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Abstract: COVID-19 is associated with musculoskeletal disorders. Ultrasound is a tool to assess
muscle architecture and tendon measurements, offering an idea of the proportion of the consequences
of the disease, since significant changes directly reflect the reduction in the ability to produce force
and, consequently, in the functionality of the patient; however, its application in post-COVID-19
infection needs to be determined. We aimed to assess the intra- and inter-rater reliability of ultrasound
measures of the architecture of the vastus lateralis (VL), rectus femoris (RF), vastus medialis (VM),
gastrocnemius lateralis (GL), gastrocnemius medialis (GM), soleus (SO), and tibialis anterior (TA)
muscles, as well as the patellar tendon (PT) cross-sectional area (CSA) in post-COVID-19 patients.
An observational, prospective study with repeated measures was designed to evaluate 20 post-
COVID-19 patients, who were measured for the pennation angle (θp), fascicular length (Lf), thickness,
echogenicity of muscles, CSA and echogenicity of the PT. The intra-class correlation coefficient (ICC)
and 95% limits of agreement were used. The intra-rater reliability presented high or very high
correlations (ICC = 0.71–1.0) for most measures, except the θp of the TA, which was classified as
moderate (ICC = 0.69). Observing the inter-rater reliability, all the evaluations of the PT, thickness
and echogenicity of the muscles presented high or very high correlations. For the Lf, only the RF
showed as low (ICC = 0.43), for the θp, RF (ICC = 0.68), GL (ICC = 0.70) and TA (ICC = 0.71) moderate
and the SO (ICC = 0.40) low. The ultrasound reliability was acceptable for the muscle architecture,
muscle and tendon echogenicity, and PT CSA, despite the low reliability for the Lf and θp of the RF
and SO, respectively.

Keywords: inter-rater reliability; intra-rater reliability; muscle ultrasound; muscle thickness; ultrasound
feasibility

1. Introduction

In 2019–2020, the world witnessed a wave of distress and fear caused by the COVID-19
pandemic. By May 2022, over 500 million confirmed cases and over 6 million deaths had
been reported globally [1]. Millions of people had been hospitalized with cardiovascular,
nervous, muscular, and immune histological complications [2]. Some sequelae have been
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observed in COVID-19 patients, such as anorexia, weight loss, low albumin, fatigue,
dyspnea, cough, anosmia, ageusia, and joint pain [3]. In addition, it seems that severe
COVID-19 may be associated with systemic complications, such as cachexia [4], defined as
“a complex metabolic syndrome associated with underlying illness and characterized by
loss of muscle” by Morley et al. [4].

The loss of muscle strength and mass is the most common musculoskeletal complica-
tion related to the hospital length-of-stay in patients with moderate to severe COVID-19 [5].
The exact mechanism of muscle damage in COVID-19 patients, and the long-term muscle
consequences in survivors, are not fully understood. However, the range of muscle mass
and functional loss depends on several determinants, such as frailty, comorbidities, the
level of the inflammatory response to COVID-19, anorexia, inadequate protein supply [6],
and physical inactivity [6,7]. Immune-mediated mechanisms provide widely recognized
explanations for the muscle impairment of SARS-CoV-2. This response is secondary to the
cytokine storm and the awakening of the immune system [8]. A larger infiltration of im-
mune cells was also observed in the skeletal muscles of patients who died from COVID-19
compared to patients who died from other critical illnesses [9], which may be related to
the detriment of the musculoskeletal system in COVID-19 patients and could contribute to
muscle weakness and fatigue. Andrade-Junior et al. [10] observed a reduction of 30.1% in
the cross-sectional area (CSA) of the rectus femoris during ten days of hospitalization in
COVID patients assessed by ultrasound imaging. To date, no studies have assessed the
effects of COVID-19 on tendon remodeling, even though changes in tendons have been
well described in situations of restriction of use [11,12]. This is particularly important, since
patients who develop the most severe forms of the disease mostly end up hospitalized
for days, contributing to related complications and several changes caused by muscle
disuse [2].

Ultrasound imaging is one of the most common tools for evaluating muscle archi-
tecture and tendon properties in vivo [13,14]. Muscle architecture is defined by the orga-
nization of muscle fibers within a muscle affecting the force generation axis and is one
of the main ways of measuring muscle function [15]. Briefly, the main outcomes are the
pennation angle (the fiber angle relative to the force-generation axis, θp); fascicular length
(the distance from the origin of the fascicle in the deep aponeurosis to the superficial
aponeurosis, Lf), and muscle CSA, which presented good correlations with the muscle
thickness (distance from deep aponeurosis to the superficial aponeurosis) [16]. Clinicians
also record images and analyze tendon CSA and echogenicity (an index of tissue quality
or fatty and fibrous infiltration) [17] to determine tissue quality in a non-invasive way.
Previous studies have found that ultrasound imaging is reproducible for analyzing the
properties of lower limb muscles and tendons [13,18,19]. However, to date, no studies
have observed the intra- and inter-rater reliability of ultrasound imaging in post-COVID-19
patients. Clinicians are aware of the proportion of the consequences of the disease on these
tissues, since significant changes in muscles and tendons of the lower limbs might directly
reflect the reduction in the ability to produce force and, consequently, the functionality of
COVID-19 patients.

As COVID-19 is a new and poorly studied disease, regardless of the comprehension
related to musculoskeletal system dysfunction, ultrasound could be a useful tool to quickly
assess the muscle and tendon properties of these patients outside and inside the hospital
setting. Therefore, we aimed to examine the intra- and inter-rater reliability and agreement
of the ultrasound measures of the architecture of the quadriceps femoris components (rectus
femoris-RF, vastus lateralis-VL, and vastus medialis-VM), triceps surae components (gas-
trocnemius lateralis-GL, gastrocnemius medialis-GM, and soleus-SO) and tibialis anterior
(TA), in addition to the CSA of the PT and echogenicity of all the muscles and tendons in
post-COVID-19 patients. The hypothesis was that ultrasound is a reliable and reproducible
tool to assess the muscles and tendons mentioned above in patients with moderate to
severe COVID-19 when performed by the same rater and by different raters. Knowledge of
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the reliability of such measurements is essential in data capture standardization as well as
in guiding clinical decisions.

2. Materials and Methods
2.1. Study Design

This is a prospective, observational blinded study with repeated measures to determine
the intra- and inter-rater reliability of the measurements obtained by ultrasound images
from the quadriceps femoris components, triceps surae, TA, and PT. We analyzed the muscle
architecture (Lf, θp, thickness), the CSA of the PT, and the echogenicity of all the muscles
and the PT, in post-COVID-19 participants. The research was conducted at the Laboratory
of Clinical Physiology of the University of Brasilia, following the guidelines for reporting
reliability and agreement studies (GRRAS) [20]. All the protocols were approved by the
Human Research Ethics Board at the Faculty of Ceilândia (CAAE: 45043821.0.0000.8093)
in accordance with the Declaration of Helsinki 1975. All the participants signed a consent
form before the data collection. The current manuscript is part of a large observational
study, and the full protocol is available at https://clinicaltrials.gov, identifier NCT04961255
(accessed on 9 November 2022).

2.2. Participants

A total of 20 participants were included in this study; of these, 12 patients had moder-
ate COVID-19 (5 males and 7 females—mean (SD) age: 45.08 (12.58) years, body mass: 78.81
(23.60) kg, height: 1.68 (0.11) m), and 8 had severe COVID-19 (5 males and 3 females—age:
50.87 (9.50) years, body mass: 87.54 (6.74) kg, height: 1.66 (0.05) m) (Table 1 includes further
information on the characteristics of the participants). The inclusion criteria for the study
were patients aged 18–80 years who had experienced a moderate or severe COVID-19
infection according to Siddiqi and Mehra [2]. In addition, only patients who had been
infected with COVID-19 within one year of study participation, considering the onset
of symptoms/hospital discharge, were included. The exclusion criteria were body mass
index (BMI) ≥ 35 kg/m2, reporting or diagnosis of swelling, skin damage, deformity or
amputation in the regions to be examined, and behavioral problems that make it difficult
to cooperate with the procedures of analysis.

Table 1. Characteristics of the participants.

Total (n = 20)

Age (years) 46.89 (11.64)
Sex

Male 10 (50%)
Female 10 (50%)

Body mass (Kg) 82.00 (19.41)
Height (m) 1.67 (0.09)
BMI (kg/m2) 28.92 (5.02)
Education

College or Higher 18 (90%)
Middle school or lower 2 (10%)

Comorbidities
Hypertension 8 (40%)
Diabetes 4 (20%)
Cardiovascular disease 2 (10%)
Cerebrovascular disease 1 (5%)
Hyperlipidemia 6 (30%)
Depression 1 (5%)
Panic Syndrome 2 (10%)

https://clinicaltrials.gov
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Table 1. Cont.

Total (n = 20)

Anxiety 2 (10%)
Asthma 3 (15%)
Tumors 1 (5%)

Time from symptom onset to analysis (days) 114.25 (89.91)
Hospitalization—yes/no 8/12
Length of hospital stay (days) 20.87 (20.97)
Length of ICU stay (days) 14.37 (18.76)
Vaccine 10 (50%)
Smoking history 3 (15%)

Data are reported as mean (SD) or frequency (%). BMI = body mass index; ICU = intensive care unit. Length of
hospital stay and length of ICU stay were calculated considering patients who were hospitalized.

2.3. Muscle and Tendon Ultrasound Imaging

The θp, Lf, thickness, CSA, and echogenicity were assessed using ultrasound (M-Turbo®,
Sonosite, Bothwell, WA, USA) as described by Blazevich et al. [21]. The data were collected
from the right limb (dominant limb) of all the participants. For the visualization and to
obtain images of the RF, VL, VM, and TA, the participants were positioned in a supine
position, with the lower limbs supported using a knee-bend to keep the muscle relaxed
and reduce the fascicle curvature, in order to maximize the assessment reliability [21]. GL,
GM, and SO images were obtained with patients in a prone position with the lower limbs
fully extended and the ankle suspended off the stretcher.

A water-soluble gel was applied to the probe to supply acoustic contact. The sequence
of the muscle images obtained was randomized. The probe was positioned longitudinally
on the tight calf to visualize the θp, Lf, and thickness. In contrast, the probe was placed
in a transverse plane for the CSA of the PT and the echogenicity measurement. For the
visualization of the RF, VL, and VM, the percentages of 50%, 60%, and 80%, respectively, of
the distance between the medial aspect of the anterior superior iliac spine and the superior
edge of the patella were considered [21]. The TA muscle was evaluated at the proximal 1/4
of the distance between the lower border of the patella and the lateral malleolus, with the
transducer positioned on the anterolateral aspect of the leg [22], while the GL, GM, and SO
muscles were evaluated, respectively, at 30, 30, and 50% of the distance from the popliteal
crease to the lateral malleolus [23,24]. For ultrasound evaluation of the PT, the probe was
placed at 25%, 50%, and 75% of the length of the PT [13,14] (Figure 1). The PT length was
measured between the deep insertion in the patella and the deep insertion in the tibial
tuberosity. The CSA measurement was performed considering the tendon contours.

Three images were obtained for each participant, and the average was considered for
analysis. The θp was considered as the angulation of the fibers concerning the muscle’s
line of action of force, and it was measured by assessing the angle formed between the
muscle fiber and the deep aponeurosis [25] (Figure 2). The Lf was considered as the
total length of the muscle fiber (Figure 2). Since the ultrasound probe was too small to
visualize the whole fascicle from origin to insertion, corrections were made according to
previous recommendations [21]. For the thickness, five lines were marked along the image,
representing each muscle’s thickest area between the superficial and deep aponeurosis
(Figure 2). Subsequently, the average of these five measurements was taken to obtain a
more reliable value of muscle thickness [22]. For the muscle and tendon echogenicity,
a region of interest was selected in each muscle, using the tracing technique, to include
all the visible muscles in the ultrasonographic image without any bone or surrounding
fascia [26]. A histogram was used to represent it on a grayscale, with values ranging from
0 to 255 (0: black/no wave reflection; 255: white/total wave reflection) [27,28], and the
mean echogenicity of the region of interest was calculated and averaged over the three
measurements per muscle and per each area of the PT.
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Figure 1. Tendon ultrasonography: a representative image of the patellar tendon ultrasound analysis.
For this evaluation, the probe was placed at 25% (A), 50% (B), and 75%(C) of the length of the patellar
tendon. The tendon contours were selected using the tracing technique to measure the cross-sectional
area and echogenicity.
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Figure 2. Muscle ultrasonography: a representative image of the gastrocnemius lateralis ultrasound 
analysis. (a) deep aponeurosis; (b) superficial aponeurosis; (c) muscle thickness; (d) fascicle length; 
(e) pennation angle; (f) distance between end of fascicle visualization and superficial aponeurosis; 
(g) lines indicating the cross-point between fascicle and deep aponeurosis. 

To confirm that each researcher could locate and view the θp, Lf, thickness, echo-
genicity, and tendon characteristics, numerous practice sessions were performed using 
the portable ultrasound unit (M-Turbo®, Sonosite, Bothwell, WA, USA) in B-mode with a 
7.5 Mhz linear transducer. Two raters performed the ultrasound measurements; both were 
physical therapists, and one had experience with ultrasound imaging and was considered 
the experienced rater (T1—ISA). The other, considered the novice rater, was trained for 
six months to perform the measurements (T2—LGJF). During the data collection, while 
one of the raters was collecting the images, the other was out of the laboratory. As an 
auxiliary, both the raters and the third physical therapist (T3) handled the ultrasound. All 
the images were analyzed with ImageJ software (National Institute of Health, Bethesda, 
MD, USA). 

2.4. Statistical Analysis and Sample Size 
The data were analyzed using SPSS 22.0 software (IBM Corporation, Armonk, NY, 

USA). The statistical level adopted was p < 0.05. The ultrasound data for each participant 
were obtained at the same time of day by the raters, who did not have access to each 
other’s measurements. A third researcher randomized the examiners’ evaluation order 
using the brown envelope method. Double and triple measures, calculated by the average 
of the records obtained in the two first and the three total records, were also used to form 
the five conditions of analysis: first (A1), second (A2), and third (A3) single trials recorded, 
as well as double (A1 + A2/2) and triple (A1 + A2 + A3/3) calculated measures. We chose 
the triple measure for the inter-rater reliability analysis because it represents the average 
of the three measurements made by each rater. For the intra-rater reliability analysis, we 
chose the three single trials recorded. 

To interpret the magnitude of the correlation coefficients, the classification suggested 
by Mukaka [29] was adopted: 0.00 to 0.30, insignificant; 0.31 to 0.50, low; 0.51 to 0.70, 
moderate; 0.71 to 0.90, high; 0.91 to 1.00, very high. Subsequently, the Bland–Altman (BA) 
plot was used to verify absolute reliability. The Bland–Altman plot was examined as a 
visual representation of the intra- and inter-examiner agreement level and to assess the 
presence of a systematic error, considering a 95% confidence interval that constitutes the 
limits of agreement for the measures. The sample size was estimated a priori, using the 
guidelines from landmark studies [30] and considering the performance of three meas-
urements for each analysis. For an α error < 0.05, power (1 − β) > 0.8, acceptable reliability 
(ρ0) of 0.70, and expected reliability (ρ1) of 0.90, a sample size of 20 participants was esti-
mated, considering a 20% drop-out rate. 

Figure 2. Muscle ultrasonography: a representative image of the gastrocnemius lateralis ultrasound
analysis. (a) deep aponeurosis; (b) superficial aponeurosis; (c) muscle thickness; (d) fascicle length;
(e) pennation angle; (f) distance between end of fascicle visualization and superficial aponeurosis;
(g) lines indicating the cross-point between fascicle and deep aponeurosis.

To confirm that each researcher could locate and view the θp, Lf, thickness, echogenic-
ity, and tendon characteristics, numerous practice sessions were performed using the
portable ultrasound unit (M-Turbo®, Sonosite, Bothwell, WA, USA) in B-mode with a
7.5 Mhz linear transducer. Two raters performed the ultrasound measurements; both were
physical therapists, and one had experience with ultrasound imaging and was considered
the experienced rater (T1—ISA). The other, considered the novice rater, was trained for six
months to perform the measurements (T2—LGJF). During the data collection, while one of
the raters was collecting the images, the other was out of the laboratory. As an auxiliary,
both the raters and the third physical therapist (T3) handled the ultrasound. All the images
were analyzed with ImageJ software (National Institute of Health, Bethesda, MD, USA).

2.4. Statistical Analysis and Sample Size

The data were analyzed using SPSS 22.0 software (IBM Corporation, Armonk, NY,
USA). The statistical level adopted was p < 0.05. The ultrasound data for each participant
were obtained at the same time of day by the raters, who did not have access to each other’s
measurements. A third researcher randomized the examiners’ evaluation order using the
brown envelope method. Double and triple measures, calculated by the average of the
records obtained in the two first and the three total records, were also used to form the five
conditions of analysis: first (A1), second (A2), and third (A3) single trials recorded, as well
as double (A1 + A2/2) and triple (A1 + A2 + A3/3) calculated measures. We chose the
triple measure for the inter-rater reliability analysis because it represents the average of the
three measurements made by each rater. For the intra-rater reliability analysis, we chose
the three single trials recorded.
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To interpret the magnitude of the correlation coefficients, the classification suggested
by Mukaka [29] was adopted: 0.00 to 0.30, insignificant; 0.31 to 0.50, low; 0.51 to 0.70,
moderate; 0.71 to 0.90, high; 0.91 to 1.00, very high. Subsequently, the Bland–Altman (BA)
plot was used to verify absolute reliability. The Bland–Altman plot was examined as a visual
representation of the intra- and inter-examiner agreement level and to assess the presence
of a systematic error, considering a 95% confidence interval that constitutes the limits of
agreement for the measures. The sample size was estimated a priori, using the guidelines
from landmark studies [30] and considering the performance of three measurements for
each analysis. For an α error < 0.05, power (1 − β) > 0.8, acceptable reliability (ρ0) of
0.70, and expected reliability (ρ1) of 0.90, a sample size of 20 participants was estimated,
considering a 20% drop-out rate.

3. Results
3.1. Intra-Rater Reliability

The majority of the measurements presented correlations classified as high or very
high (ICC range from 0.71 to 1.0), except for the measure of the θp of the TA for the less
experienced rater (ICC = 0.698), which was classified as moderate (Table 2).

Table 2. Intra-rater reliability and 95% CI of the muscle and tendon architecture and echogenicity
from the sample (n = 20) of Raters 1 and 2.

Rater 1 (T1) Rater 2 (T2)

Muscles ICC 95% CI ICC 95% CI

RF Lf 0.89 0.77–0.95 0.88 0.75–0.95
θp 0.90 0.79–0.95 0.92 0.84–0.96
Thickness 0.99 0.98–0.99 0.99 0.99–0.99
Echogenicity 0.98 0.97–0.99 0.99 0.99–0.99

VL Lf 0.89 0.78–0.95 0.92 0.83–0.96
θp 0.89 0.78–0.95 0.91 0.81–0.96
Thickness 0.99 0.98–0.99 0.99 0.99–0.99
Echogenicity 0.98 0.96–0.99 0.99 0.99–0.99

VM Lf 0.80 0.58–0.91 0.95 0.90–0.98
θp 0.71 0.39–0.87 0.92 0.85–0.97
Thickness 0.99 0.99–0.99 0.96 0.99–0.99
Echogenicity 0.99 0.98–0.99 0.99 0.98–0.99

TA Lf 0.93 0.85–0.97 0.91 0.82–0.96
θp 0.87 0.73–0.94 0.69 0.37–0.87
Thickness 0.99 0.97–0.99 0.99 0.98–0.99
Echogenicity 0.98 0.97–0.99 0.98 0.96–0.99

GL Lf 0.96 0.91–0.98 0.94 0.87–0.97
θp 0.94 0.87–0.97 0.95 0.90–0.98
Thickness 0.99 0.98–0.99 0.97 0.95–0.99
Echogenicity 0.97 0.93–0.98 0.98 0.96–0.99

GM Lf 0.94 0.88–0.98 0.97 0.94–0.99
θp 0.94 0.87–0.97 0.96 0.92–0.98
Thickness 0.98 0.96–0.99 0.99 0.99–0.99
Echogenicity 0.99 0.97–0.99 0.95 0.89–0.98

SO Lf 0.92 0.84–0.96 0.97 0.95–0.99
θp 0.87 0.74–0.94 0.97 0.94–0.99
Thickness 0.98 0.96–0.99 0.99 0.98–0.99
Echogenicity 0.99 0.97–0.99 0.99 0.99–0.99
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Table 2. Cont.

Rater 1 (T1) Rater 2 (T2)

Muscles ICC 95% CI ICC 95% CI

PT
25% CSA 0.97 0.95–0.99 0.97 0.95–0.99

Echogenicity 0.95 0.89–0.97 0.97 0.94–0.98
50% CSA 0.96 0.91–0.98 0.97 0.95–0.99

Echogenicity 0.97 0.95–0.99 0.98 0.97–0.99
75% CSA 0.94 0.88–0.97 0.96 0.93–0.98

Echogenicity 0.92 0.84–0.96 0.98 0.97–0.99
ICC, intra-class correlation coefficient; CI, confidence interval; RF, rectus femoris; VL, vastus lateralis; VM, vastus
medialis; TA, tibialis anterior; GL, gastrocnemius lateralis; GM, gastrocnemius medialis; SO, soleus; Lf, fascicle
length; θp, pennation angle; PT, patellar tendon; CSA, cross-sectional area.

3.2. Inter-Rater Reliability

The measurements of the thickness and echogenicity of the muscles presented corre-
lations classified as high or very high (ICC 0.71 to 1.0). In addition, analyzing the Lf, the
correlations were classified as high (ICC 0.71 to 0.90), except for the RF, which showed low
reliability (ICC = 0.435). For the θp, the VL, VM, and GM showed high reliability (ICC 0.71
to 0.90); however, the RF (ICC = 0.687), GL (ICC = 0.705), and TA (ICC = 0.712) showed
moderate reliability, and the SO showed low reliability (ICC = 0. 403). All the positions of
the PT had high or very high reliability for both the CSA and echogenicity (Table 3).

Table 3. Inter-rater reliability and 95% CI of the muscle and tendon architecture and echogenicity
obtained from the sample (n = 20) of Raters 1 and 2.

Lf
(ICC–95% CI)

θp Thickness
(ICC–95% CI)

Echogenicity
(ICC–95% CI) (ICC–95% CI)

RF 0.43 0.42–0.77 0.68 0.21–0.87 0.90 0.77–0.96 0.94 0.85–0.97
VL 0.75 0.39–0.90 0.81 0.53–0.92 0.93 0.83–0.97 0.93 0.84–0.97
VM 0.86 0.65–0.94 0.86 0.65–0.94 0.91 0.78–0.96 0.95 0.88–0.98
TA 0.78 0.45–0.91 0.71 0.27–0.88 0.87 0.67–0.94 0.93 0.83–0.97
GL 0.88 0.71–0.95 0.70 0.25–0.88 0.88 0.71–0.95 0.84 0.61–0.94
GM 0.73 0.23–0.90 0.78 0.32–0.92 0.93 0.81–0.97 0.73 0.25–0.90
SO 0.85 0.63–0.94 0.40 0.50–0.76 0.79 0.47–0.91 0.82 0.54–0.92

CSA
(ICC–95% CI)

Echogenicity
(ICC–95% CI)

PT 25% 0.92 0.79–0.96 0.96 0.91–0.98
PT 50% 0.91 0.79–0.96 0.72 0.29–0.89
PT 75% 0.85 0.62–0.94 0.74 0.34–0.89

ICC, intra-class correlation coefficient; CI, confidence interval; RF, rectus femoris; VL, vastus lateralis; VM, vastus
medialis; TA, tibialis anterior; GL, gastrocnemius lateralis; GM, gastrocnemius medialis; SO, soleus; Lf, fascicle
length; θp, pennation angle; PT, patellar tendon; CSA, cross-sectional area.

3.2.1. Fascicular Length

The Bland–Altman plots (Figure 3) showed that the LoA varied from 69.1% for the
GL to 127.5% for the RF. The SO presented the highest bias (19.2%) among the muscles
assessed, showing values ranging from 1.6 to 7.1. In agreement with the ICC results, the GL
presented the highest correlation (ICC = 0.88) between the raters and the lowest bias (1.6%)
and LoA (69.1%) (Figure 3d). In addition, the RF (Figure 3a) also showed a low correlation
(ICC = 0.43) with the highest LoA and one of the lowest biases (−3.56%).
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Figure 3. Bland–Altman plots displaying the differences (expressed as %) plotted against the average
Lf recorded by the two raters for each muscle. (a–g) Inter-rater reliability of Lf measurement for
(a) rectus femoris; (b) vastus lateralis; (c) vastus medialis; (d) gastrocnemius lateralis; (e) tibialis
anterior; (f) gastrocnemius medialis; and (g) soleus. The lines show the zero, bias, and random error
lines. Dashed lines represent the 95% limits of agreement (LoA). Lf, fascicular length; LoA, limits
of agreement.

3.2.2. Pennation Angle

The findings of the Bland–Altman plots (Figure 4) for the pennation angle measure-
ments showed that the LoA varied from 53% for the VM to 136.3% for the SO. This was in
agreement with the low correlation (ICC = 0.40) and the highest bias and LoA presented
by the SO (13.43% and 136.32%, respectively, Figure 4g), in a range of 1.9 and 8.5% among
the other muscles assessed. The lowest bias (1.9%) and LoA (99.7%) were observed for the
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VL (Figure 4b), even though the highest correlation (ICC = 0.86) was presented by the VM
between the raters.
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Figure 4. Bland–Altman plots displaying the differences (expressed as %) plotted against the average
θp of each muscle recorded by the two raters. (a–g) Inter-rater reliability of θp measurement for
(a) rectus femoris; (b) vastus lateralis; (c) vastus medialis; (d) gastrocnemius lateralis; (e) tibialis
anterior; (f) gastrocnemius medialis; and (g) soleus. The lines show the zero, bias, and random error
lines. Dashed lines represent the 95% limits of agreement (LoA). θp, pennation angle; LoA, limits
of agreement.

3.2.3. Thickness

The findings of the Bland–Altman plots (Figure 5) for the thickness measurements
showed that the LoA varied from 34.3% for the GM to 87.9% for the SO. In agreement, the
GM muscle presented the highest correlation (ICC = 0.93) between the raters. This finding
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was not followed by the highest bias for the GM (10.1%), with a range of 1.2 to 8.5% among
the other muscles assessed. The lowest bias (1.2%) was observed for the RF (Figure 5a).
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Figure 5. Bland–Altman plots displaying the differences (expressed as %) plotted against the aver-
age thickness recorded by the two raters for each muscle. (a–g) Inter-rater reliability of thickness
measurement for (a) rectus femoris; (b) vastus lateralis; (c) vastus medialis; (d) gastrocnemius lat-
eralis; (e) tibialis anterior; (f) gastrocnemius medialis; and (g) soleus. The lines show the zero, bias,
and random error lines. Dashed lines represent the 95% limits of agreement (LoA). LoA, limits
of agreement.

3.2.4. Echogenicity

The findings of the Bland–Altman plots (Figure 6) for the echogenicity measurements
showed that the LoA varied from 35.8% for the VM to 68.9% for the SO. The lowest
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bias (1.6%) and LoA (35.88%) were observed for the SO (Figure 6g) and VM (Figure 6c),
respectively. Despite the highest bias for the VL (11.9%), with a range of 1.6 to 8.5 among
the other muscles assessed, this muscle presented a very high correlation (ICC = 0.93).
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Figure 6. Bland–Altman plots displaying the differences (expressed as %) plotted against the average
echogenicity recorded by the two raters for each muscle. (a–g) Inter-rater reliability of echogenicity
measurement for (a) rectus femoris; (b) vastus lateralis; (c) vastus medialis; (d) gastrocnemius
lateralis; (e) tibialis anterior; (f) gastrocnemius medialis; and (g) soleus. The lines show the zero,
bias, and random error lines. Dashed lines represent the 95% limits of agreement (LoA). LoA, limits
of agreement.
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3.2.5. Cross-Sectional Area of the Patellar Tendon

The findings of the Bland–Altman plots (Figure 7a–c) for the measurement of the CSA
of the PT showed that the LoA varied from 44.7% at the position of 50% of the length to
53.3% at the position of 75%. This finding was not followed by the bias, which was higher
at the position of 25% (2.8%), compared with the values of 1.3 and 1.0%, for the positions of
75 and 50%, respectively. The measurement of the CSA of all the positions presented high
ICC with a low bias and LoA. However, despite the percentage of 50% showing the lowest
bias and LoA (Figure 7b), the position with the highest correlation (ICC = 0.92) between the
raters was at 25% of the tendon length.
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Figure 7. Bland–Altman plots displaying the differences (expressed as %) plotted against the average
CSA and echogenicity recorded by the two raters for each PT position. Inter-rater reliability of CSA
(a–c) and echogenicity (d–f) measurement for (a,d) 25%; (b,e) 50%; and (c,f) 75%. The lines show the
zero, bias, and random error lines. Dashed lines represent the 95% limits of agreement (LoA). CSA,
cross-sectional area; LoA, limits of agreement; PT, patellar tendon.

3.2.6. Echogenicity of the Patellar Tendon

The findings of the Bland–Altman plots (Figure 7d–f) for the echogenicity of the PT
measurements showed that the LoA varied from 25.7% at the position of 25% of the length
to 90.77% at the position of 75%. This finding was followed by the bias, which was highest
at the position of 75% (12.1%), compared with the values of 2.4 and 6.9% for the positions
of 25 and 50%, respectively. The lowest bias (2.4%) and LoA (25.7%) were observed for
the measurement at the position of 25% (Figure 7d), which showed the highest correlation
(ICC = 0.96) between the raters.

4. Discussion

To our knowledge, this is the first study to measure the intra- and inter-rater reliability
and agreement of ultrasound measures of the architecture of the quadriceps femoris and
triceps surae components and the TA, in addition to the CSA and echogenicity of the PT
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from post-COVID-19 patients. The results demonstrated that the measures presented a
moderate to very high intra-rater reliability (ICC ranging from 0.51 to 1.00), for the majority
of measurements, except for the RF Lf (ICC 0.43) and SO θp (ICC 0.40), which indicated low
reliability. These findings are in agreement with the hypothesis that ultrasound is a reliable
tool that allows an acceptable determination of the architecture of different lower limb
muscles. Our results support the diagnosis and evaluation of musculoskeletal disorders of
COVID-19 by clinicians and researchers and will also help to correctly interpret the studies
presenting data on ultrasound imaging of muscle and tendons from COVID-19 patients. It
is worth remembering that, although participants with different severities of COVID-19
were included in this study, the objective was to examine the reliability of ultrasound in the
muscles of COVID-19 patients and not to compare the ultrasound measurements between
the different groups. We are developing further studies to compare the musculoskeletal
properties in participants exposed to COVID-19, “long COVID”, through ultrasound
measurements. Huang et al. [31], demonstrated that fatigue or muscle weakness persisted
in over 60% of patients six months after COVID-19 symptom onset, which substantially
impacts the functionality and quality of life of COVID-19 survivors. However, the exact
mechanism of musculoskeletal involvement in COVID-19 is not understood [32], and it
is important to note that some points must be considered, such as the patient’s previous
condition. In individuals with knee osteoarthritis, for example, joint tissue inflammation
can contribute to the progression of synovial inflammation [33]. This can be an important
factor in establishing the sequelae and/or changes in the musculotendinous architecture
of a COVID-19 infection. Therefore, due to the global impact of the COVID-19 pandemic,
diagnostic tools are needed to assess the musculotendinous quality of these patients. One
of these tools is ultrasound, a non-invasive, easy-to-use, and portable device that enables
quick access to a visualization of musculoskeletal imaging properties [34,35].

Concerning the muscle architecture, our results are in partial agreement with those
presented in a previous review [36]. While the authors reported good reliability for the
ultrasound measures of the relaxed muscles of the lower limb, we found low reliability
for the RF Lf and SO θp. In addition, the majority of studies reported moderate to high-
reliability estimates for the θp and Lf of the VL [19,37–39], RF [37,39], TA [38], GM [40–42],
and GL [42]; while the studies exploring these measurements using ultrasound in SO [43]
and VM [44] did not report reliability estimates. This fact makes it difficult to compare our
reliability findings for the SO and VM with the previous studies.

An ultrasound assessment may be a convenient, non-invasive tool to evaluate muscle
wasting and quality, especially when assessing muscle thickness and echogenicity [45,46].
Here, our results demonstrated a high or very high intra- and inter-rater reliability for these
two measurements. These results agree with Karapinar et al. [17], who investigated the
reliability of measuring the echogenicity features of the quadriceps muscle in patients with
knee osteoarthritis. In addition, Pardo et al. [47] observed an ICC of 0.83 for the thickness
of quadriceps femoris inter-rater reliability in critically ill patients, and May et al. [42]
showed excellent measurements (ICC 0.81 to 0.88) for the thickness of the GL and GM in a
healthy population.

In addition to muscle changes, prolonged disuse affects tendon properties, such as by
reducing tissue stiffness, CSA, and tendon thickness [11,48]. Therefore, using ultrasound
as a tendinous assessment tool seems to represent a good possibility. Previous studies
demonstrated acceptable reliability for the ultrasound measures of the CSA of the PT
in healthy individuals, expressing ICCs ranging from 0.87–0.98 [49] and 0.89 to 0.98 for
critically ill patients [13]. Concerning the PT, only one study investigated the reliability
of three positions (25%, 50%, and 75%) in critically ill patients [13]. The magnitude of the
reliability of tendon CSA and echogenicity was classified as “almost complete”, irrespective
of the rater, confirming the results obtained in the present study.

Although the ultrasound reliability of the muscle architecture, muscle thickness,
muscle and tendon echogenicity, and PT CSA images taken by the independent raters
was acceptable, we observed low inter-rater reliability for the RF Lf and SO θp. These
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results could be related to more pronounced changes in the muscular architecture of these
muscles, resulting from the infection process, which may require greater caution during
ultrasound analysis. The RF is an important knee extensor muscle and also has an action in
hip flexion, and the SO is a deeper muscle that is difficult to visualize because it is below
the gastrocnemius muscle [50,51]. It is possible that these anatomical characteristics also
affect the analysis. In addition, this could be explained by a common error that can appear
during ultrasound measurements: the inconsistent alignment of the probe, as previously
reported [52]. Moreover, a muscle is a series of interconnected planes. Some authors have
indicated that an optimal orientation is such that the fascicles can be visualized along their
length from the superficial to the deep aponeuroses, where the plane of the ultrasound is
parallel to the fascicles [24]. Otherwise, the fascicle length would be overestimated, and the
fascicle angle would be underestimated, which suggests that probe rotation can affect the
measures of Lf and θp during an ultrasound analysis [52].

The importance of applying ICC values accompanied by the Bland–Altman method
for reliability studies has been shown [53,54]. We observed an agreement between both
assessments, with high reliability accompanied by low bias and LoA, and low ICC values
for measures with a high bias and LoA. However, this pattern was not observed for some
measures. For example, the θp and thickness of the GM showed a high bias (8.5 and 10.1),
despite a moderate or high ICC (0.78 and 0.93, respectively). A similar result occurred for
the measures of the echogenicity of the VL and PT at 75%. These results may occur due to
the difficulty of taking these measurements using the ultrasound technique, or because of
a higher standard error measurement of the novice rater. The previous test-retest studies
ratified this possible learning effect and reported low inter-rater reliability related to the
different levels of experience between the raters [55].

The main limitation of this study was the inclusion of post-COVID-19 patients who
had undergone a long period of disuse and had more pronounced musculoskeletal reper-
cussions of the disease, which may make the analysis more challenging. In addition, the
number of participants is small for adequate powering, but the sample size and statistical
analysis were adequate for the preliminary formulation of a hypothesis yet to be tested
in a larger project. Therefore, this group of participants with different degrees of disease
severity and further musculoskeletal sequelae may influence the image acquisition. In addi-
tion, there is a lack of studies that measured the muscle and tendon ultrasound imaging of
the quadriceps femoris, triceps surae components, and TA in post-COVID-19 participants.
Thus, it was difficult to compare all of our results with previous studies or extrapolate our
results to other populations, such as healthy individuals. Collectively, this study is the
initial step to disseminating the use of this ultrasound imaging tool to evaluate muscle and
tendon imaging in post-COVID-19 patients. Ultrasound imaging could be fundamental to
understanding the symptoms of long COVID-19 in order to develop a treatment strategy
to more quickly improve the quality of life of these patients. Therefore, future studies
are needed to detect the longitudinal changes in different muscles and tendons in post-
COVID-19 patients, especially those that closely analyze joint structures, such as the knee
retinaculum and patellofemoral ligaments, since these structures are extremely important
for patellar stabilization [56] and may undergo changes in their architecture and thus affect
the functionality.

5. Conclusions

The ultrasound imaging reliability taken by the independent raters was acceptable
and mostly not influenced by the rater’s experience for the muscle architecture, muscle
thickness, muscle, tendon echogenicity, and PT CSA, despite the low reliability for the
RF Lf and SO θp. In this study, ICC provided the reliability index that reflects both the
degrees of correlation and agreement between the measurements, and that ultrasound is an
excellent, reproducible method to evaluate the muscle architecture in COVID-19 patients.
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