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Abstract: (1) Purpose: Although assessment of tumor-infiltrating lymphocytes (TILs) has been ac-
knowledged to have important predictive prognostic value in muscle-invasive bladder cancer (MIBC),
it is limited by inter- and intra-observer variability, hampering widespread clinical application. We
aimed to evaluate the prognostic value of quantitative TILs score based on a machine learning (ML)
algorithm to identify MIBC patients who might benefit from immunotherapy or the de-escalation
of therapy. (2) Methods: We constructed an artificial neural network classifier for tumor cells, lym-
phocytes, stromal cells, and “ignore” cells from hematoxylin-and-eosin-stained slide images using
the QuPath open source software. We defined four unique TILs variables based on ML to analyze
TILs measurements. Pathological slide images from 133 MIBC patients were retrospectively collected
as the discovery set to determine the optimal association of ML-read TILs variables with patient
survival outcomes. For validation, we evaluated an independent external validation set consisting
of 247 MIBC patients. (3) Results: We found that all four TILs variables had significant prognostic
associations with survival outcomes in MIBC patients (p < 0.001 for all comparisons), with higher TILs
score being associated with better prognosis. Univariate and multivariate Cox regression analyses
demonstrated that electronic TILs (eTILs) variables were independently associated with overall
survival after adjustment for clinicopathological factors including age, sex, and pathological stage
(p < 0.001 for all analyses). Results analyzed in different subgroups showed that the eTILs variable
was a strong prognostic factor that was not redundant with pre-existing clinicopathological features
(p < 0.05 for all analyses). (4) Conclusion: ML-driven cell classifier-defined TILs variables were robust
and independent prognostic factors in two independent cohorts of MIBC patients. eTILs have the
potential to identify a subset of high-risk stage II or stage III-IV MIBC patients who might benefit
from adjuvant immunotherapy.

Keywords: tumor-infiltrating lymphocytes; whole-slide image; machine learning; prognostic marker;
muscle-invasive bladder cancer

1. Introduction

Bladder cancer (BCa) is the most common malignancy of the urinary system and one
of the top ten cancers worldwide, with approximately 573,000 new cases and 213,000 deaths
worldwide in 2020 [1]. As the tumor invades different layers of the bladder, the overall
survival (OS) of patients with muscle-invasive bladder cancer (MIBC) significantly de-
clines, with the 5-year relative survival rate falling to 14% for those with stage IV bladder
cancer [2,3]. Although neoadjuvant chemotherapy and immunotherapy can reduce the
risk of distant spread in MIBC patients, 5–10% of patients remain unresponsive, resulting
in potentially fatal surgical delays and treatment toxicity [4,5]. Accordingly, it is crucial
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to develop prognostic factors that might benefit high-risk patients who can benefit from
adjuvant therapy and low-risk patients who can be safely spared further treatment. Tumor–
node–metastasis (TNM) staging, established by the American Joint Committee on Cancer
(AJCC), as well as pathological grading, and biomolecular markers such as FGFR and Ki67
are traditional prognostic markers for BCa patients. However, the development of new
markers has been slow over the last two decades [6]. The tumor microenvironment (TME)
has received increasing attention for its role in the development and progression of solid
tumors, and is now involved in the development of new and meaningful prognostic mark-
ers [7]. Tumor-infiltrating lymphocytes (TILs) and fibroblasts present in the tumor stroma
have been shown to be involved in a wide range of signaling interactions in the TME with
cancer cells and can serve as targets for optimizing subsequent treatment decisions [8,9].

TILs have high prognostic value in many solid tumors. Overall, a high abundance
of TILs tends to be associated with better prognosis [10]. Several studies in BCa have
supported this hypothesis. Liu et al. [11] revealed that elevated TILs were associated with
longer survival in BCa patients and were an important marker for predicting prognosis.
Shi et al. [12] demonstrated that a high CD3D/CD4 (total T cells/helper T cells) ratio
could better predict survival in MIBC patients. In 2014, the International TILs Working
Group (ITWG) published a standardized method for evaluating TILs score in breast cancer
pathological slide images [13]. Since then, TILs of most solid tumors have mainly relied on
semi-quantitative assessment by pathologists according to this standard with the naked
eye or microscope, typically using the predefined cut-point of TILs as the evaluation stan-
dard [14,15]. Ledderose et al. [16] revealed that increased stromal lymphocyte infiltration
was related to significantly higher OS, tumor-specific survival, and disease-free survival in
MIBC patients when using the ITWG-recommended approach. However, this traditional
visual assessment method is susceptible to inter-observer or inter-institutional variability
resulting in a lack of reproducibility and requiring review by experienced pathologists.
This means that the TILs scoring technique cannot be widely used in clinical practice [17].
Hence, there is an urgent need to develop an automated assistance system for quantitative,
reliable and reproducible analysis of pathological slide images.

In recent years, the development of digital pathology imaging and advances in ma-
chine learning (ML) have greatly facilitated the discovery of cancer biomarkers. A growing
number of computer image analysis methods are being developed for commercial or free
open source use, such as QuPath [18]. ML computational methods, based on pathological
images, have been widely used in a variety of tumors, including breast cancer [19], lung
cancer [20], melanoma [21], and colorectal cancer [22]. ML allows the extraction of higher-
order features in pathological images in a hand-predefined manner to explore quantitative
assessments of the interaction between tumors and the TME. However, a ML-based quan-
titative calculation method of TILs in BCa has not been reported, and it is worth further
exploring the prognostic value of the quantitative results of TILs in MIBC patients.

In this study, we developed a pipeline for automatic analysis of TILs in patholog-
ical images based on ML technology and QuPath open source software for prognostic
prediction of MIBC patients. The goal of this work is not only to help pathologists more
accurately assess TILs, but also to validate the potential pathologist-independent utility
of this prognostic analysis method in a clinical setting to determine which MIBC patients
might benefit from immunotherapy. Finally, we demonstrated in two cohorts that TILs are
a powerful independent prognostic factor that can assist clinicians in risk stratification of
MIBC patients and facilitate personalized treatment.

2. Materials and Methods
2.1. Clinical Cohorts

We retrospectively evaluated independent cases from two cohorts from the follow-
ing publication and institution, respectively: (a) The Cancer Genome Atlas (TCGA) and
(b) Renmin Hospital of Wuhan University (RHWU; Wuhan, Hubei, China). Pathological
images for both cohorts were rendered in whole-slide image (WSI) format. The TCGA
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cohort included 457 WSIs of 386 BCa patients, and each patient may have multiple WSIs
(https://portal.gdc.cancer.gov/repository, accessed on 24 November 2022). The RHWU
cohort included 150 WSIs of 150 MIBC patients.

Inclusion criteria for both cohorts were as follows: (a) available clinicopathological
information; (b) available follow-up information; (c) definitive pathological diagnosis of
MIBC; (d) diagnostic slides, not tissue slides; (e) availability of clear Hematoxylin-and-Eosin
(H&E)-stained pathological slides (Figure 1).

Figure 1. Inclusion and exclusion criteria for both cohorts. The algorithm was first developed and
internally validated in MIBC patients from RHWU. External validation was then performed with
patients from TCGA.

Clinical information, biological and pathological characteristics of patients in the
TCGA cohort were collected through the UCSC Xena database (https://xenabrowser.net/
datapages/, accessed on 24 November 2022), and those in the RHWU cohort were obtained
through the hospital management system and follow-up. Patients in both cohorts were
reclassified according to the eighth edition of the TNM staging system developed by the
AJCC [23].

https://portal.gdc.cancer.gov/repository
https://xenabrowser.net/datapages/
https://xenabrowser.net/datapages/
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2.2. Ethics

This retrospective study was approved by the RHWU Ethics Committee (No. WDRY2022-
K084) and the informed consent of the patients was obtained.

2.3. Digital Scanning

H&E-stained slides of the RHWU cohort were digitally scanned using a KF-PRO-
020 digital scanner at ×20 magnification (0.5 µm per pixel). After scanning, urological
pathologists performed a careful review of all WSIs, ensuring that all images were clear
and not blurred before image analysis, and then annotated the tumor areas. Since the WSIs
of the two cohorts have different magnifications—specifically, the original magnification of
the WSIs of the TCGA cohort was 40× (no fixed size, up to 100,000 × 100,000 pixels), while
the original magnification of the RHWU was 20×—we uniformly processed these images
to 20× magnification and used them to develop the next algorithm.

2.4. WSI Image Analysis

Image analysis for all WSIs was performed using QuPath v0.3.2 (https://qupath.
github.io/, accessed on 24 November 2022), an open source digital image analysis software
platform with built-in trainable ML algorithms. All WSIs were quality-checked before
being imported into QuPath. First, due to differences in slide staining between and within
institutions, the “estimated staining vector” function in QuPath was used to optimize H&E
staining estimates for each WSI. We used watershed cell detection [24] to identify and
segment all cells within the tumor area with the following parameters: Detection image:
hematoxylin OD; requested pixel size: 0.5µm; background radius: 8µm; median filter
radius: 0µm; sigma: 1.5µm; minimum cell area: 10µm2; maximum cell area: 400µm2;
threshold: 0.1; maximum background intensity: 2. The quality of cell segmentation was
controlled by urological pathologists. Representative specific regions were then selected to
classify tumor cells (red), immune cells (purple), and stroma cells (green), and the remaining
irrelevant factors (false detection and background) were set to “ignore”. We applied a
built-in neural network [25] classifier with eight hidden layers (maximum iterations: 1000)
to train to produce the best cell classification, adding additional specific regions as needed
during training to improve classification accuracy. Furthermore, to further increase the
classification accuracy, we also added smoothed object features at 25 µm and 50 µm radius
to complement the existing measurement features of cells. Features used in cell classification
are described in Supplementary Table S1. The training of the classifier required multiple
rounds of optimization to achieve the best classification effect, which was quality-controlled
by urological pathologists. Then, with the help of automated scripts, the trained classifier
was applied to all WSIs, and the number of cells and area of each type were counted in
preparation for the quantitative evaluation of TILs. Finally, we established a flow chart for
the quantitative analysis of TILs in pathological images based on the QuPath open source
software (Figure 2).

2.5. Assessment of TILs Using Four Variables

In this study, ML-defined TILs were constructed using four different methods, namely
eTILs%, esTIL%, etTILs% and eaTILs (mm2). The specific definitions were as follows:

(1) Calculate the proportion of TILs in tumor cells: eTILs% = (TILs/TILs + tumor cells) × 100
(2) Calculate the proportion of TILs in stromal cells: esTILs% = (TILs/TILs + stromal

cells) × 100
(3) Calculate the proportion of TILs in total cells: etTILs% = (TILs/total cells) × 100
(4) Calculate the infiltration density of TILs in the tumor region: eaTILs = TILs/tumor

region areas analyzed (mm2)

https://qupath.github.io/
https://qupath.github.io/
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Figure 2. The flow chart of histopathology image processing and analysis based on machine learning
in this study. BCa, bladder cancer; WSI, whole-slide image. ESV, estimated staining vector; TIL,
tumor-infiltrating lymphocyte.

2.6. Statistical Analyses

For statistical analysis, SPSS 26.0 software (SPSS Inc., Chicago, IL, USA) was used. The
statistically significant thresholds for the four variables of TILs were determined using X-tile
cut-point finder [26], a software that traverses possible combinatorial partitions to find the
best classification threshold. For prognostic analysis, Kaplan–Meier survival curves were
drawn using R software (Rx64 3.5.1) and a log-rank test was performed. The prognostic
value of TILs variables was assessed using univariate and multivariate Cox proportional
hazards models. For Cox multivariate analysis, a Cox model was generated using eTILs,
age, sex, lymphovascular invasion and TNM stage as predictors. All statistical tests were
two-tailed and significance was expressed as (*) p < 0.05, (**) p < 0.01, (***) p < 0.001,
(****) p < 0.0001.

3. Results
3.1. Patient Characteristics

After screening for inclusion, we included 247 MIBC patients in the TCGA cohort and
133 MIBC patients in the RHWU cohort, and only one representative WSI was selected
for each patient for analysis. The pathological types of patients in both cohorts were
transitional cell carcinomas. Table 1 presents the baseline characteristics of the two cohorts.
We used the RHWU cohort as the training set and TCGA as the external validation set to
verify the robustness of the algorithm.
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Table 1. Clinical, biological, and pathological features of the MIBC patients included in this study.

RHWU (N = 133) TCGA (N = 247)

Age (years) 66 (26, 87) 69 (37, 90)

Sex

female 20 (15.04%) 60 (24.29%)

male 113 (84.96%) 187 (75.71%)

pT stage

pT2 52 (39.10%) 70 (28.34%)

pT3 63 (47.37%) 131 (53.04%)

pT4 18 (13.53%) 40 (16.19%)

pTx 0 (0%) 6 (2.43%)

pN stage

pN0 66 (49.62%) 141 (57.09%)

pN1 34 (25.56%) 29 (11.74%)

pN2 18 (13.53%) 58 (23.48%)

pN3 15 (11.28%) 5 (2.02%)

pNx 0 (0%) 14 (5.67%)

pM stage

pM0 129 (96.99%) 100 (40.49%)

pM1 4 (3.01%) 7 (2.83%)

pMx 0 (0%) 140 (56.68%)

pTNM stage

Stage II 38 (28.57%) 65 (16.31%)

Stage III 74 (55.64%) 86 (34.82%)

Stage IV 21 (15.79%) 96 (38.87%)

Lymphovascular invasion

No 83 (62.41%) 90 (33.21%)

Yes 50 (37.59%) 99 (36.53%)

Missing 0 (0%) 82 (30.26%)

Survival status

Alive 77 (57.89%) 121 (48.99%)

Dead 56 (42.11%) 126 (51.01%)

OS time (months) 15.3 (1.9, 66.0) 17.5 (0.5, 114.0)
MIBC, Muscle-invasive Bladder Cancer; RHWU, Renmin Hospital of Wuhan University; TCGA, The Cancer
Genome Atlas.

3.2. Measurement of eTILs as a Prognostic Variable in Two Cohorts

Measurement of eTILs using an ML-based cell classifier and a cut-point of 13.2% iden-
tified in both cohorts indicated that a high level of eTILs was associated with longer OS
in the RHWU cohort (hazard ratio [HR] = 0.264, p < 0.0001; Figure 3a) and TCGA cohort
(HR = 0.333, p < 0.0001; Figure 3b). We then performed univariate and multivariate Cox
analyses in the TCGA cohort to assess the association of eTILs and clinicopathological
features with prognosis (Table 2). In univariate Cox analysis, eTILs (with a predefined
13.2% cut-point), age, lymphovascular invasion, pT stage, pN stage, and pTNM stage were
all significantly associated with OS (Figure 3c). Multivariate Cox analysis showed that
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eTILs remained a significant prognostic factor after retaining the important prognostic
indicators in univariate analysis (HR = 0.345, log-rank p < 0.001; Figure 3d and Table 2).

Table 2. Cox analyses of prognostic factors in the TCGA cohort.

Univariate Analysis Multivariate Analysis

HR (95% CI) p Value HR (95% CI) p Value

Age

<70 Ref. Ref.

≥70 1.702 (1.195, 2.424) <0.001 1.798 (1.259, 2.567) 0.001

Gender

female Ref.

male 1.058 (0.703, 1.591) 0.788

pT stage

pT1–2 Ref. Ref.

pT3–4 1.938 (1.258, 2.985) 0.003 1.111 (0.526, 2.345) 0.783

pN stage

pN0–1 Ref. Ref.

pN2–3 1.907 (1.323, 2.749) <0.001 1.557 (1.014, 2.391) 0.043

pM stage

pM0 Ref.

pM1 1.849 (0.859, 3.981) 0.116

pTNM stage

Stage II Ref. Ref.

Stage III–IV 2.438 (1.591, 3.876) <0.001 1.407 (0.581, 3.403) 0.449

Lymphovascular invasion

No Ref. Ref.

Yes 1.603 (1.128, 2.277) 0.008 1.360 (0.924, 2.003) 0.119

eTILs

Low eTILs Ref. Ref.

High eTILs 0.333 (0.199, 0.558) <0.001 0.345 (0.203, 0.586) <0.001
95% CI, 95% Confidence Interval; HR, Hazard Ratio.

3.3. Validation of the Prognostic Effect of eTILs in Different Subgroups

To verify that eTILs could be used for risk identification of MIBC patients of different
stages, we used eTILs with a 13.2% cut-point to analyze patients in pTNM stage II and
pTNM stage III–IV in the TCGA cohort, and the results confirmed that higher eTILs were
not only associated with better prognosis in Stage III and IV (p = 0.001; Figure 4b) but also
had a prognostic value in stage II (p = 0.026; Figure 4a). Further, we also predicted survival
after stratification with other characteristics (e.g., age, sex, pT stage, pN stage, pTNM stage,
histological grade, and lymphovascular invasion; Figure 5). These results demonstrated
that eTILs were a powerful prognostic factor that was not redundant with pre-existing
clinicopathological features and was an effective prognostic method independent of current
AJCC TNM staging.
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Figure 3. Measurement of eTILs with a 13.2% cut-point as a prognostic variable in two cohorts.
Kaplan–Meier survival curves for (a) RHWU and (b) TCGA cohort. Hazard ratio and 95% confidence
interval for eTILs and other clinicopathological features to predict survival in (c) univariate Cox and
(d) multivariate Cox analyses. ***, p < 0.001; **, p < 0.01; *, p < 0.05.

Figure 4. Assessment of eTILs in pTNM stage II and pTNM stage III-IV of TCGA cohort. (a) Kaplan–
Meier curve of overall survival in stage II and (b) Kaplan–Meier curve of overall survival in stage
III–IV by eTILs dichotomized at 13.2%.
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Figure 5. The performance of eTILs with a 13.2% cut-point in predicting prognosis in the TCGA cohort.
Kaplan–Meier survival curves for the following subgroups: (a) age ≥ 70; (b) age < 70; (c) male; (d) fe-
male; (e) pT stage 2; (f) pT stage 3–4; (g) pN stage 0–1; (h) pN stage 2–3; (i) lymphovascular invasion.

3.4. Assessment of Four TIL Variables in TCGA Cohort

To determine the best approach for specific forms of TILs for potential future clinical
adoption, we tested four different approaches to assess the density and proportion of eTILs
by cell types and the area analyzed. These TILs variables are shown schematically in
Figure 6d. We used the RHWU cohort as a training set to find each possible optimal cut-
point and the association of each TILs variable with patient survival outcomes. It was not
statistically reasonable to compare the p values for the four TILs variables since the goal of
this assessment was to examine their performance; nevertheless, HR comparisons might be
made to ascertain the relative prognostic strength of each variable. Our results showed that
all TILs variables were significantly associated with OS (p < 0.001; Figure 6a–c). HRs were
similar among eTILs, esTILs and etTILs variables, but eTILs (HR = 0.568, 95% confidence
interval [CI] = 0.176–1.832) and etTIL (HR = 0.543, 95% CI = 0.143–2.059) appeared to be
more robust methods. This suggested that eTILs and etTILs might perform better than the
other two methods in future large prospective or retrospective cohort studies.
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Figure 6. Assessment of four TILs variables including eTILs, etTILs, esTILs, and eaTILs. Kaplan–
Meier survival curves for (a) etTILs, (b) esTILs, and (c) eaTILs with optimal cut-points in TCGA
cohort. (d) Schematic diagram illustrating the four TILs variables. (e) Forest plot of the four TILs
variables with optimal cut-points in TCGA cohort.

4. Discussion

Chemotherapy is the first-line treatment for advanced and metastatic BCa, but its
objective response rate is unsatisfactory. Immunotherapy is currently available with im-
mune checkpoint inhibitors (ICIs) based on programmed cell death 1 receptor (PD-1) or
PD-ligand 1 [27]. Nonetheless, MIBC patients receiving immunotherapy still experience
treatment-related adverse events and a severely compromised quality of life [28,29]. It is
critical to evaluate the role of immunotherapy as adjunctive therapy for MIBC patients, as
this might spare them from immunotherapy toxicity. Our study confirmed in two cohorts
of MIBC patients that the eTILs score was an independent prognostic marker in MIBC pa-
tients and proved that this effect was present in both low- and high-stage patients receiving
adjuvant therapy.

Although current studies have found that TILs may provide prognostic information
for MIBC patients [30,31], it has not been widely used in the clinical practice management
of MIBC due to inter-institutional and inter-operator variability. Much research has rec-
ommended the use of ML or convolutional neural network for the analysis of H&E or
immunohistochemistry-based stained slides in breast cancer, melanoma, and lung cancer to
solve the problem of poor repeatability due to subjective variations [32–34]. Some of these
ML methods are based on patch classification, others rely on cell detection and classification.
However, none of these ML- or deep-learning-derived quantification methods for TILs has
yet been validated in MIBC patients, and they lack clinical experience, which is essential for
clinical applicability. Furthermore, different types of TILs variables need to be compared in
order to determine the optimum variables for large cohort studies. Here, we demonstrated
that ML-calculated TILs score can provide comprehensive information on TILs in TEM of
MIBC and differentiate patients with different risks during the same staging phase.

In our study, we developed a cell classifier based on the QuPath platform for quan-
titative measurement of TILs and derived four different TILs variables [eTILs%, esTIL%,
etTILs% and eaTILs (mm2)] to represent the proportion and density of TILs in different
cell types and areas analyzed. The cell segmentation method we used was unsupervised,
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and we followed this with artificial neural network-based cell classification. The advantage
of this strategy is that it only requires less data to achieve better training results. How-
ever, its limitation is that the accuracy of classification and segmentation is susceptible to
differences between WSIs, which might result in overfitting of the classifier during train-
ing. To address this limitation, we optimized and unified H&E staining for all WSIs, and
strictly controlled the quality of segmentation and classification by urologic pathologists to
avoid catastrophic phenomena. Finally, we confirmed the prognostic effect of all four TILs
variables in both cohorts.

Although our research is still in its early stages, objective evaluation of TILs might
have a clinical prognostic effect, allowing clinicians to identify a subset of patients who
might benefit from immunotherapy, or otherwise prevent overtreatment. We validated the
optimal predefined cut-points for TILs variables with two cohorts, but these cut-points
are likely not used in large cohorts because they are not adjusted for specific stage, tumor
subtype, and treatment. Accordingly, we propose treating the future TILs score as a
continuous variable and adjusting for the aforementioned elements as needed to develop
appropriate cut-points for certain situations.

This work has many potential limitations. One of the limitations is that segmentation
or classification errors in the algorithm can result in biased variables in the computed TILs.
Since tumor cells are highly heterogeneous, they tend to disguise themselves as other cells,
making classification more challenging. It is worth noting that etTILs is calculated with
all detected cells as the denominator, therefore using etTILs might lessen the inaccuracy
caused by this misclassification. In addition, the variant histology of BCa needs further
consideration, for example, the small cell component might have some microscopic features
resembling TILs. Another limitation is that we did not finetune TILs to differentiate between
stromal TILs (sTILs) and intratumoral TILs (iTILs). Although iTILs account for only 1% to
3% of TILs in most circumstances, they are frequently disastrous when they occur. Hence,
it is essential for pathologists to rigorously review these WSIs for exclusion or reanalysis in
studies. Finally, our most important limitations are that both cohorts are retrospective, that
patients in cohorts can have different treatments and that WSIs staining differs between
cohorts. Even though pathological images from clinics are restricted, we only employed
WSIs for analysis in our work and did not include tissue microarrays (TMA) images
like [35]. This is because TMA imaging might contain significantly less information than
data extracted from WSI methods, which cannot be fully representative of the prognosis of
the whole tissue image. However, further research is required to demonstrate the difference
between the two.

5. Conclusions

In conclusion, we validated that the eTILs score was a strong independent prognostic
marker in MIBC patients and was significantly associated with OS. The developed ML
algorithm has the potential to be a convenient and useful quantitative tool for risk stratifica-
tion. Through subgroup analysis, we confirmed that the eTILs score can assist clinicians in
identifying MIBC patients who might benefit from immunotherapy or avoid overtreatment.
In the future, TILs variables will be complemented with molecular typing of cells, and
larger prospective cohort studies will be conducted to find the best approach for the subset
of MIBC patients who might benefit from immunotherapy.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jcm11237081/s1, Figure S1: (a) In each whole slide image, the
entire tumor region of one whole image selected by the pathologists for each patient was annotated
and analyzed. The details of tumor region areas analysed in the (b) RHWU cohort and (c) TCGA
cohort are shown; Table S1: Features incorporated by neural network-driven cell classifiers.
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