall was also detected. According to the revised task force criteria [8],
the major criteria for ARVC were fulfilled on cardiac MRI (right ventricular end-diastolic
volume index: 111 mL/m2 and RV ejection fraction = 45%). A subtricuspid RV aneurysm,
as well as microaneurysms of the remaining RV free wall, was present (Figure 1E, red
arrows and Supplemental Video S1). In addition to RV involvement, late gadolinium
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enhancement and fatty deposits were visible in the LV lateral wall (apical to midventricular)
(Figure 1F,G, yellow arrows and blue Asterix) and the apical part of the lateral wall was
akinetic (LV ejection fraction = 54%). This finding confirmed biventricular involvement
and biventricular arrhythmogenic cardiomyopathy according to the recent 2020 Padua
Criteria [9]. Myocardial inflammation and active cardiac sarcoidosis were excluded with
18F-FDG PET/CT and apart from frequent PVCs (2.6%/24 h) no VT episodes were depicted
on Holter ECG.
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hancement of the lateral wall of the left ventricle (blue asterisk, PSIR 4 chamber view). 

Genetic testing revealed a novel heterozygous nonsense variant in the PKP2 gene (808C 
> T p. (Gln270Ter) in exon 3) that causes an early truncation of the protein, which was con-
firmed by Sanger sequencing. It was classified as pathogenic (class V) according to the 2015 
American College of Medical Genetics Criteria [10]. Cascade screening of the asymptomatic 
patient’s mother (64 years old), father (70 years old) and sister (33 years old) showed that the 
patient’s father and sister harbored the same heterozygous 808C > T p. (Gln270Ter) PKP-2 

Figure 1. Diagnostic work-up in the index patient. (A). 12-lead electrocardiogram showing sinus
rhythm with T wave inversions in V1–V3 (blue box). (B). Recovery phase of bicycle ergometry. Right
(red arrow) and left bundle branch block (LBBB) morphology premature ventricular complexes and
non-sustained ventricular tachycardia with a LBBB morphology (black arrow) and an inferior axis
are shown. (C,D). Transthoracic echocardiogram showing the subtricuspid aneurysm (white asterisk)
on the RV inflow view and multiple sacculations of the right ventricular free wall (white arrows).
(E). Multislice 4 chamber MRI view showing a subtricuspid aneurysm of the right ventricular free
wall (red arrows). (F). Late gadolinium enhancement of the subtricuspid right ventricular wall
(yellow arrows, Phase-sensitive inversion recovery (PSIR) short axis view). (G). Late gadolinium
enhancement of the lateral wall of the left ventricle (blue asterisk, PSIR 4 chamber view).

Genetic testing revealed a novel heterozygous nonsense variant in the PKP2 gene
(808C > T p. (Gln270Ter) in exon 3) that causes an early truncation of the protein, which
was confirmed by Sanger sequencing. It was classified as pathogenic (class V) according
to the 2015 American College of Medical Genetics Criteria [10]. Cascade screening of the
asymptomatic patient’s mother (64 years old), father (70 years old) and sister (33 years old)
showed that the patient’s father and sister harbored the same heterozygous 808C > T p.
(Gln270Ter) PKP-2 variant. Both did not report a history of participating in competitive
sports, and thorough cardiac evaluation of these two genotype positive family members
showed normal findings.
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4. Discussion

The most frequent gene linked to ARVC is PKP2 [11]. The PKP2 cardiomyopathy is
inherited autosomally dominantly and is thought to affect primarily the RV, making it
specifically associated with ARVC. Competitive and endurance exercise may accelerate the
onset and progression of ARVC, resulting in potentially life-threatening ventricular arrhyth-
mias and RV dysfunction at a younger age. Although it has been shown in previous studies
that early truncation of the PKP2 C-terminus likely causes ARVC irrespective of transcript
position [12], desmosomal and non-desmosomal variants can create a certain genetic poten-
tial for the development of ARVC, but exercise has an important role in determining the
development, severity, and pattern of phenotypic expression. Competitive and endurance
exercise can cause structural heart changes even in healthy amateur athletes [13] and it is
suggested that exercise-induced ARVC may develop without underlying major genetic
drivers [14]. In this family, exercise restrictions for all three genotype-positive family mem-
bers were recommended because the exercise intensity is the only known difference among
them. A primary prophylactic subcutaneous implantable cardioverter defibrillator (S-ICD)
was only implanted in the index patient. Patients with ARVC have a relatively significant
chance of receiving inappropriate ICD shocks with S-ICD, even when the SMART Pass
algorithm (SP; Boston Scientific Corporation, Natick, MA, USA) is activated [15]. Based on
his substantial long-term risk of lead failure and vascular consequences, our young, athletic
patient preferred a primary prevention S-ICD during the shared decision-making process.

As a marathon runner, the index patient was the only one to develop ARVC in his
family, indicating that while the novel PKP2 variant provides a genetic risk, it is insufficient
to cause an ARVC phenotype on its own. It is important to consider that other genetic and
environmental factors can modify the individual threshold for disease penetration. The
altered proteins in the intercalated discs interfere with normal cell adhesion, mechanical
stability, cell-to-cell communication, and electrical connection. It has been hypothesized
that mechanical stress, such as that caused by exercise, leads to instability, inflammation
and fibro-fatty infiltration. [16]. Exercise has been shown to cause a greater increase
in wall stress on the RV than the LV [17] but biventricular disease is possible in PKP-2
cardiomyopathies [18]. Thanks to cascade genetic testing, a large number of individuals and
their families can be screened at early phenotypic phases, allowing for the implementation
of suitable preventive measures.

5. Conclusions

Taken together, we describe a novel, pathogenic, heterozygous early truncating variant
in the PKP2 gene causing biventricular arrhythmogenic cardiomyopathy and affecting a
family, in which the only phenotype-positive member is a competitive endurance athlete.
This highlights the importance of environmental factors such as endurance exercise for dis-
ease penetrance and progression in patients with classical right-dominant ARVC associated
with (likely) pathogenic variants in PKP-2.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/jcm11247513/s1, Video S1: Cardiac magnetic resonance imaging of the
index patient.
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