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Abstract: Recently, contrast-enhanced ultrasound (CEUS) has become a promising tool in distin-
guishing benign from malignant parotid gland tumors. However, its usefulness in differentiating
various benign parotid tumors has not been determined so far. This study aimed to systematically
review the literature to determine the utility of CEUS in the preoperative differentiation between
pleomorphic adenomas (PAs) and Warthin’s tumors (WTs) of the parotid gland. PubMed, Embase,
and Cochrane were searched for English-language articles published until 21 July 2022. Fifteen
studies were included. On CEUS examination, a significantly greater percentage of PAs displayed
heterogeneous enhancement texture compared to WTs. Contrarily, the enhanced lesion size, the
enhancement margin, and the presence of the enhancement rim did not differ significantly between
the entities. Significantly longer normalized mean transit time (nMTT) and time to peak (TTP) were
observed in PAs. Contrarily, the mean values of area under the curve (AUC) and time from peak to
one half (TPH) were significantly higher for WTs. Due to the considerable overlap among the qualita-
tive CEUS characteristics of PAs and WTs, the reproducible, investigator-independent quantitative
CEUS measurements have a greater potential to distinguish PAs from WTs, which might influence
the selection of an appropriate management strategy.

Keywords: ultrasonography; salivary gland; pleomorphic adenoma; Warthin’s tumor; perfusion

1. Introduction

Parotid gland tumors constitute approximately 80.0% of all salivary gland neoplasms [1].
Most of them (75–80%) are benign, with pleomorphic adenomas (PAs) and cystadenolym-
phomas (Warthin’s tumors; WTs) being the most frequent entities and accounting altogether
for up to 93% of all benign parotid gland tumors [2,3]. Their preoperative differentiation
remains crucial for selecting an appropriate management strategy. PAs have been reported
to carry a 2–25% risk of malignant transformation. Additionally, since their recurrence
rate increases after an inadequate surgical procedure, such as enucleation, at least a partial
parotidectomy is recommended. Contrarily, the vast majority of WTs do not recur, and
only anecdotal reports describing its malignant transformation exist in the literature [4–6].
Therefore, the current trend in the management of WTs is to minimize the extent of resec-
tion using partial parotidectomies or, when feasible, extracapsular dissections, whereas in
elderly multimorbid patients with surgical contraindications, a conservative approach with
active surveillance might also be selected [7,8].

Currently, B-mode ultrasonography (US) remains a widely used tool in the diagnostic
workup of parotid gland tumors. However, due to the considerable overlap in ultrasono-
graphic features between PA and WT, including the vascular characteristics on Doppler
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sonography, US parameters alone do not allow a reliable differentiation between these
neoplasms [9]. Similarly, ultrasound elastography (USE) was proposed as a potentially
effective tool in distinguishing PAs and WTs [10,11]. Nevertheless, growing evidence
indicates inconsistencies between the studies due to the meaningful overlap in elasticity
between WTs and PAs (which may display a wide range of stiffness), which currently
precludes their unequivocal differentiation by means of USE [12–14].

Routinely performed MRI, especially the analysis of T2-weighted images and apparent
diffusion coefficient (ADC) values, might be helpful in the preoperative diagnostic process
of benign parotid tumors [15,16]. However, some WTs might occasionally be misdiagnosed
as PAs when a cystic component is present [17].

Fine-needle aspiration cytology is a commonly used first-line tool for pathological
diagnosis of parotid gland lesions. However, numerous studies have emphasized its
limitations, such as a high rate of false-negative results and poor accuracy in differentiating
various types of neoplasms [18]. In turn, core needle biopsy carries a significant risk
of facial nerve injury and might be complicated by local tumor seeding, postoperative
hematoma, and infections due to the violation of the previously intact mass capsule during
the procedure [19].

In recent years, contrast-enhanced ultrasound (CEUS) has been extensively explored
as a novel ultrasound modality in differentiating salivary gland tumors. Intravenously
injected contrast medium consists of gas bubbles stabilized with a layer of phospholipid
or galactose. Due to their small size (1 to 5 µm on average), microbubbles can circulate
through the capillary system. This facilitates the assessment of parenchymal perfusion and
lesional microvascularity, particularly in echo-free areas, therefore, enabling the exclusion
of cystic and necrotic compartments. The purely intravascular contrast agent does not leak
in the interstitial spaces [20,21] and allows continuous flow evaluation (real-time perfusion
imaging). Moreover, CEUS yields measurable and comparable perfusion kinetics [22],
providing objective quantitative data.

In the Sultan et al. meta-analysis [23], the ability of perfusion-related CEUS parameters
to distinguish benign parotid gland tumors from malignancies has been reported. However,
the articles assessing CEUS usefulness in discriminating various benign parotid neoplasms
have described inconsistent findings. Therefore, the purpose of the present study was to
systematically review the literature to determine the utility of CEUS in the differentiation
of PAs and WTs of the parotid gland.

2. Materials and Methods
2.1. Study Guidance

The review was conducted according to the PRISMA 2020 (Preferred Reporting Items
for Systematic Reviews and Meta-Analyses) guidelines [24]. The study protocol was
registered with the International Platform of Registered Systematic Review and Meta-
analysis Protocols (INPLASY) under the number INPLASY2022120042 [25].

2.2. Search Strategy and Criteria

The PubMed, Embase, and Cochrane databases were searched by two authors (M.R.
and L.A.) independently for English-language full-text papers published from inception
until 21 July 2022. The comprehensive electronic search strategies included terms for parotid
gland tumors (“parotid” OR “parotid gland” OR “parotid gland lesion” OR “parotid lesion”
OR “parotid neoplasm” OR “parotid cancer” OR “parotid carcinoma” OR “parotid tumour”
OR “parotid tumor” OR “parotid mass” OR “salivary” OR “salivary gland” OR “salivary
gland lesion” OR “salivary lesion” OR “salivary neoplasm” OR “salivary cancer” OR
“salivary carcinoma” OR “salivary tumour” OR “salivary tumor” OR “salivary mass”)
AND terms for CEUS (“contrast-enhanced ultrasound” OR “contrast enhanced ultrasound”
OR “CEUS” OR “microbubbles ultrasound”). After duplicates removal, all studies were
screened by two authors (M.R. and L.A.) independently, based on the title and the abstract.
Inclusion criteria comprised clinical studies evaluating differential diagnosis of benign
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parotid tumors using CEUS. Publications with an unrelated topic, conference papers,
review articles, case reports, commentaries, technical notes, and letters to the editor were
excluded. Additionally, the reference lists in all preselected articles were screened for
further relevant papers. Any discrepancies between the researchers were discussed until a
consensus was reached.

2.3. Eligibility Criteria

The study was eligible if it qualitatively and/or quantitatively evaluated CEUS-
derived data in patients with PA or WT of the parotid gland.

2.4. Data Extraction

From the included studies, the following data were extracted: first author and pub-
lication year, study design, number of benign parotid gland tumors (PA/WT), reference
standard, contrast agent, a time considered for analysis following contrast administra-
tion, the region of interest (ROI) selection, tumor characteristics on CEUS images, and the
assessed CEUS parameters.

2.5. Quality Assessment

Two reviewers (M.R. and L.A.) independently assessed the quality of the eligible
studies according to the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2)
tool [26]. Any discrepancies between the reviewers were resolved through discussion until
a consensus was reached.

2.6. Evaluation of Qualitative CEUS-Derived Data

The qualitative analysis of CEUS-derived parameters comprised the assessment of
the following aspects: (1) the enhancement intensity (hyper-, iso-, or hypoenhancement)
of the tumor compared to the surrounding salivary gland tissue; (2) the enhancement
texture (homogenous or heterogeneous); (3) the enhancement margins (well-defined or
ill-defined); (4) the presence of an enhancement rim; (5) the enhanced lesion size (increased
or unchanged) compared with the lesion area before enhancement; (6) the presence of
echo-free areas (corresponding to contrast-free perfusion areas in the tumor after the
enhancement); (7) the perfusion pattern (centripetal, meaning a perfusion pattern from the
periphery into the center of the lesion, or non-centripetal, in case of perfusion from the
center of the lesion to the periphery or a diffuse central pattern); (8) the wash-in pattern
(referring to whether the tumor starts to enhance earlier, simultaneously, or later than the
surrounding normal gland); and (9) the wash-out pattern (referring to whether the lesion
starts to fade earlier, simultaneously, or later than the surrounding normal gland).

2.7. Evaluation of Quantitative CEUS-Derived Data

The quantitative evaluation of the CEUS-derived parameters involved the analysis of:
(1) rise time (RT, in seconds), representing the time during which the time-intensity curve
(TIC) increases from the starting point to 50% of the peak value; (2) peak intensity (PI, in
dB), representing the maximum signal intensity measured in the selected ROI; (3) mean
transit time (MTT, in seconds), representing the time during which the curve decreases from
the starting point to 50% of the PI; (4) normalized mean transit time (nMTT, in seconds),
representing the mean transit time normalized by circumjacent parotid tissue and expressed
in ratios; (5) area under the curve (AUC, in arbitrary units), representing the area under the
entire time-intensity curve; (6) time from peak to one half (TPH, in seconds), representing
the time from peak to half of the absolute increment; (7) time to peak (TTP, in seconds),
representing the time from the contrast agent injection to the maximum intensity of the
contrast agent signal; (8) normalized time to peak (nTTP, in seconds), representing the time
to peak normalized by circumjacent parotid tissue and expressed in ratios; (9) rising slope
(RS, in dB/s), calculated using the formula (peak intensity-baseline intensity)/rise time;
(10) wash-in-rate (WiR, in arbitrary units), describing the rate of change of contrast agent
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inflow; and (11) wash-in-perfusion-index (WiPI, in arbitrary units), defined as wash-in area
under the curve divided by RT. The graphical representation of the selected CEUS-derived
parameters is presented in Figure 1.

J. Clin. Med. 2022, 11, x FOR PEER REVIEW 4 of 15 
 

 

parotid tissue and expressed in ratios; (5) area under the curve (AUC, in arbitrary units), 
representing the area under the entire time-intensity curve; (6) time from peak to one half 
(TPH, in seconds), representing the time from peak to half of the absolute increment; (7) 
time to peak (TTP, in seconds), representing the time from the contrast agent injection to 
the maximum intensity of the contrast agent signal; (8) normalized time to peak (nTTP, in 
seconds), representing the time to peak normalized by circumjacent parotid tissue and 
expressed in ratios; (9) rising slope (RS, in dB/s), calculated using the formula (peak 
intensity-baseline intensity)/rise time; (10) wash-in-rate (WiR, in arbitrary units), 
describing the rate of change of contrast agent inflow; and (11) wash-in-perfusion-index 
(WiPI, in arbitrary units), defined as wash-in area under the curve divided by RT. The 
graphical representation of the selected CEUS-derived parameters is presented in Figure 
1. 

 
Figure 1. Quantitative time-to-intensity CEUS curve parameters. CEUS, contrast-enhanced 
ultrasound; au, arbitrary units; s, seconds; PI, peak intensity; AUC, area under the curve; TTP, time 
to peak; MTT, mean transit time. 

Overall data, including benign parotid tumors other than PAs and WTs, were not 
used for the quantitative analysis. Additionally, if data on a specific tumor type (e.g., PA) 
comprised lesions located in salivary glands other than the parotid gland, they were 
excluded from the quantitative analysis. 

2.8. Statistical Analysis 
As the studies included in the meta-analysis came from different centers and covered 

slightly different populations, the summary was performed by applying a random effect. 
As the end result, the mean value with a 95% confidence interval (CI) was chosen. 
Statistical heterogeneity in the studies was assessed using the I2 statistics. For values 
above 50%, further analysis was performed to identify the source of the heterogeneity, 
allowing the inclusion of homogeneous studies only. The mean values were then 
compared between the groups (PA and WT) with a series of t-tests for the two means in 
order to determine the significance. Additionally, qualitative CEUS features of PAs and 
WTs available throughout the articles were compared using the Chi2 test. Differences 
were considered significant at p < 0.05. The analysis was performed using Statistica 13.3 

Figure 1. Quantitative time-to-intensity CEUS curve parameters. CEUS, contrast-enhanced ultra-
sound; au, arbitrary units; s, seconds; PI, peak intensity; AUC, area under the curve; TTP, time to
peak; MTT, mean transit time.

Overall data, including benign parotid tumors other than PAs and WTs, were not
used for the quantitative analysis. Additionally, if data on a specific tumor type (e.g., PA)
comprised lesions located in salivary glands other than the parotid gland, they were
excluded from the quantitative analysis.

2.8. Statistical Analysis

As the studies included in the meta-analysis came from different centers and covered
slightly different populations, the summary was performed by applying a random effect.
As the end result, the mean value with a 95% confidence interval (CI) was chosen. Statistical
heterogeneity in the studies was assessed using the I2 statistics. For values above 50%,
further analysis was performed to identify the source of the heterogeneity, allowing the
inclusion of homogeneous studies only. The mean values were then compared between the
groups (PA and WT) with a series of t-tests for the two means in order to determine the
significance. Additionally, qualitative CEUS features of PAs and WTs available throughout
the articles were compared using the Chi2 test. Differences were considered significant at
p < 0.05. The analysis was performed using Statistica 13.3 (StatSoft Polska, Krakow, Poland)
and PQStat 1.8.4 (PQStat Software, Poznan, Poland) software.

3. Results
3.1. Study Selection

The literature search yielded 479 articles, including 217 from PubMed, 238 from
Embase, and 24 from Cochrane. After the removal of 426 duplicate records, 53 studies were
screened. Seven non-English studies and 12 articles with an irrelevant topic were excluded,
as well as 1 case report, 10 conference papers, 6 review articles, and 1 commentary. Out of
16 studies assessed for eligibility, 2 were found ineligible—the first one did not determine
if the analyzed salivary gland tumors were located in the parotid or the submandibular
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gland, and the second one did not provide any specific qualitative and quantitative CEUS-
derived data. The remaining 14 articles were found eligible. After the identification of
one relevant publication from the reference lists, a total of 15 studies were included in the
further analysis. Figure 2 shows the entire literature selection process.
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Figure 2. PRISMA flowchart of the medical database search strategy.

3.2. Study Characteristics

Nine studies [7,27–34] described the qualitative CEUS features of PAs and WTs. Three
of them [29,31,34] qualitatively analyzed PAs and WTs located in the parotid or sub-
mandibular gland. The remaining six articles [7,27,28,30,32,33] provided data on PAs
and/or WTs located solely in the parotid gland. Thirteen studies [7,27–33,35–39] assessed
the values of quantitative CEUS parameters. Complete study characteristics are presented
in Table 1.

Table 1. Characteristics of included studies.

First Author
(Year)

No. of
Tumors

(PAs/WTs)
Reference
Standard Contrast Agent ROI

Time
Considered for

Analysis

Assessed
Quantitative

CEUS
Parameters

Qualitative
CEUS Findings

Badea
(2013) [27] 12 (12/0) histopathology SonoVue whole tumor 120 s TTP

CEUS uptake pattern in PAs was variable
due to the displacement of the tumor

vessels towards periphery (homogenous,
4/12; inhomogeneous, 6/12).

Bozzato
(2007) [33] 81 (51/30) histopathology SonoVue

Area within the
tumor decided

by the user
90 s PI, TTP, WiT,

WiV

PAs showed a presence of distal echo
enhancement and a trend to higher
marginal perfusion, whereas WTs

presented a tendency towards higher blood
supply and manifested a marked central

perfusion trend.

Fischer
(2010) [28] 18 (9/9) histopathology SonoVue

Vascularized
area within the

tumor
60 s AUC, TTP

Contrast enhancement differed between
PAs and WTs. In the PA group: an increase

in echogenicity mainly in the tumor
periphery; no enhancement of the center in

7/9 PAs; central non-enhancing areas
corresponding to pseudocysts and necrosis.
In the WT group: small nodular peripheral

defects and fairly homogeneous central
enhancement in 5/9 WTs; well-demarcated
small cystic areas; central enhancement was

absent in only 2/9 cases



J. Clin. Med. 2022, 11, 7360 6 of 12

Table 1. Cont.

First Author
(Year)

No. of
Tumors

(PAs/WTs)
Reference
Standard Contrast Agent ROI

Time
Considered for

Analysis

Assessed
Quantitative

CEUS
Parameters

Qualitative
CEUS Findings

Guiban
(2021) [40] 44 (16/28) histopathology SonoVue

Area within the
tumor decided

by the user,
and adjacent
parotid tissue

120 s NA NA

Guo
(2021) [35] 98 (98/0) histopathology SonoVue

Highly
perfused area

within the
tumor

120 s–180 s
TTP, Peak,
RBV, RBF,

∆Simax , Simean
NA

Jiang
(2020) [29] 52 (28/24) histopathology SonoVue

Area within
the tumor
with avid

enhancement,
and

surrounding
parotid tissue

90 s TTP, PI, TPH
PAs were significantly more heterogeneous
than WTs. Significantly more PAs showed

rim enhancement compared to WTs.

Klotz
(2013) [36] 32 (17/15) histopathology SonoVue

At the centre of
solid tumor
tissue, and

surrounding
parotid tissue

90 s (first 30 s) AUC, MMT,
TTP, ∆Simax

NA

Klotz
(2014) [37] 24 (13/11) histopathology SonoVue

Area within the
tumor decided

by the user
90 s (first 30 s) AUC, PI, RT,

WiR, WiPI NA

Knopf
(2012) [30] 16 (8/8) histopathology SonoVue

Area within the
tumor decided

by the user,
normalized by
surrounding

parotid tissue

NA nMTT, nTTP CEUS visualized poor perfusion in PAs and
apparent hyperperfusion in WTs.

Mansour
(2017) [38]

137
(64/73) histopathology SonoVue

Area within the
tumor decided

by the user,
normalized by
surrounding

parotid tissue

NA nMTT NA

Saito
(2021) [39] 23 (10/13) histopathology Sonazoid

Area within the
tumor decided

by the user
120 s TTP, AUC,

Grand NA

Wang
(2022) [34] 58 (36/22) histopathology SonoVue

Area within the
tumor with

abundant blood
flow, and

surrounding
parotid tissue

90 s NA

The differences between PAs and WTs were
statistically significant in terms of

enhancement degree, enhancement pattern,
enhancement homogeneity, and wash-in

pattern. Most PAs showed simultaneous or
later wash-in, inhomogeneous hypo- or

isoenhancement and centripetal
enhancement pattern. Contrarily, most WTs

displayed earlier wash-in, homogeneous
hyperenhancement, and non-centripetal

enhancement pattern.

Wei
(2013) [31]

132
(62/70) histopathology SonoVue

Area within the
remarkable

perfusion area
of the tumor,

and
surrounding

parotid tissue

180 s AUC, TTP, PI

All PAs showed heterogeneous
enhancement, mainly corresponding to the
CEUS type 2b, whereas all WTs displayed

diffuse homogeneous enhancement
(representing CEUS type 1).

Welkoborsky
(2022) [32] 67 (31/36) histopathology SonoVue

8 standardized
areas

distributed
throughout the

entire tumor

NA AUC, TTP, Peak

Perfusion pattern significantly differed
between PAs and WTs. No visible perfusion
was found in 42% of PA and in 11% of WT,
a peripheral (centripetal) perfusion pattern

in 19.5% and 22%, respectively, and a
centrifugal perfusion pattern in 6.5% and

25%, respectively.

Yan (2021) [7] 88 (54/34) histopathology SonoVue

Area within the
solid tumor
tissue, and

surrounding
parotid tissue

120 s
AUC, MTT, RT,

PI, TPH,
TTP, RS

The majority of WTs showed high
homogeneous enhancement with a “fast in”

and “slow out” pattern. Contrarily, most
PAs displayed low heterogenous

enhancement and presented with an
echo-free area, and a pattern of “slow in”

and “fast out”.

Legend: PAs, pleomorphic adenomas; WTs, Warthin’s tumors; ROI, region of interest; CEUS, contrast-enhanced
ultrasound; TTP, time to peak; nTTP, normalized time to peak; AUC, area under the curve; MTT, mean transit
time; nMTT, normalized mean transit time; NA, non-applicable; RT, rise time; WiR, wash-in-rate; WiPI, wash-in-
perfusion-index; PI, peak intensity; TPH, time from peak to one half; RS, rising slope; RBV, regional blood volume;
RBF, regional blood flow; ∆Simax, maximum signal intensity; Simean, mean signal intensity; Grand, curve gradient
of wash-in; Peak, the increase of signal intensity from the baseline to maximum of intensity; WiT, wash-in time;
WiV, wash-in velocity; s, seconds.
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3.3. Study Heterogeneity

Following the evaluation of the 12 statistics, studies by Bozzato et al. [33] and
Saito et al. [39] showed values ≥ 50%; thus, they were excluded from the meta-analysis.
Therefore, the meta-analysis of each parameter is based on homogeneous studies, with
12 statistics values < 50%.

3.4. Study Quality

The assessment by the QUADAS-2 tool revealed a moderate or excellent quality of the
included studies, as shown in Figure 3. Nevertheless, several methodological shortcomings
contributing to bias still existed.
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Two studies [29,30] with inappropriate exclusion criteria and six studies [7,29,30,34,35,37]
without a consecutive or random sample of enrolled patients might have introduced poten-
tial selection bias. Concerning the index test, five studies [27,33,35,37,39] could increase the
risk of bias because they did not report the interpretation of the CEUS assessment without
the knowledge of the histopathological examination. Additionally, two studies [31,34]
might have enlarged the risk of bias with respect to flow and timing because the described
patients underwent either core needle biopsy or surgical resection for the final pathological
diagnosis. However, the interpretation of the reference standard in all included studies was
regarded as carrying a low risk of bias.

3.5. Qualitative CEUS-Derived Data

Qualitative analysis of CEUS-derived parameters was performed in nine studies [7,27–34].
The majority of PAs showed hypo- or isoenhancement [7,34], heterogenous enhancement
texture [7,27,29,31,34], simultaneous or late wash-in pattern (“slow in”) [7,34], and early
wash-out pattern (“fast out”) [7,34]. The presence of central non-enhancing areas (pseu-
docysts and necrosis) was observed significantly more often within PAs than in the WT
group [7,28]. Additionally, a trend towards higher marginal perfusion (centripetal perfusion
pattern) in PAs was reported [33,34].

Contrarily, most WTs were characterized by hyperenhancement [7,34], homogenous
enhancement texture [7,28,29,31,34], early wash-in pattern [7,34] (“fast in”), and simulta-
neous or late wash-out pattern (“slow out”) [7,34]. Moreover, several authors described a
trend toward hypervascularization of WTs compared to PAs [30,33] and a trend toward
non-centripetal perfusion pattern in WTs [32–34].

Both PAs and WTs showed mostly well-defined enhancement margins [7,29] and un-
changed enhanced lesion size [7,29,34]. Although Jiang et al. [29] reported that significantly
more PAs showed rim enhancement compared to adenolymphomas (p < 0.05), this finding
was not confirmed by other studies [7].

The enhanced lesion size (increased or unchanged), the presence of an enhancement
rim, the enhancement margin (well-defined or ill-defined), and the type of enhancement (ho-
mogeneous or heterogeneous) were the only qualitative CEUS features available throughout
the included articles. Based on this data, our meta-analysis revealed statistically significant
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differences in the enhancement texture (homogenous vs. heterogeneous) between PAs and
WTs (p < 0.001). A significantly greater percentage of PAs displayed heterogeneous enhance-
ment texture (94.99%) compared to the WT group (26.47%). Contrarily, the enhanced lesion
size, enhancement margin, and presence of an enhancement rim did not differ significantly
between the PA and WT groups (p = 0.566, p = 0.848, and p = 0.548, respectively).

3.6. Quantitative CEUS-Derived Data

The meta-analysis included the assessment of the following parameters: RT, MTT,
nMTT, AUC, TPH, TTP, nTTP, RS, WiR, and WiPI. The PI was not included in the meta-
analysis due to the heterogeneity of the evaluated studies. The results of the quantitative
analysis of the CEUS parameters are summarized in Table 2.

Table 2. Comparison of quantitative CEUS characteristics between PAs and WTs.

Feature PAs
Mean (95% CI)

WTs
Mean (95% CI) p Value

Rise time (RT) [s] 4.08 (2.56–5.60) 4.36 (2.49–6.23) 0.444
Mean transit time (MTT) [s] 36.75 (24.93–48.57) 63.90 (40.00–87.80) <0.001

Normalized mean transit time (nMTT) [s] 1.45 (1.31–1.59) 0.62 (0.51–0.74) 0.002
Area under curve (AUC) 66.26 (57.66–74.87) 107.99 (46.28–169.71) <0.001

Time from peak to one half (TPH) [s] 46.29 (31.44–61.14) 57.30 (40.54–74.06) 0.001
Time to peak (TTP) [s] 26.92 (22.46–31.39) 16.92 (16.04–17.72) 0.001

Normalized time to peak (nTTP) [s] 1.46 (1.17–1.75) 0.74 (0.67–0.81) <0.001
Rising slope (of wash-in curve) (RS) [dB/s] 2.42 (1.34–5.76) 1.28 (0.84–1.72) 0.052

Wash-in-rate (WiR) 3.26 (2.51–4.01) 16.3 (13.23–18.83) <0.001
Wash-in-perfusion-index (WiPI) 8.0 (6.87–9.13) 44.6 (37.20–52.00) <0.001

Legend: CEUS, contrast-enhanced ultrasound; PAs, pleomorphic adenomas; WTs, Warthin’s tumors; CI,
confidence interval.

Significantly higher values of nMTT were observed in the PA group (1.45; 95% CI,
1.31–1.59) than in the WT group (0.62; 95% CI, 0.51–0.74) (p = 0.002). TTP displayed
significantly higher values in the PA group (26.92; 95% CI, 22.46–31.39) compared to the
WT group (16.92; 95% CI, 16.04–17.72) (p = 0.001). The mean values of AUC in the WT
group (107.99; 95% CI, 46.28–169.71) were significantly higher than those in the PA group
(66.26; 95% CI, 57.66–74.87) (p < 0.001). TPH exhibited significantly higher values in the WT
group (57.30; 95% CI, 40.54–74.06) compared to the PA group (46.29; 95% CI, 31.44–61.14)
(p = 0.001).

Based on the findings obtained from 24 patients (13 with PAs, 11 with WTs),
Klotz et al. [37] described significantly higher values of WiR and WiPI in the WT group
(16.3; 95% CI, 13.23–18.83, and 44.6; 95% CI, 37.20–52.00, respectively) than in the PA group
(3.26; 95% CI, 2.51–4.01, and 8.0; 95% CI, 6.87–9.13, respectively) (p < 0.001). Moreover,
in the Knopf et al. study [30] including 16 patients (8 with PAs, 8 with WTs), nTTP was
significantly shorter in WTs (0.74; 95% CI, 0.67–0.81) than in PAs (1.46; 95% CI, 1.17–1.75)
(p < 0.001). In turn, based on the data of 88 patients (54 with PAs, 34 with WTs), Yan et al. [7]
found significantly higher values of MTT in the WT group (63.90; 95% CI, 40.00–87.80)
than in the PA group (36.75; 95% CI, 24.93–48.57) (p < 0.001). Contrarily, in the same
Yan et al. study [7], no significant differences between PAs and WTs were noted in the RT
and RS values.

4. Discussion

The introduction of ultrasound contrast agents has created opportunities to facilitate
a differential diagnosis between various benign and malignant parotid lesions. In recent
years, CEUS has been established as a valuable diagnostic tool, providing a microvascular
perfusion analysis in solid tumor tissue with well-documented hepatic and non-hepatic
applications [41]. Its non-invasive nature, high resolution, and favorable level of patient
acceptance, as well as the lack of radiation hazard, have caused CEUS to widen the diag-
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nostic spectrum of US modalities. As the microbubble contrast agent is primarily excreted
through the respiratory tract and metabolized in the liver, it can be administered in patients
with severe renal function impairment [42]. Additionally, due to the strong safety profile of
the contrast medium with a low risk of adverse events, contrast injections can be repeated,
which enables monitoring of the dynamic performance of the contrast agent over time [42].

4.1. Qualitative CEUS-Derived Data

The low enhancement pattern (hypo- or isoenhancement) reported in most PAs might
be attributed to their development from benign glandular epithelial tumors, which is char-
acterized by slow growth and sparse vascular distribution [7]. Furthermore, the presence of
abundant and unevenly dispersed mucinous, cartilaginous, and/or hyaline mesenchymal
components mixed with epithelial tissue is presumably the reason for PAs’ heterogeneous
enhancement texture [2,7]. The diverse arrangement of different PAs’ morphological
segments, with a non-uniform, predominantly marginal, and tortuous blood vessel distri-
bution, might explain the centripetal and “slow in” perfusion pattern of PAs [7,34].

Various reports [2,43] have suggested that WTs originate from ectopic lymphatic tissue
in the salivary gland and exhibit a dense microvascular distribution, causing a marked
hyper-enhancement similar to that in inflammatory lymph nodes. Additionally, the uniform
and dense microscopic arrangement of intralesional cellular components (lymphocytes and
glandular epithelial cells) with sparse interstitial space result in a homogenous enhancement
texture of WTs [2,34].

Most PAs and WTs displayed the typical CEUS features of benign salivary gland tumors,
i.e., well-defined enhancement margins and unchanged enhanced lesion size [7,29,34].
However, on rare occasions, PAs exhibited blurred enhancement margins, presumably
due to the active cell growth and partially incomplete tumor capsule [34]. Moreover,
the increased enhanced lesion size encountered in several WTs might stem from their
location in the superficial part of the salivary gland, which affected the observation through
the lateral acoustic shadow and the inability to focus on the lesion located too close to
the probe [29,34].

Despite the statistically significant difference between PAs and WTs in terms of en-
hancement type, the overlap in other qualitative CEUS characteristics (the enhanced lesion
size, the enhancement margin, and the presence of the enhancement rim) might indicate the
insufficient reliability of the descriptive benign parotid tumors evaluation. The qualitative
CEUS assessment is, to a certain extent, operator-dependent, rendering the data obtained
in this way prone to interobserver variability. While a certain combination of multiple
qualitative CEUS characteristics might be suggestive of a specific benign parotid tumor
type, the definitive diagnosis cannot be reached based solely on qualitative CEUS-derived
data. Its limited discriminatory ability demonstrates the necessity of combining descriptive
evaluation with the analysis of objectively acquired parameter values.

4.2. Quantitative CEUS-Derived Data

Our meta-analysis revealed significantly higher values of AUC in WTs, indicating higher
perfusion intensity in these lesions compared to PAs. Moreover, Welkoborsky et al. [32]
demonstrated that the medial (more distant from the ultrasound transducer) parts of both
tumor types (ROIs 4 through 6) showed higher AUC values compared to lateral (located
more superficially, closer to the ultrasound transducer) lesion parts (ROIs 1 through 3).
Additionally, the AUC displayed significantly higher values in all ROIs in WTs compared to
the corresponding ROIs in PAs [32]. The differences between ROIs throughout the lesions
were higher in WT than PA, indicating a perfusion heterogeneity in both tumor types,
which was nevertheless more pronounced in WTs [32].

In our meta-analysis, the nMTT in PAs (1,45; 95% CI, 1.31–1.59) was significantly
longer than in WTs (0,62; 95% CI, 0.51–0.74), which corresponds to a delayed perfusion pat-
tern in PAs (nMTT > 1 s) and reflects enhanced perfusion kinetics in WTs (nMTT < 1 s) [38].
Similarly, the significantly shorter TTP in the WT group compared to the PA group corre-
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sponds to the faster wash-in rate of the contrast agent through the WT ROIs. Additionally,
the significantly higher values of TPH in WTs reflect a slower wash-out rate in this tumor
type compared to PAs, corresponding to the rich capillary network characteristic of WTs.

The results of our meta-analysis demonstrate that contrast agent kinetic analysis in
PAs and WTs of the parotid gland offer statistically significant investigator-independent
variables. The described widely reproducible quantitative parameters (AUC, nMTT, TTP,
TPH) appear more accurate in the differentiation of PAs and WTs of the parotid gland than
the use of qualitative CEUS-derived data. The objective qualitative measurements could
presumably be utilized to determine the urgency and the required extent of the surgery,
particularly in the case of PAs, which carry a much higher risk of malignant transformation
than WTs. Additionally, the reliable identification of WTs through quantitative CEUS
assessment could reduce operative risk by suggesting a less aggressive surgical procedure,
or even an observational approach in elderly patients with severe comorbidities.

Nevertheless, further large cohort studies providing a repeatable quantitative analysis
of other CEUS parameters (PI, MTT, nTTP, RT, RS, WiR, WiPI) are highly warranted in order
to determine the actual usefulness of this promising technique in the routine management
of patients with benign parotid gland tumors.

4.3. Limitations

Our systematic review has highlighted the limited number of studies investigating the
use of CEUS in the differential diagnosis of benign parotid tumors. Due to the low incidence
rate of benign parotid neoplasms other than PAs and WTs and the lack of literature aiming
at differentiating them from PAs and WTs, they were not included in our meta-analysis.
Further studies assessing their CEUS characteristics are highly warranted.

A different number of ROIs and their various placements for perfusion analysis
throughout the included studies constitutes another major limitation of our research. Only
in one study [31] did the authors perform an evaluation with a systematic ROI distribution
throughout the entire tumor tissue. In most other articles, the perfusion parameters values
were measured in a single ROI, particularly within the highly perfused part of the lesion.
Additionally, the diversity in the tracking duration of the contrast inflow after its injection
(ranging from 30 s to 180 s) renders the comparison of the results difficult. The significant
heterogeneity between research protocols necessitates caution in interpreting both the
presence and the lack of statistically significant differences between PAs and WTs. Future
numerous, satisfactorily homogenous studies are required to precisely define the extent of
CEUS utility and reliability in managing patients with benign parotid tumors.

5. Conclusions

Despite the scarcity of literature, recent reports imply the potential utility of CEUS in
the differentiation between PAs and WTs of the parotid gland. The significantly greater
heterogeneous enhancement texture of PAs compared to WTs might reflect the microstruc-
tural differences between these entities. However, the overlap in other descriptive CEUS
characteristics might indicate the insufficient accuracy of differentiating PAs and WTs based
solely on qualitative CEUS assessment. Significantly longer nMTT and TTP in PAs and
significantly higher values of AUC and TPH in WTs demonstrate the potential of quantita-
tive CEUS assessment in distinguishing PAs from WTs. Nevertheless, the limited number
of studies investigating the use of CEUS in the differential diagnosis of benign parotid
tumors renders caution in interpreting our data. Future large prospective studies including
standardized CEUS-based assessment are highly warranted to precisely define the extent
of CEUS reliability in the management of patients with benign parotid gland tumors.
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