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Abstract: Pancreatic cancer is a highly lethal disease associated with significant morbidity and
mortality. In the United States (US), the overall 5-year relative survival rate for pancreatic cancer
during the 2012–2018 period was 11.5%. However, the cancer stage at diagnosis strongly influences
relative survival in these patients. Per the National Cancer Institute (NCI) statistics for 2012–2018,
the 5-year relative survival rate for patients with localized disease was 43.9%, while it was 3.1% for
patients with distant metastasis. The poor survival rates are primarily due to the late development
of clinical signs and symptoms. Hence, early diagnosis is critical in improving treatment outcomes.
In recent years, artificial intelligence (AI) has gained immense popularity in gastroenterology. AI-
assisted endoscopic ultrasound (EUS) models have been touted as a breakthrough in the early
detection of pancreatic cancer. These models may also accurately differentiate pancreatic cancer from
chronic pancreatitis and autoimmune pancreatitis, which mimics pancreatic cancer on radiological
imaging. In this review, we detail the application of AI-assisted EUS models for pancreatic cancer
detection. We also highlight the utility of AI-assisted EUS models in differentiating pancreatic cancer
from radiological mimickers. Furthermore, we discuss the current limitations and future applications
of AI technology in EUS for pancreatic cancers.

Keywords: artificial intelligence; endoscopic ultrasound; pancreatic cancer; chronic pancreatitis;
autoimmune pancreatitis

1. Introduction

Pancreatic cancer has been identified as the seventh leading cause of cancer-related
death worldwide [1]. Pancreatic ductal adenocarcinoma (PDAC), an invasive mucin-
producing neoplasm with an intense stromal desmoplastic reaction, is the most common
(90%) subtype of pancreatic cancer [2,3]. The median age at diagnosis for pancreatic
cancer is about 70 years. PDAC is slightly more common in males compared to females
on a global scale (age-standardized incidence rate of 5.5 per 100,000 in men vs. 4 per
100,000 in women) [4,5]. Current estimates by the National Cancer Institute (NCI) predict
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62,210 new cases of pancreatic cancer in the US in 2022, representing 3.2% of all new cancer
diagnoses [6].

Most patients with pancreatic cancer lack obvious clinical signs and symptoms until
they have advanced-stage disease. Furthermore, traditional imaging techniques such as
computer tomography (CT) and magnetic resonance imaging (MRI) may not be able to
detect small or premalignant pancreatic lesions. Therefore, an early diagnosis is often
difficult to establish. Hence, due to a late initial presentation, patients often have advanced-
stage disease with widespread metastasis, leading to poor clinical outcomes and high
mortality rates [3,7]. In the US, the age-adjusted death rate for pancreatic cancer was
noted to be 11.1 per 100,000 men and women per year between 2015–2019 [6]. However,
it is worth noting that the 5-year relative survival rate for pancreatic cancer in the US
has continued to rise from 3.2% in the 1970s to 11.5% for the 2012–2018 period, reflecting
possible improvements in diagnostic and management strategies [6].

Endoscopic ultrasound (EUS) has the greatest specificity and sensitivity for the diag-
nosis of pancreatic lesions and, in particular, pancreatic cancer. Recently, biopsies via EUS
have shifted from fine-needle aspiration (FNA) to fine-needle biopsy (FNB). EUS combined
with FNB has a specificity and sensitivity greater than 90% for the detection of pancreatic
cancer [8,9]. However, EUS does not have widespread availability and utilization due to
the need for additional training, a steep learning curve, operator dependence, the cost of
equipment, and the need for sedation.

Over the years, gastroenterologists have typically relied on individualized manual
analysis and the interpretation of EUS and cross-sectional radiographic images to diagnose,
classify, and plan interventions for patients with gastrointestinal (GI) neoplasms [10].
This has inevitably led to significant variability in diagnosis based on clinical proficiency,
expertise, and individual bias. However, recently, AI has gained immense popularity in
GI, particularly for luminal and pancreaticobiliary disorders, due to its ability to analyze
large sets of data with a high degree of accuracy [11]. AI algorithms not only assist with the
rapid diagnosis of GI neoplasms but also reduce inter-observer variability, decrease rates
of misdiagnosis, and standardize the interpretation of radiological and histopathological
images, leading to accurate diagnosis and improvements in clinical outcomes [10–12].

EUS is the imaging modality of choice for pancreatic cancers and is preferred over
conventional CT scans and MRIs due to its high diagnostic yield and negative predictive
value [13]. In current literature, numerous AI models have been successfully integrated
with EUS [14]. This has led to the early detection of pancreatic cancer, thereby expediting
management, reducing the risk of mortality, and decreasing the overall healthcare burden
on individuals and healthcare systems across the globe [15,16]. In this comprehensive
review, we focus our discussion on AI and its application in EUS for the detection and dif-
ferentiation of pancreatic neoplasms from other disease entities such as chronic pancreatitis
(CP) and autoimmune pancreatitis (AIP). Furthermore, we also highlight the limitations
and future applications of AI technology in EUS for pancreatic cancers.

2. Discussion
2.1. Artificial Intelligence and Its Utility in Gastroenterology

AI is a highly complex integration of computer systems and software to design
computer algorithms that display the properties of critical thinking and intelligence
(Figure 1) [12]. In a broader sense of the term, AI aims to replicate human intelligence
with learning abilities and complex problem-solving skills. Since it was first described
by John McCarthy in 1956, AI algorithms have undergone a major transformation from
artificial narrow intelligence (ANI), which was primarily designed to perform simple pre-
determined tasks, to artificial general intelligence (AGI) and superintelligence, which can
analyze large quantities of data and solve complex problems accurately [17,18]. The three
major branches of AI that are slowly revolutionizing clinical practice include machine
learning (ML), artificial neural networks (ANNs), and expert systems (ES).
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ML is a branch of AI that allows software applications to attain efficiency in predicting
outcomes of interest without explicit programming, using already available historical data
as input [19]. It can be further subdivided into supervised and unsupervised learning.
Supervised ML provides data in the form of input–output pairs, wherein the input is the
descriptor and the output is the outcome of interest [20]. On the other hand, unsupervised
ML identifies specific groups with common features within the dataset without prior knowl-
edge of the significance of the data [20]. In 2006, AI technology had a major breakthrough
with deep learning (DL), a subset of ML [21]. DL mimics the human neuronal network as
it combines multiple nonlinear processing layers wherein the original data is abstracted
layer-by-layer, and different levels of the abstract features are obtained and used for target
detection, classification, or segmentation [21]. The primary advantage of DL over ML is
that it requires minimal human intervention to generate the output of interest [21].

ANNs are a set of interconnected computers and algorithms consisting of inputs,
weights, bias/threshold, and outputs that mimic human neuroanatomy [22]. However,
they differ from DL due to a lower number of hidden layers within the network. In ANNs,
each computing unit essentially functions as a ‘neuron’ and is connected to other computing
units, building a highly complex network [20]. Through this network, signals travel to
reach the output layers, traversing through multiple hidden layers [20]. As the ANNs
are trained with the help of training data, the weights of the interneuron connections are
adjusted to optimize output data and increase efficacy [22].

ES is a computing system capable of solving complex problems with reasoning based
on current knowledge, emulating the decision-making capacity of a human expert [23].
These systems are designed to mimic clinical reasoning and judgment and have the capabil-
ity to express conclusions as a probability based on input data [24]. Currently, it takes many
years and a large dataset to develop a single ES capable of delivering decisions on a single
output of interest or diagnosis [24]. Hence, the utilization of ES in clinical medicine is very
limited. However, as AI technology continues to improve, ES may soon find widespread
use in clinical medicine.

AI has found widespread application in GI, particularly for endoluminal and pancre-
aticobiliary disorders. It helps to significantly improve diagnostic accuracy, limit errors,
standardize the interpretation of radiological and histopathological images, and establish
plans for interventions [11]. Major areas of utilization of AI within GI include:
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1. Application in Premalignant Lesions: Esophagogastroduodenoscopy (EGD) and
colonoscopy are pivotal procedures in diagnosing upper and lower premalignant
GI lesions. However, there is significant variability in premalignant lesion detection
due to the endoscopists’ skill level. To standardize and improve the quality of EGDs
and colonoscopies, AI-assisted models have been utilized. In current literature, two
randomized controlled trials (RCTs) have compared the endoscopic performance for
the diagnosis of premalignant lesions between AI-assisted and non-AI-assisted models.
The WISENSE system, which used deep convolutional neural networks (CNNs) and
deep reinforcement learning, reported lower rates of blind spots (5.86% vs. 22.46%,
p < 0.001) during EGD for upper GI lesions compared to the non-AI-assisted control
group [25]. The authors ultimately concluded that the WISENSE system significantly
improved the quality of EGDs [25]. Another RCT by Wang et al. noted a significantly
higher adenoma detection rate (ADR; 29.1% vs. 20.3%, p < 0.001) and mean number
of adenomas per patient (0.53 vs. 0.31, p < 0.001) for diagnostic colonoscopy for
an AI-mediated real-time automatic polyp detection system that provided audio-
visual alerts upon polyp detection compared to diagnostic colonoscopies without the
assistance of an AI system [26].

2. Application in Malignant Lesions: AI can help gastroenterologists accurately deter-
mine the prognosis of malignant GI neoplasms compared to conventional non-AI
models [27–30]. A study by Gohari et al. compared the accuracy of prediction of
survival rates for patients with colorectal cancer between an ANN AI-assisted model
and Cox regression models [27]. The authors noted that the ANN model had more
accurate predictions of survival for colon (89% vs. 78.6%) and rectal (82.7% vs. 70.7%)
cancer patients compared to the Cox regression models [27]. Biglarian et al. compared
the accuracy of prediction of distant metastasis for colorectal cancer between an ANN
AI-assisted model and logistic regression models [28]. The authors observed that
the ANN model had higher accuracy in predicting distant metastasis (area under
the receiver operating characteristic curve (AUROC): 0.82 vs. 0.77) compared to the
logistic regression models [28]. Another study by Nilsaz-Dezfouli et al. demonstrated
the utility of a single time-point feed-forward ANN AI-assisted model to predict
the probability of survival for gastric cancer patients at 1, 2, 3, 4, and 5 years after
surgery [29]. The authors concluded that the prediction of survival for the ANN
model was consistently accurate (88.7–90.2%), with sensitivity and specificity ranging
from 70.2–92.5% and 66.7–96.2%, respectively [29]. Furthermore, DL algorithms have
also found applications in the detection and treatment of GI malignancies [31–33].
A systematic review and meta-analysis of five RCTs (4354 patients) that assessed
the performance of a DL computer-aided polyp detection system for the detection
of colorectal neoplasia noted a significantly higher pooled adenoma detection rate
(36.6% vs. 25.2%, RR 1.44; 95% confidence interval (CI) 1.27–1.62; p < 0.01; I2 = 42%)
and adenomas detected per colonoscopy (58% vs. 36%, RR 1.70; 95% CI 1.53–1.89;
p < 0.01; I2 = 33%) for the AI-assisted model compared to the control group [31]. From
a treatment perspective, DL models can predict clinical response to chemotherapy
and radiation with high accuracy (≥80%) [32,33].

3. Application in Inflammatory Lesions: Numerous studies have investigated the use of
AI-assisted models to identify a wide spectrum of inflammatory lesions. For identi-
fying patients with inflammatory bowel disease (IBD), the support vector machine
(SVM) model, a type of machine learning algorithm, had diagnostic accuracy, sensi-
tivity, and specificity ranging from 80–100%, 80–95.2%, and 92.4–93.6%, respectively,
using endoscopic or wireless capsule endoscopy (WCE) images as input data [20].
The SVM model has also been used to detect ulcerative disease (peptic ulcers, ulcers
from Crohn’s disease, NSAID-induced ulcers, and unexplained ulcers) with high
accuracy (74–96.3%), sensitivity (75–100%), and specificity (73.3–100%) [20]. Further-
more, a study by Cui et al. used an adaptive threshold classifier AI-assisted model
on 7218 small bowel WCE images to identify lymphangiectasia with a diagnostic
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accuracy of 97.9% [20]. Another study by Wu et al. used the Rustboost AI-assisted
model on small bowel WCE images from 10 patients to identify individuals with a
hookworm infection with the accuracy, sensitivity, and specificity of 78.2%, 77.2%,
and 77.9%, respectively [20]. In patients with celiac disease, the diagnostic accuracy
of AI-assisted models ranges from 76.7–99.6% [20].

4. Application in Gastrointestinal Bleeding: GI bleeding is a common medical emergency
associated with significant morbidity and mortality. In the current literature, twelve
studies have assessed the use of AI-assisted models to detect small bowel bleeding
using WCE images/videos as input data [20,34–43]. Of these, six studies using an
SVM AI-assisted model to identify patients with small bowel bleeding reported diag-
nostic accuracy ranging from 91.8–99.6% [35–37,39–41]. Additionally, five studies that
utilized various AI-assisted models, such as multilayer perceptron network (MLP),
probabilistic neural network, joint diagonalization principal component analysis, and
CNN reported diagnostic accuracy ranging from 87.4–98% [20,34,38,42,43]. How-
ever, a study by Jung et al. that utilized a color spectrum transformation AI-assisted
model to identify small bowel GI bleeding using WCE images as input data had a
diagnostic accuracy of only 30% but a sensitivity and specificity of 94.9% and 96.1%,
respectively [20].

5. Application in Hepatology: The utilization of AI-assisted models to detect liver fibro-
sis, non-alcoholic fatty liver disease (NAFLD), and esophageal varices has increased
exponentially in recent years. Seven studies that used AI-assisted models to detect
liver fibrosis associated with viral hepatitis (hepatitis B and C viruses) reported diag-
nostic accuracy of ≥84.4% [20]. The diagnostic accuracy of AI-assisted models from six
studies that aimed to identify individuals with NAFLD ranged from 79% to 89% [20].
Two studies that used MLP and random forest AI-assisted models to detect esophageal
varices noted a diagnostic accuracy of 87.8% and 0.82 (AUROC), respectively [20].
Overall, these AI models identified their target factor with ≥80% accuracy.

2.2. Utilization of Artificial Intelligence in Endoscopic Ultrasound for the Detection of
Pancreatic Cancer

In the US, the incidence and prevalence of pancreatic cancer continue to rise [6].
It is currently the third leading cause of cancer mortality and soon will be the second,
behind lung cancer [10]. Despite these rising trends, there are no definitive guidelines
on pancreatic cancer screening in average-risk individuals. Imaging modalities such as
CT scans and MRIs are often used to aid the diagnosis of pancreatic cancer, but EUS
is considered far superior due to its higher diagnostic yield and ability to obtain high-
quality images [44]. However, there are some limitations to conventional EUS, such as
low sensitivity in differentiating benign from malignant intraductal papillary mucinous
neoplasms (IPMNs) and low specificity in differentiating chronic pancreatitis (CP) from
malignant pancreatic lesions [44–46]. Furthermore, EUS is highly operator-dependent,
and therefore, less experienced endoscopists may not be able to appreciate the subtle
differences between CP and pancreatic cancer due to the presence of concomitant scarring
and calcification secondary to the presence of chronic inflammation [44–46].

Numerous studies have been performed to assess and compare the diagnostic ac-
curacy of non-AI and AI-augmented models of EUS for pancreatic cancer (Table 1). A
retrospective study of 50 patients with IPMN, which used EUS images as input data for a
DL algorithm, reported the sensitivity, specificity, and accuracy of 95.7%, 92.6%, and 94.0%,
respectively, for malignant IPMNs [47]. This far exceeded the accuracy of human diagnosis
[56.0%] [47]. Another retrospective study by Zhang et al. utilized SVM for EUS images from
216 patients to assess the ability of the SVM AI-assisted model to differentiate normal tissue
from pancreatic cancer [48]. All 216 of these patients underwent EUS-guided fine-needle
aspiration (EUS-FNA) and pathologic analysis to correlate findings with the definitive
diagnosis [48]. The authors concluded that the SVM model had the accuracy, sensitivity,
and specificity of 98%, 94.3%, and 99.5%, respectively [48]. Therefore, it could be used
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as a rapid, non-invasive test for pancreatic cancer screening [48]. Ozkan et al. conducted
a retrospective study to develop a high-performance computer-aided diagnosis (CAD)
system with image processing and pattern recognition abilities using ANNs [49]. The input
data for the ANN was collected from EUS images of 332 patients. which were classified
into three groups based on patient age (<40, 40–60, and >60 years old) [49]. The authors
observed that the CAD system performed significantly better, with a sensitivity of 83.3%,
specificity of 93.3%, and diagnostic accuracy of 87.5% when the images were classified
according to the patient’s age, reflecting the importance of age in aiding the diagnosis
of pancreatic cancer [49]. Furthermore, in a systematic review of 11 studies examining
the role of AI-assisted EUS models in diagnosing pancreatic cancer, the overall accuracy,
sensitivity, and specificity were found in the ranges of 80–97.5%, 83–100%, and 50–99%,
respectively [50]. Based on current data, AI-assisted EUS models have great potential as
diagnostic tools for detecting pancreatic cancer.

Table 1. Studies assessing the sensitivity, specificity, and diagnostic accuracy of artificial intelligence
(AI)-augmented and non-AI models for pancreatic cancer.

Study Study Design Artificial Intelligence
Model Patient Population Outcomes for the Artificial

Intelligence Model

Kuwahara et al. [47] Retrospective
(Japan)

Deep Learning
(Convolutional Neural

Networks (CNNs))

Total IPMN Patients = 50
Benign IPMN Patients = 27

Malignant IPMN Patients = 23

Recognition of Malignant IPMN:
Sensitivity = 95.7%
Specificity = 92.6%

Accuracy = 94%

Zhang et al. [48] Retrospective
(China)

Support Vector Machine
(SVM)

Total Patients = 216
Pancreatic Cancer Patients = 153

Non-Cancer Patients = 63

Recognition of Pancreatic Cancer:
Sensitivity = 94.32%
Specificity = 99.45%
Accuracy = 97.98%

Ozkan et al. [49] Retrospective
(Turkey)

Artificial Neuronal
Networks (ANNs)

Total Patients = 332
Pancreatic Cancer Patients = 202

Non-Cancer Patients = 130

Recognition of Pancreatic Cancer
(All Ages):

Sensitivity = 83.3%
Specificity = 93.33%
Accuracy = 87.5%

Recognition of Pancreatic Cancer
(>60 years):

Sensitivity = 93.3%
Specificity = 88.88%
Accuracy = 91.66%

Recognition of Pancreatic Cancer
(40–60 years):

Sensitivity = 85.7%
Specificity = 91.66%
Accuracy = 88.46%

Recognition of Pancreatic Cancer
(<40 years):

Sensitivity = 87.5%
Specificity = 94.11%

Accuracy = 92%

Goyal et al. [50] Systematic
Review

Artificial Neural
Network (ANN)

Convolutional Neural
Networks (CNNs)

Support Vector Machine
(SVM)

Total Patients = 2292
Pancreatic Cancer Patients = 1409

Non-Cancer Patients = 883

Recognition of Pancreatic Cancer:
Sensitivity = 83–100%
Specificity = 50–99%,
Accuracy = 80–97.5%

IPMN: intraductal papillary mucinous neoplasm.

2.3. Utilization of Artificial Intelligence in Endoscopic Ultrasound to Differentiate Pancreatic
Cancer from Chronic Pancreatitis

Over the last decade, imaging modalities for pancreatic lesions have improved sig-
nificantly. However, differentiating between PDAC and CP is a diagnostic challenge as
CP often mimics the radiological features of PDAC [51]. Cytological analysis continues to
be the gold-standard test to differentiate PDAC from CP. Additionally, CP is a risk factor
implicated in the development of PDAC. Hence, both clinical entities may co-exist together
in the same patient [52]. In these complex cases, AI-assisted diagnostic models may help es-
tablish an accurate diagnosis. A retrospective study conducted by Das et al. for 56 patients
using EUS images for digital image analysis (DIA) by an ANN noted that the AI-assisted
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model was highly accurate in differentiating between normal tissue, CP, and PDAC (area
under the curve (AUC) of 0.93 for PDAC) [53]. Even in experienced hands, EUS imaging
alone may require supplementation with FNB to differentiate malignancy from CP. Another
retrospective analysis compared the accuracy of differentiation of pancreatic cancer from
focal pancreatitis by an endosonographer versus a self-learning ANN model using EUS
images as input data for 21 pancreatic cancer and 14 focal pancreatitis patients [54]. The
authors reported that the maximal accuracy of the AI-assisted software (89%) compared
favorably with the accuracy of human interpretation (85%) [54]. A cross-sectional study of
68 patients (32 PDAC, 22 normal pancreas, 11 CP, and 3 pancreatic neuroendocrine tumors)
to assess the accuracy of extended neural network (ENN)-assisted real-time EUS elastogra-
phy yielded an average testing performance of 95% and a high training performance of
97% in differentiating benign and malignant masses [55]. Tonozuka et al. used EUS images
to develop a computer-assisted diagnosis (CAD) system using a DL model and evaluated
its ability to detect PDAC using control EUS images from CP and normal pancreas pa-
tients [56]. The EUS-CAD model demonstrated excellent results (AUC 0.924 and 0.940 in
the validation and test settings, respectively) in detecting PDAC [56]. Furthermore, a study
by Zhu et al. utilized EUS image parameters for an SVM predictive model to differentiate
pancreatic cancer and CP for 388 patients (262 pancreatic cancer and 126 CP) [57]. The
authors reported the average accuracy, sensitivity, and specificity of 94.2%, 96.3%, and
93.4%, respectively, for the SVM predictive model [57].

Although numerous studies have demonstrated high diagnostic accuracy and strongly
encourage the use of AI-assisted models to differentiate PDAC from other benign lesions,
the main drawback is the small patient population used in each analysis, which signifi-
cantly limits the input data for these AI-assisted models. Hence, multicenter studies were
conducted to further validate these findings. A prospective multicenter-blinded analy-
sis using ANN-assisted real-time EUS elastography was conducted for 258 patients at
13 tertiary academic medical centers in Europe to differentiate between pancreatic cancer
and CP [58]. The authors observed that the AI-assisted model had a 91.1% training accuracy
(95% CI: 89.87%–92.42%) and an 84.3% testing accuracy (95% CI, 83.09–85.44%), implying
that the use of ANNs provided fast and accurate diagnoses for pancreatic malignancies [58].
Another observational prospective multicenter study that included 167 consecutive patients
(112 pancreatic cancer and 55 CP) from Romania, Denmark, Germany, and Spain used
parameters from the time-intensity curve (TIC) analysis of contrast EUS in an ANN model
to differentiate pancreatic cancer and CP [59]. The authors reported that ANNs had high
sensitivity (94.64%), specificity (94.44%), positive predictive value (97.24%), and negative
predictive value (89.47%) and could be used to differentiate pancreatic cancer from CP with
a high degree of accuracy [59].

In conclusion, all studies—large or small—have concluded that AI-assisted EUS
models can be used in clinical practice to differentiate pancreatic cancers from CP with
excellent results (Table 2).

2.4. Utilization of Artificial Intelligence in Endoscopic Ultrasound to Differentiate Pancreatic
Cancer from Autoimmune Pancreatitis

AIP has been recognized as a distinct and rare fibroinflammatory subtype of chronic
pancreatitis. It has characteristic features on sonographic and cross-sectional radiological
imaging that mimic PDAC [60,61]. This may lead to a delayed or incorrect diagnosis.
AI-assisted models can help solve this diagnostic dilemma. Mayra et al. conducted a study
using a database of still images and video data from EUS examinations of 538 patients in
the US to develop an EUS-based CNN model that can differentiate AIP from PDAC [62].
The authors reported that the EUS-based CNN model was 90% sensitive and 93% specific
in distinguishing AIP from PDAC [62]. These findings encourage the use of AI-assisted
EUS models in these subset patients for an early and accurate diagnosis. However, the
data on AI-assisted EUS models to distinguish PDAC from AIP is still limited and warrant
additional large multicenter prospective studies.
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Table 2. Studies comparing artificial intelligence (AI)-augmented models to differentiate pancreatic
cancer from other clinical entities.

Study Study Design Artificial
Intelligence Model Patient Population Outcomes for the Artificial

Intelligence Model

Das et al. [53] Retrospective
(United States)

Artificial Neural
Network (ANN)

Normal Pancreas Patients = 22
Chronic Pancreatitis Patients = 12

Pancreatic Cancer Patients = 22

Recognition of Pancreatic Cancer:
Sensitivity = 93%
Specificity = 92%

Recognition of Chronic Pancreatitis versus
Normal Pancreas:
Sensitivity = 100%
Specificity = 100%

Norton et al. [54] Retrospective
(United States)

Artificial Neural
Network (ANN)

Total Patients = 35
Pancreatic Cancer Patients = 21
Focal Pancreatitis Patients = 14

Recognition of Pancreatic Cancer by AI:
Sensitivity = 100%
Specificity = 50%
Accuracy = 80%

Recognition of Pancreatic Cancer by EUS:
Sensitivity = 89%
Specificity = 79%
Accuracy = 85%

Recognition of Pancreatic Cancer by
Human Interpretation:

Sensitivity = 73%
Specificity = 100%
Accuracy = 83%

Săftoiu et al. [55] Retrospective
(Europe)

Artificial Neural
Network (ANN)

Total Patients = 68
Pancreatic Cancer Patients = 32

Pancreatic Neuroendocrine Tumor
Patients = 3

Chronic Pancreatitis Patients = 11
Normal Pancreas Patients = 22

Recognition of Pancreatic Cancer and
Pancreatic Neuroendocrine Tumors:

Sensitivity = 91.4%
Specificity = 87.9%
Accuracy = 89.7%

Tonozuka et al. [56] Cross-Sectional
(Japan)

Convolutional
Neural Networks

(CNNs)

Total Patients = 139
Pancreatic Cancer Patients = 76

Chronic Pancreatitis Patients = 34
Normal Pancreas Patients = 29

Recognition of Pancreatic Cancer
(Validation Set):

Sensitivity = 90.2%
Specificity = 74.9%

Area Under the Curve = 0.924
Recognition of Pancreatic Cancer (Test Set):

Sensitivity = 92.4%
Specificity = 84.1%

Area Under the Curve = 0.940

Zhu et al. [57] Retrospective
(China)

Support Vector
Machine (SVM)

Total Patients = 388
Pancreatic Cancer Patients = 262

Chronic Pancreatitis Patients = 126

Recognition of Pancreatic Cancer:
Sensitivity = 96.25%
Specificity = 93.38%
Accuracy = 94.2%

Săftoiu et al. [58]
Prospective
Multicenter

(Europe)

Artificial Neural
Network (ANN)

Total Patients = 258
Pancreatic Cancer Patients = 211

Chronic Pancreatitis Patients = 47

Recognition of Pancreatic Cancer:
Sensitivity = 87.59%
Specificity = 82.94%

Area Under the Curve = 0.94

Săftoiu et al. [59]

Prospective
Multicenter

Observational
(Europe)

Artificial Neural
Network (ANN)

Total Patients = 167
Pancreatic Cancer Patients = 112

Chronic Pancreatitis Patients = 55

Recognition of Pancreatic Cancer by AI:
Sensitivity = 94.64%
Specificity = 94.44%

Recognition of Pancreatic Cancer by
Contrast-Enhanced EUS:

Sensitivity = 87.5%
Specificity = 92.72%

AI: artificial intelligence. EUS: endoscopic ultrasound.

2.5. Limitations of Artificial Intelligence in Endoscopic Ultrasound for the Detection of
Pancreatic Cancer

Even at the current early stage of development, AI-assisted diagnostic models provide
significant value in aiding medical decision-making and planning therapeutic interventions
for patients with pancreatic cancer. However, there continues to be hesitancy in their
application in clinical practice by most practitioners despite promising results. In recent
years, more studies reporting a higher diagnostic accuracy of AI-assisted EUS models
compared to human interpretation for pancreatic cancer continued to be published. These
studies are slowly changing the current landscape and building confidence in AI-assisted
diagnostic models as an indispensable tool in modern medicine [50,63]. However, like any
diagnostic test, AI-assisted EUS models have their own set of limitations, which will need
to be addressed before they can be used as a ‘go-to’ diagnostic test for pancreatic cancer.

One of the most important limitations of an AI-assisted EUS model is the lack of
adequate standardization of input data that are used to train the AI algorithm [63]. As per



J. Clin. Med. 2022, 11, 7476 9 of 15

current literature, no standardized protocols for data collection, processing, and storage
for the AI-assisted model have been established. Additionally, standardized principles for
data analysis by the AI algorithm are also lacking. Establishing these protocols is important
because if the AI-assisted EUS model trains on data that are misrepresentative of PDAC
population variability, it is likely to reinforce bias, which may lead to inaccurate diagnoses,
lack of generalizability, and, ultimately, adverse patient outcomes [64]. Furthermore,
different types of AI-assisted EUS models may require images of the area of interest
prepared in a specific manner and may not perform with a high degree of accuracy with
different imaging subsets. Although universal protocols can be created for input data to
increase the efficiency and accuracy of AI-assisted EUS models, it may be an extremely
time and labor-expensive process [63].

Another area of concern is the quality of input data used to train the AI-assisted EUS
models. Most studies in the current literature derive input data from a single institution,
with only a few multicenter experiences [50,58,59,63]. This lack of diversity in the dataset
leads to an information bias. For the AI-assisted EUS diagnostic models to achieve a high
degree of diagnostic accuracy and generalizability to diagnose and differentiate PDAC from
other etiologies, the dataset needs to be highly diverse, capturing all possible variations
and variables used in the decision-making process [63]. This can be achieved by developing
a quality-monitored central data collection server for EUS images from all institutions
across the US, both academic and private. Furthermore, just collecting high-quality data
is not sufficient. It is also imperative to ensure that the studies that utilize the data to
report specific outcomes on pancreatic cancers must have high methodological quality
and standards of reporting as they may influence current guidelines or help in developing
future ones [65]. Poor quality studies with flawed methodologies and a lack of transparent
reporting may create distrust among healthcare professionals, leading to delays in policy
changes and the adoption of this newer technology in current clinical practice [65].

The AI ‘Black Box’ problem, particularly for ML and DL AI-assisted models, has
garnered significant attention and is rapidly becoming a concern [66]. A ‘Black Box’ AI
is an AI algorithm that allows the observer to visualize input and output data without
any information on the processes and operations used to derive the output data [66,67].
Hence, the observer is unable to interpret and determine the reasoning behind how a
specific variable was weighed within the AI algorithm [63,66,67]. This is concerning as
gastroenterologists need to be able to visualize and understand how the information on
PDAC was processed and analyzed to prevent errors that can ultimately lead to adverse
patient outcomes. Therefore, for the time being, AI-assisted EUS models should be used as
adjuncts to clinical experience rather than ultimate answers when recommending treatment
for pancreatic cancers.

Finally, there are numerous ethical dilemmas associated with the handling and storage
of sensitive patient information [68]. As the AI-assisted EUS models require a great volume
of input data, appropriate de-identification of patient information is required to protect
patient privacy, reduce bias, and ensure the fairness of the algorithm [68]. However, the de-
identified data needs to be traceable back to the patient to aid in diagnosis and recommend
treatment options. Furthermore, this information needs to be secure from cybercriminals
and interested parties who may use it to exploit vulnerabilities and influence the healthcare
of these individuals [68]. Figure 2 summarizes all the limitations associated with AI in EUS.

2.6. Future Directions of Artificial Intelligence in Endoscopic Ultrasound for Pancreatic Cancer

Despite its limitations, the growth and application of AI in different subspecialties of
medicine, particularly GI, have increased exponentially. Collaborations between academic
centers, private physicians, and industry will continue to drive the AI revolution to improve
its quality, utility, ease of use in everyday clinical settings, and, most importantly, accuracy
for the early detection of pancreatic cancer. We foresee the following ‘near’ and ‘far’ future
applications of AI in EUS for patients with pancreatic cancer:
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2.6.1. ‘Near’ Future Application of Artificial Intelligence in Endoscopic Ultrasound for
Pancreatic Cancer

The diagnostic accuracy of AI-assisted EUS models has been compared favorably to
or exceeded the diagnostic accuracy of human interpretation for pancreatic cancers [47,54].
However, it is worth noting that neither AI-assisted models nor human diagnosis has
100% diagnostic accuracy. Hence, we strongly believe that AI-assisted models should
serve as a ‘second set of eyes’ to the endosonographer rather than a replacement (Figure 3).
Furthermore, AI-assisted models can also potentially aid experienced endosonographers
during biopsies while, at the same time, learning from these experts in the field. These
strategies may be critical in the early detection of pancreatic cancer and differentiating
them from other clinical entities. Ultimately, AI-assisted EUS models should help reduce
operator variability, which has been a traditional limitation of EUS.
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2.6.2. ‘Far’ Future Application of Artificial Intelligence in Endoscopic Ultrasound for
Pancreatic Cancer

The application of AI technology in clinical medicine is still in the preliminary phase,
with a wide scope for improvement and utilization. As AI-assisted models are ideal for the
analysis of large datasets, they will have widespread utility in composite imaging, which
includes the fusion of EUS and cross-sectional radiological imaging to determine vascular
staging for pancreatic cancers. This information will be vital to endoscopists and other
specialties (radiology, medical oncology, surgical oncology, and radiation oncology) in-
volved in all aspects of pancreatic cancer staging. Additionally, it will help plan appropriate
interventions and recommend treatment options.

AI-assisted models analyzing samples from EUS-FNA and EUS-FNB are also quickly
gaining traction due to their ability to differentiate complex tissue specimens [69]. The diag-
nostic accuracy of MLP EUS-FNA and CNN EUS-FNB models for differentiating pancreatic
cancer from other pancreatic tumors was reported to be 100% and 94.17%, respectively.
However, as AI technology advances, with better AI algorithms and improved quality
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of EUS images/videos as input data, AI-assisted EUS models may replace traditional
EUS-FNA/FNB as the gold-standard test for diagnosing pancreatic cancer due to their less
invasive nature and high diagnostic accuracy.
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Cancer biomarkers have widespread utility in screening, differential diagnosis, staging,
risk assessment, response to treatment, monitoring disease progression, and the prognosis
of any cancer [70]. However, biomarkers for pancreatic cancer currently lack sufficient
sensitivity and specificity for widespread clinical application. Hence, this is an area of
interest where AI-assisted models may be highly beneficial. Large sets of biomarker data
from EUS-guided liquid biopsies can be analyzed using AI technology to identify pancreatic
cancer at an early stage [69]. Studies investigating AI algorithms capable of analyzing
biomarker data with high accuracy are an area of active research.

From an intervention perspective, AI-assisted EUS-guided fine-needle injection is
another potential area of application of AI technology. Using AI-assisted real-time EUS
imaging guidance, interventional endoscopists may be able to directly inject activated
allogeneic lymphocyte culture or oncolytic attenuated adenovirus (ONYX-015), which
are currently being studied as a potential therapy for pancreatic cancer, directly into
pancreatic lesions. Traditionally, pancreatic lesions have been extremely difficult to reach
by a percutaneous approach due to their depth. Hence, AI-assisted EUS-guided fine-needle
injection may become the preferred approach in elderly patients or those with a high
comorbidity burden, primarily due to the less invasive nature of the procedure and fewer
complications. However, additional research is needed before AI-assisted EUS-guided
fine-needle injection finds widespread application. Figure 3 summarizes all the potential
future applications of AI in EUS for pancreatic cancer.

3. Conclusions

AI-assisted EUS models have shown promise in the early detection of pancreatic
cancer, with a high degree of accuracy despite still being in the infancy of development and
utilization. Compared to human interpretation, AI technology has either been compared
favorably or has been noted to be far superior in identifying pancreatic cancer and differenti-
ating it from other clinical entities that mimic pancreatic cancer on conventional radiological
imaging such as CP and AIP. However, AI-assisted EUS models have a unique yet con-
cerning set of limitations, such as the AI ‘Black Box’, the lack of adequate standardization
and quality of data, and ethical dilemmas associated with sensitive patient information, all
of which limit widespread application. Despite these limitations, AI technology may be
instrumental in transforming the future of healthcare, especially for pancreatic cancer, due
to its precision in analyzing and processing large datasets. AI-assisted EUS models could
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serve as a ‘second set of eyes’ to the endosonographer, improving diagnostic accuracy. AI
technology could also assist in composite imagining to determine the vascular staging for
pancreatic cancers and in AI-assisted EUS-guided fine-needle injection to easily treat deep
pancreatic lesions. Most studies on AI are retrospective; hence, large-scale prospective
clinical trials are needed to accurately evaluate the diagnostic accuracy of AI algorithms
in real-world clinical settings. If successful, AI-assisted EUS models have the potential to
become an indispensable tool in the management of patients with pancreatic cancer.
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