
 

 
 

 

 
J. Clin. Med. 2022, 11, 6826. https://doi.org/10.3390/jcm11226826 www.mdpi.com/journal/jcm 

Review 

Artificial Intelligence in Dermatology Image Analysis: Current 

Developments and Future Trends 

Zhouxiao Li 1,2,*,†, Konstantin Christoph Koban 2,†, Thilo Ludwig Schenck 2, Riccardo Enzo Giunta 2, Qingfeng Li 1 

and Yangbai Sun 1 

1 Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital,  

Shanghai Jiao Tong University School of Medicine, Shanghai 200023, China 
2 Division of Hand, Plastic and Aesthetic Surgery, University Hospital, LMU Munich,  

80339 Munich, Germany 

* Correspondence: liizhouxiao1991@outlook.com 

† These authors contributed equally to this work. 

Abstract: Background: Thanks to the rapid development of computer-based systems and deep-

learning-based algorithms, artificial intelligence (AI) has long been integrated into the healthcare 

field. AI is also particularly helpful in image recognition, surgical assistance and basic research. Due 

to the unique nature of dermatology, AI-aided dermatological diagnosis based on image recognition 

has become a modern focus and future trend. Key scientific concepts of review: The use of 3D 

imaging systems allows clinicians to screen and label skin pigmented lesions and distributed 

disorders, which can provide an objective assessment and image documentation of lesion sites. 

Dermatoscopes combined with intelligent software help the dermatologist to easily correlate each 

close-up image with the corresponding marked lesion in the 3D body map. In addition, AI in the 

field of prosthetics can assist in the rehabilitation of patients and help to restore limb function after 

amputation in patients with skin tumors. The aim of the study: For the benefit of patients, 

dermatologists have an obligation to explore the opportunities, risks and limitations of AI 

applications. This study focuses on the application of emerging AI in dermatology to aid clinical 

diagnosis and treatment, analyzes the current state of the field and summarizes its future trends 

and prospects so as to help dermatologists realize the impact of new technological innovations on 

traditional practices so that they can embrace and use AI-based medical approaches more quickly. 

Keywords: deep learning; pattern recognition; dermatology; skin cancer; intelligent diagnosis;  

3D imaging 

 

1. Introduction 

Long considered futuristic, artificial intelligence has now substantially improved our 

quality of life through the instrumentalization of machines and robots in industry, 

autonomous driving and the widespread use of smartphones [1]. Recent years have also 

seen significant improvements in the productivity, accuracy and efficiency of AI-

optimized workflows in the healthcare sector. Deep learning and convolutional cloud 

neural-network-based algorithms can greatly improve the efficiency of image 

classification, object detection, segmentation, registration and other tasks [2]. In those 

areas of medicine that rely on imaging data, AI medical image recognition and analysis is 

greatly beneficial for high-speed, high-precision diagnosis alongside professional 

evaluation, especially in the dermatology area. The massive learning capacity of AI allows 

it to recognize subtle differences in lesion features such as size, texture and shades, and 

far surpasses that of humans [3–5]. 

The trend towards digitization and technology has been happening in the 

dermatological field for a while [6–9]. As a morphological feature-dependent discipline, 
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dermatology plays a groundbreaking role in the utilization of AI for diagnostics and 

assessment [10]. The burgeoning technology offer a precious and valuable chance for 

dermatologists. They should comprehensively know of the utilization and limitation of 

this novel tool, and propel its safe and effective implementation [11]. Regarding diagnosis, 

AI’s ability to learn skin lesions’ features far exceeds that of humans, allowing it to 

quantify lesion features and make judgements to assist in the discovery and analysis of 

lesions, improving the accuracy and efficiency of clinicians’ diagnosis [12]. In terms of 

treatment, AI can select the best treatment for the patient and predict the number of 

treatments required and the efficacy of the treatment for patients with skin diseases 

[13,14]. AI-based surgical robotic systems can also help to reduce manpower 

consumption, eliminate human fatigue and potential errors and significantly reduce 

surgery times, as well as improve the surgical treatment [15,16]. For these above reasons, 

we explain the definition of AI and the core ultimate principles and technology to help 

dermatologists and dermatologic surgeons understand how AI works and how these 

procedures are accomplished. We outlined the relevant developments and applications of 

AI in dermatology and discussed the attitudes of different populations towards AI. 

Although there are several reviews summarizing the application of AI in 

dermatology, they mainly focused on the implementation of AI for binary-classification 

of skin disease and were arranged as different sections, one for each disease. Thus, the 

problem addressed in each is mostly a binary classification of present/absent rather than 

considering the multi-class problem faced in real clinical scenarios where the patient 

comes to the doctor with any of them. In addition, the metadata representing information 

such as site, age and sex are not included in these studies, even though such information 

is collected by doctors in their examination of patients and is included in the diagnostic 

decision for doctors. It is therefore unrealistic to compare the performance of doctors with 

AI systems in this context [17–19]. The papers of the winners of the International Skin 

Imaging Collaboration (ISIC) annual competitions in the past several years (2016 to 2020), 

which represent the benchmark for different research groups working in this area, were 

included in the literature surveyed in this work. The ISIC challenges consider AI systems 

that can identify the presence of many different pathologies and make the metadata 

available for the labeled cases, therefore allowing for a more realistic comparison between 

AI systems and clinical scenarios [20–23]. In addition, former reviews concentrated more 

on the mechanism and theory of an AI computer-aided diagnosis (CAD) system without 

a summarization of existing AI-CAD systems on the market. This may prove beneficial 

for dermatologists to better understand AI and learn its mechanisms in skin lesion image 

recognition, but it is of limited help in guiding them to apply AI in specific clinical 

practice. 

To fill these gaps and to benefit more grassroots dermatologists than just researchers, 

in our current review: 

We comprehensively summarize the birth and development of AI and focus on 

emerging AI-CAD applications in the dermatosis field, not only for binary classification 

but also for multiple classification. Firstly, we focus on emerging AI applications in aided 

clinical diagnoses and treatment, summarizing the development of artificial intelligence 

in the dermatosis field and providing a novel perspective for dermatological studies. 

Secondly, we describe not only the principle and mechanism of the AI system but also 

introduced the current AI CAD systems and products in the dermatology field on the 

market thoroughly, which provides detailed guide and perspectives for normal clinical 

practice. Thirdly, based on clinical practice, we have comprehensively analyzed the 

attitudes of healthcare workers and patients towards artificial intelligence. Fourthly, we 

make reasonable predictions and future trends about the use of AI in dermatology in the 

context of a domestic and international government policy document. Lastly, we 

objectively evaluated the potential and limitation of its application, along with the 

underlying ethical issues. 
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We hope that this all-round survey will allow more dermatologists to have a deeper 

and more intuitive understanding of AI-based diagnostic tools and medical means so that 

more dermatology patients can benefit from these emerging healthcare models. 

2. Overview of AI 

AI can be divided into two parts: “artificial” and “intelligence”. “Artificial “ means 

designed, created and manufactured by humans. The definition of intelligence remains 

controversial: it is widely accepted that the only intelligence is human intelligence, but 

our understanding of human intelligence is still limited [24]. Below, we will give a brief 

overview from the following three aspects. 

2.1. What Is AI? 

AI refers to the intelligence manifested by machines made by humans. It is used to 

describe machines (or computers) that mimic the “cognitive” functions associated with 

human thought, such as “learning” and “problem solving” [25]. Intelligent agents are 

systems which can observe their surroundings and adopt action to reach their targets 

directly [5], learn from them and use that knowledge to achieve specific goals and tasks 

with flexibility [26,27]. 

2.2. The History of AI and Its Development Path in Medicine 

In 1936, Alan Turing published a paper expounding on “Entscheidungsproblem” 

and proposed “effective calculability” for solving the problem. They laid the foundation 

of computational models called algorithms [28]. In 1943, the first artificial neural network 

made of electrical circuits was modeled to simulate brain neuronal interactions [29]. The 

concept of AI was born in 1956 at Dartmouth College [30]. Three years later, the first 

computer research using an ANN was completed through models called “ADALINE” and 

“MADALINE” [31]. In 1963, the computer-aid-diagnosis was firstly applied in the 

analysis of pulmonary nodules detected in chest radiographs [32]. Fifteen years after the 

birth of AI, scientists discovered its relevance in bioscience, most evidently in the Dendral 

experiments [33]. However, technology limited the depth of AI’s application in medicine 

until 1998, when the first mammography CAD system was approved by U.S.FDA [34]. 

Soon after, CAD was brought into dermatology. The MelaFind
TM multispectral digital 

dermoscopy system uses the same feature-based classifiers to discriminate the malignant 

melanoma from benign pigmented skin lesions [35]. After the 2010s, a subfield of machine 

learning called deep learning has emerged. Deep learning allows computers to learn 

certain features by themselves from large datasets without explicit programming [36]. The 

application of AI in medicine and dermatology has been growing exponentially into the 

2020s. A pioneering work developed by DeepMind successfully predicted the 3D 

structure of proteins, the basic molecules of life [37]. The creation of a more powerful 

computer vision model, SEER, and a new generation of generative adversarial networks 

(Style GAN3) have provided more powerful tools for AI to learn from image sets, 

contributing to more robust dermatology AI CAD systems in future [38,39]. In Figure 1, 

more historical details are presented as a timeline. 

 

Figure 1. Flow chart illustrating the literature search and study selection. 
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2.3. Relevant Concept of AI in Dermatology 

Knowledge representation and knowledge engineering are central to classical AI 

research [25,40]. Machine learning and its sub-field deep learning are foundations of the 

AI framework. “Machine Learning” refers to the automatic improvement of AI algorithms 

through experience and massive historical data (training datasets) to build models based 

on datasets that allow the algorithm to generate prediction and make decisions without 

programming [41]. “Deep learning” is a division of machine learning founded on artificial 

neural networks (ANNs) and representation learning. The ANN is a mathematical model 

that simulates the structure and function of biological neural networks, and an adaptive 

system with learning capabilities. The performance of an ANN depends on the number 

and structure of its neural layers and training dataset [42,43]. Deep learning is already 

widely used to detect and classify skin cancers and other skin lesions [44–46]. The most 

prominent deep learning networks can be divided into recursive neural networks 

(RvNNs), recurrent neural networks (RNNs), Kohonen self-organizing neural networks 

(KNNs), generative adversarial neural networks (GANs) and convolutional neural 

networks (CNNs) [47]. CNNs, a subtype of ANNs, are most frequently used for image 

processing and detection in medicine, particularly in dermatology, pathology and 

radiology [48]. Currently, the most implemented CNN architectures in the field of 

dermatology are GoogleNet, Inception-V3, V4, ResNet, Inception-ResNet V2 and Dense 

Net [47]. As the raw data source for training CNN architectures for applying deep 

learning, image sets with a large number of high-quality images are decisive for the 

diagnostic accuracy, sensitivity and specificity of the final trained AI algorithm [49]. An 

image set can be used to be managed for image data. The object contains a description of 

the image, the location of the image and the number of images in the set [50]. The most 

common image sets used to train AI CAD systems in dermatology today are ISIC archives 

(2016–2021), HAM10000, BCN20000 and PH2 image sets [51–56]. The concepts and 

components related to AI in the dermatology field are displayed systematically in Table 

1. 

Table 1. Essential terminologies involved in AI in dermatology. 

Terminology Paraphrase 

Artificial Intelligence (AI) 
The intelligence manifested by machines made by humans, i.e., the ability of the machine to 

simulate natural intelligence. 

Knowledge 

Representation 

It is the field of AI dedicated to representing information about the world in a form that a 

computer system can utilize to solve complex tasks such as diagnosing a medical condition 

or having a dialog in a natural language. 

Representation Learning 

(Feature Learning) 

A set of techniques that allows a system to automatically discover the representations 

needed for feature detection or classification from raw data. 

Machine Learning 

The study of computer algorithms that improve automatically through experience. The 

algorithms use computational methods to learn from data without being explicitly 

programmed. 

Deep Learning 
A branch of machine learning methods based on artificial neural networks with 

representation learning. 

Supervised Learning 

Refers to the machine learning task of learning a function that maps an input to an output 

based on example input–output pairs. It infers a function from labeled training data 

consisting of a set of training examples. 

Transfer Learning 
Transfer learning is a machine learning model that allows a model developed from one task 

to be transferred for another task after fine-tuning and augmentation. 

Artificial Neural 

Networks (ANNs) 

ANNs, usually simply called neural networks (NNs), are computing systems vaguely 

inspired by the biological neural networks that constitute animal brains. An ANN is based 

on a collection of connected units or nodes called artificial neurons, which loosely model the 

neurons in a biological brain 
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Convolutional Neural 

Networks (CNNs) 

CNNs are a class of neural networks; they are feedforward neural networks. Their artificial 

neurons can respond to a part of the surrounding units in the coverage area, most 

commonly applied to analyzing visual imagery. 

Generative Adversarial 

Networks (GANs) 

GANs are a method of unsupervised learning that learn by playing two neural networks 

against each other. 

Pattern Recognition 
The automated recognition of patterns and regularities in data. The environment and objects 

are collectively referred to as patterns. 

Image Set 
An object stores information about an image data set or a collection of image data sets. It 

contains image descriptions, locations of images and the number of images in the collection. 

3. Method 

This work was carried out by one reviewer (ZXL) and checked by a second reviewer 

(KCK) in the event of uncertainty. 

3.1. Search Strategy 

A literature search was conducted systematically in three English language electronic 

databases (PubMed, Web of Science and Google scholar) and three Chinese databases 

(CQVIP, Wanfang Data and CNKI) to find biomedical and clinical studies of AI and 

dermatology. We used combinations of terms concerning greenspace (e.g., ‘artificial 

intelligence’, ‘AI’, ‘AI Algorithm, ‘Deep Learning’, ‘Machine Learning’, ‘Transfer 

Learning’, ‘Computer Aided Diagnosis’, ‘Meta Data’ ‘Generative Adversarial Networks’ 

and ‘Convolutional Neural Network’) and dermatology (e.g., ‘dermatology’, 

‘dermatoses’, ‘skin lesion’, ‘skin disease’, ‘pigmented skin lesion’, ‘ISIC ’, ‘ISIC challenge’, 

‘Melanoma’ and ‘skin cancer’) for the search. Our search was limited to studies written in 

English, German or Chinese. We also manually searched for a number of studies and other 

relevant review articles that were included in the references. 

3.2. Studies Selection 

The search results were filtered and only studies that investigated the relationship 

between AI and dermatology or skin-related surgery were included. Reviews, letters to 

the editor and clinical research studies were also considered. 

3.3. Data Extraction 

For each study, information on paper (author and publication time), study location, 

study disease, the type and aim of AI algorithm, image number of learning dataset, 

outcomes, accuracy, sensitivity and specialty was extracted. A detailed summary of each 

is provided in Figure 2. 
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Figure 2. Timeline and major nodes of AI development. 

4. The Implementation of AI in Dermatology 

The diagnosis of skin diseases is mainly based on the characteristics of the lesions 

[57]. However, there are more than 2000 different types of dermatological diseases, and 

some skin lesions of different diseases show similarities, which makes antidiastole 

difficult [58]. At present, the global shortage of dermatologists is increasing with the high 

incidence of skin diseases. There is a serious deficit of dermatologists and uneven 

distribution, especially the developing countries and remote areas, which urgently require 

more medical facility, professional consultation and clinical assistance [59,60]. Rapid 

iteration in big data, image recognition technology and the widespread use of 

smartphones worldwide may be creating the largest transformational opportunity for 

skin diseases’ diagnosis and treatment in this era [61,62]. In addition to addressing the 

needs of underserved areas and the poor, AI now has the ability to provide rapid 

diagnoses, leading to more diverse and accessible treatments approaches [63]. An AI-

aided system and algorithm will quickly turn out to be normal diagnosis and evaluation-

related techniques. The morphological analysis of a lesion is the classic basis of 

dermatological diagnostics, and the face recognition and aesthetic analysis from AI have 

also matured and become more reliable [64,65]. Currently, some applications of AI in 

dermatology have already found their way into clinical practice. Tables 2–4 illustrates 

specific implementation of AI in dermatology visualized with a mind map (Figure 3) 

[53,66,67]. AI systems based on a deep learning algorithm use plentiful public skin lesion 

image datasets to distinguish between benign and malignant skin cancers. These datasets 

contain massive original images in diverse modalities, such as dermoscopy, clinical 

photographs or histopathological images [68]. In addition, deep learning was used to 

process the disagreements of human annotations for skin lesion images. An ensemble of 

Bayesian fully convolutional networks (FCNs) trained with ISIC archive was applied for 

the lesion image’s segmentation by considering two major factors in the aggregations of 

multiple truth annotations. The FCNs implemented a robust-to-annotation noise learning 

scheme to leverage multiple experts’ opinions towards improving the generalization 
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performance using all available annotations efficiently [69]. Currently, the most 

representative and commonly used AI model is the CNN. It transmits input data through 

a series of interconnected nodes that resemble biological neurons. Each node is a unit of 

mathematical operation, a group of interconnected nodes in the network is called a layer 

and multiple layers build the overall framework of the network (Figure 4) [70,71]. Deep 

CNNs have also been applied to the automatic understanding of skin lesion images in 

recent years. Mirikharaji et al., proposed a new framework for training fully convolutional 

segmentation networks from a large number of cheap unreliable annotations, as well as a 

small fraction of expert clean annotations to handle both clean and noisy pixel-level 

annotations accordingly in the loss function. The results show that their spatially adaptive 

re-weighting method can significantly decrease the requirement for the careful labelling 

of images without sacrificing segmentation accuracy [72]. 

 

Figure 3. A schematic illustrates the hierarchy of the implementation of AI in dermatology. 
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Table 2. The application of AI in multi-classification for skin lesions. 

Authors 
Refer 

ence 
Year Country AI Algorithm Model The Purpose of AI Algorithm 

Image 

(Datasets) 

Recourse 

No. of 

Images in 

Datasets 

Usage 
Types of 

Images 

Accuracy 

/Precision 

(%) 

Sensitivity/Recall 

(%) 

Specificit

y (%) 

Kassem et al. [23] 2020 Egypt 
Deep CNNs (modified 

GoogleNet) 

Classification of multiple skin 

lesions 
ISIC 2016–2019 25,331 

Multi-class 

(8) 

Dermoscop

y 
94.92 79.8 97 

Rezvantalab 

et al. 
[52] 2018 Iran 

Four deep learning 

convolutional neural 

networks (CNNs) 

Investigating the ability of deep 

convolutional neural networks 

in classification of multiple skin 

lesion 

HAM10000; 

PH2 
10,135 

Multi-class 

(8) 

Dermoscop

y 

80.22–

89.01 
82.26–99.10 

79.60–

89.01 

Gessert et al. [53] 2018 German y Ensemble of CNN 
Diagnosis of multiple skin 

lesions 

ISIC-2018, 

HAM10000 
23,515 

Multi-class 

(7) 

Dermoscop

y 
85.1 93.1–97.6 N/A 

Gessert et al. [54] 2020 German y 
Ensemble of multi-resolution 

CNN 

Classification of multiple skin 

lesions 

HAM10000, 

BCN20000, 

MSK,7- 

point, 

47,049 
Multi-class 

(8) 

Dermoscop

y 
80.5–96 72.5–74.2 94–99.9 

Haenssle et 

al. 
[55] 2018 German y 

Deep convolutional neural 

network (Google’s Inception 

v4 architecture) 

Detection of melanoma and 

comparison o f  its performance 

with 58 dermatologists 

ISIC archive, 

clinical images 
>150,000 

Multi-class 

(20) 

Macroscopy 

and 

Dermoscopy 

86 86.6–88.9 71.3–75.7 

Haenssle et 

al. 
[56] 2020 

Multi- 

country 
FotoFinder® Moleanalyzer Pro 

Classification of skin lesions 

and comparison of the 

performance of the AI model 

with 96 dermatologists 

ISIC archive, 

clinical images 
>150,000 

Multi-class 

(25) 

Macroscopy 

and 

Dermoscopy 

84 95 76.7 

Esteva et al. [66] 2017 USA 

Deep convolutional neural 

networks (GoogleNet 

Inception v3) 

Classification of skin cancer and 

comparison of the performance 

of AI model with 21 

dermatologists 

Online 

repositories 

and clinical 

data from 

129,450 
Multi-class 

(2032) 

Macroscopy 

and 

Dermoscopy 

1: 72.1 ± 

0.9; 

2: 55.4 ± 

1.7 

N/A N/A 

Mahbod et al. [67] 2020 Austria 

Multi-scale multi-

convolutional neural 

networks (MSM-CNNs) 

Investigating the effect of image 

size for skin lesion classification 

ISIC-2016, 2017, 

2018 

HAM10000 

12,927 
Multi-class 

(7) 

Dermoscop

y 
96.3 N/A N/A 

Iqbal et al. [71] 2020 China Deep CNN 
Classification of multiple skin 

lesion 

ISIC-2017, 2018, 

2019 
25,331 

Multi-class 

(8) 

Dermoscop

y 
94 93 91 

Qin et al. [73] 2020 China 
Generative adversarial 

networks (GANs) 

Classification of multiple skin 

lesion 
ISIC-2018 10,015 

Multi-class 

(7) 

Dermoscop

y 
95.2 83.2 74.3 
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Cano et al. [74] 2021 Panama NasNet 
Classification of multiple skin 

lesions 
ISIC-2019 25,331 

Multi-class 

(8) 

Dermoscop

y 
71–99 73–98 70–99 

Barhoumi et 

al. 
[75] 2021 Tunisia Transfer learning CNN model 

Classification of multiple skin 

lesions 
ISIC 2018 5057 

Multi-class 

(7) 

Dermoscop

y 
95 96 N/A 

Ratul et al. [76] 2020 Canada 
Dilated CNNs (VGG-16,-19, 

MobileNet, Inception-V3) 

Classification of multiple skin 

lesions 
HAM10000 10,015 

Multi-class 

(7) 

Dermoscop

y 
87–89 87–89 N/A 

Rashid et al. [77] 2020 Pakistan Semi-supervised GANs 
Classification of multiple skin 

lesions 
ISIC 2018 10,000 

Multi-class 

(7) 

Dermoscop

y 
73–94 69–92 N/A 

Maron et al. [78] 2019 German y CNNs 

Classification of multiple skin 

lesions and comparison of the 

performance of the AI model 

with 112 dermatologists 

ISIC 2018, 

HAM10000 
11,444 

Multi-class 

(5) 

Dermoscop

y 
N/A 90.2–97.7 94.2–99.5 

Sun et al. [79] 2021 China CNNs 
Classification of multiple skin 

lesions 

ISIC-2019, 

MED- NODE, 

PH2, 7- 

point 

18,460 
Multi-class 

(7) 

Dermoscop

y 
66.2–89.5 66.2–89.5 95.2–99.3 

Jain et al. [80] 2021 India Six transfer learning nets 
Classification of multiple skin 

lesions 
HAM10000 10,015 

Multi-class 

(7) 

Dermoscop

y 
66–90 66–90 N/A 

Winkler et al. [81] 2020 Gemany 
FotoFinder® Moleanalyzer Pro 

(CNN) 

Detection of various melanoma 

localizations and subtypes 

ISIC archive, 

clinical images 
>150,000 

Multi-class 

(6) 

Macroscopy 

and 

Dermoscopy 

50.8–95.4 53.3–100 65–94 

Binder et al. [82] 1994 Austria 
Artificial neural networks 

(ANNs) 

Classification of naevi and 

malignant melanoma and 

comparison of the performance 

of AI model with 3 

dermatologists 

Oil immersion 

images of 

pigmented skin 

lesions 

200 
Multi-class 

(3) 
Microscopy 86 95 88 

Sies et al. [83] 2020 German y 

FotoFinder® Moleanalyzer 

Pro/FotoFinder®Moleanalyzer

- 3, Dynamole 

Detection of various melanoma 

localizations and subtypes 

ISIC 

dermoscopic 

archive, 

multicentric 

clinical images 

>150,000 
Multi-class 

(20) 

Dermoscop

y 
92.8 77.6 95.3 

Yang et al. [84] 2020 China 
CNNs (DenseNet-96, ResNet-

152, ResNet-99) 

Classification of multiple 

benign hyperpigmented 

dermatitis and comparison of 

the performance of AI model 

with 11 dermatologists 

Clinical images 12,816 
Multi-class 

(6) 
Macroscopy 75.3–97.8 75.5–94.4 95.6–99.8 
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Lyakhov et 

al. 
[85] 2022 Russia Multimodal neural network 

Recognition of multiple 

pigmented skin lesions 
ISIC-2016–2021 41,725 

Multi-class 

(10) 

Dermoscop

y 
83.6 N/A N/A 

Guzman et al. [86] 2015 
Philippin 

es 

Singe/multi-level and multi-

models ANN 
Detection of eczema skin lesion Clinical images 504 

Multi-class 

(3) 
Macroscopy 

Single: 

78.17–

87.30 

Multi: 

81.34–

85.71 

N/A N/A 

Han et al. [87] 2018 Korea 
Region-based convolutional 

deep neural networks 

Diagnosis of onychomycosis 

and comparison of the 

performance of AI model with 

42 dermatologists 

Clinical images 49,567 
Multi-class 

(6) 
Macroscopy 82–98 82.7–96 69.3–96.7 

A.Blum et al. [88] 2004 Gemany Vision algebra algorithms 

Diagnosis of melanocytic 

lesions and validation of its 

diagnostic accuracy 

Clinical images 837 
Multi-class 

(20) 

Dermoscop

y 
82.3–84.1 80–88.1 82.4–82.7 

Marchetti et 

al. 
[89] 2020 USA 

CNNs and deep learning 

algorithms 

Classification of melanoma and 

comparison of the performance 

of AI model with 17 

dermatologists 

ISIC-2017 2750 
Multi-class 

(3) 

Dermoscop

y 
86.8 76 85 

Shen et al. [90] 2018 China 
Convolutional neural 

networks 

Diagnosing for facial acne 

vulgaris 
Clinical images 

Binary: 6000 

Multi:42,00

0 

Binary-

class/Multi-

class (7) 

Macroscopy 88.7–89.5 81.7–92 87–95.7 

Seité et al. [91] 2019 France Deep learning algorithm 

Determination of the severity of 

facial acne and identification of 

subtypes of acne lesion 

Clinical images 4958 
Multi-class 

(3) 
Macroscopy N/A N/A N/A 

Zhao et al. [92] 2019 China CNNs Identification of psoriasis 
XiangyaDerm-

Pso9 
8021 

Multi-class 

(9) 
Macroscopy 88 83–95 96–98 

Han et al. [93] 2020 Korea Deep Neural Networks 

Predicting malignancy and 

suggesting treatment option, as 

well as multi-classification for 

134 skin disorders 

Clinical images 220,680 

1:Binary- 

class 

2:Multi-

class (134) 

Macroscopy 

1: 56.7–92 

2: 

44.8–78.1 

N/A N/A 
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Table 3. The application of AI in binary classification for skin lesions. 

Authors Reference Year Country AI Algorithm Model The Purpose of AI Algorithm 

Image 

(Datasets) 

Recourse 

No. of 

Images in 

Datasets 

Types of 

Images 

Accuracy 

/Precision 

(%) 

Sensitivity/Recall 

(%) 

Specificity 

(%) 

Filho et al. [51] 2018 Germany 
Structural Co-occurrence 

matrix 
Classification of melanoma 

ISIC-2016, 2017, 

PH2 
3100 Dermoscopy 89.93–99 89.9–99.2 95.15–99.4 

Marchetti et 

al. 
[89] 2018 USA 

Non-learned approaches and 

machine learning methods 

Classification of melanoma and 

comparison of the performance 

of AI model with 8 

dermatologists 

ISIC-2016 1279 Dermoscopy 85–86 46–70 88–92 

Roffman et al. [94] 2018 USA Artificial neural network 
Detection of non-melanoma 

skin cancer 

NHIS 1997–

2015 
462,630 Macroscopy 81 86.2–88.5 62.2–62.7 

Alzubaidi [95] 2021 Australia Transfer learning model 
Discrimination of skin cancer 

and normal skin 

ISIC-2016–2020, 

Med- 

Node, 

Dermofit 

>200,000 Dermoscopy 89.69–98.57 85.60–97.90 N/A 

Guimarães et 

al. 
[96] 2020 Germany 

Convolutional neural 

networks 
Diagnosis of atopic dermatitis 

Multiphoton 

tomography 

Images 

3663 
Multiphoton 

tomograph 
97.0 ± 0.2 96.6 ± 0.2 97.7 ± 0.3 

Ho. et al. [97] 2020 USA Deep neural network 
Image segmentation of 

plexiform neurofibromas 
MRI images 35 MRI N/A N/A N/A 

Fink et al. [98] 2018 Germany 
Edge-preserving thresholding 

automated shape recognition 

Classification of psoriasis and 

measurement of lesion area and 

severity index 

Clinical images 10 patients Macroscopy N/A N/A N/A 

Fink et al. [99] 2019 Germany 
Edge-preserving thresholding 

automated shape recognition 

Validation of the precision and 

reproducibility of algorithm in 

PASI measurements 

Clinical images 
120 

patients 
Macroscopy N/A N/A N/A 

Schnuerle et 

al. 
[100] 2017 Switzerland Support vector machines Detection of hand eczema Clinical images N/A Macroscopy 74.5–89.29 48–71.43 77.24–93.63 

Gao et al. [101] 2020 Chinas 
Deep learning network 

architecture (ResNet-50) 
Detection for fungal skin lesion Clinical images 292 Macroscopy N/A 95.2–99.5 91.4–100 

Bashat et al. [102] 2018 Israel N/A 
Differentiation of benign and 

malignant neurofibroma 
MRI images 30 MRI 80 72 87 

Duarte et al. [103] 2014 Portugal Support vector machines 
Classification of whole-brain 

grey and white matter of MRI 

T1-weighted 

MRI scans 
99 MRI Images 94 92 96 
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between NF1 patients and 

normal person 

Meienberger 

et al. 
[104] 2019 Switzerland 

Convolutional neural 

networks (Net 16) 

Establishment of an accurate 

and objective psoriasis 

assessment method 

Clinical images 203 Macroscopy 92 N/A N/A 

Gustafson et 

al. 
[105] 2017 USA 

Electronic health record based 

phenotype algorithm 

Identification of atopic 

dermatitis and comparison of 

the performance of AI model 

with 4 dermatologists 

Clinical images 562 N/A N/A 53.6–75 N/A 

Luo et al. [106] 2020 China 
Cycle-consistent adversarial 

networks 

Classification of vitiligo skin 

lesion 
Clinical Images 80,000 Macroscopy 85.69 80.73 66.2 

Makena et al. [107] 2019 USA 
Convolutional neural 

networks 

Segmentation of vitiligo skin 

lesion 

RGB images of 

vitiligo lesions 
308 

Macroscopy 

(UV/natural 

light) 

74–88.7 N/A N/A 

 

 

Table 4. The application of AI in aesthetic dermatology. 

Authors Reference Year  Country AI Algorithm Model The Purpose of AI Algorithm 
Image (Datasets) 

Recourse  

No. of Images 

in Datasets 

Types of 

Images  

Accuracy/Precision 

(%) 

Eisentha et al. [64] 2006 Israel Deep learning algorithm 
Predicting facial attractiveness 

ratings  
Volunteer images 194 Macroscopy 

0.65 correlation 

with human 

Kagian et al. [65] 2008 Israel Linear regression algorithm 

Extraction of facial features 

from raw images and rating 

facial attractiveness 

Volunteer images 91 Macroscopy 
0.82 correlation 

with human  

Zhang et al. [108] 2017 China 

Hypergraph-based semi-

supervised learning method 

(HSSL) 

Analysis of human face 

attractiveness  

Shanghai Database and 

celebrity portrait from 

Internet 

2354 Macroscopy 81.47–84.21 
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Figure 4. A diagram depicting how to perform classification tasks in an AI neural network. 

Information from the image data set is transmitted through a structure composed of 

multi-layer connection nodes. Each line is a weight connecting one layer to the next, with 

each circle representing an input, neuron or output. In convolutional neural networks, 

these layers contain unique convolutional layers that act as filters. The network made up 

of many layered filters learn increasingly high-level representations of the image. 

4.1. AI in Aid-Diagnosis and Multi-Classification for Skin Lesions 

4.1.1. Multi-Classification for Skin Lesions in ISIC Challenges 

In recent years, the classification of multiple skin lesions has become a hotspot with 

the increasing popularity of using deep learning algorithms in medical image analysis. 

Before, metadata indicating information such as site, age, gender, etc., were not included, 

even though this information is collected by doctors in daily clinical practice and has an 

impact on their diagnostic decisions. Therefore, the algorithm or AI system that includes 

this information is better able to reproduce the actual diagnostic scenario, and its 

diagnostic performance will be more credible. The ISIC challenges consider AI systems 

that can identify the presence of many different pathologies and provide metadata for 

labelled cases, thus allowing for a more realistic comparison between AI systems and 

clinical scenarios. Since the International Skin Imaging Collaboration (ISIC) challenge was 

held in 2016, it represents the benchmark for diverse research groups working in this area. 

To date, their database has accumulated over 80,000 labelled training and testing images, 

which are openly accessible to all researchers and have been used for training algorithms 

to diagnose and classify various skin lesions [109]. In ISIC 2016–2018, subsets of the image 

datasets were divided into seven classes: (1) actinic keratosis and intraepithelial 

carcinoma, (2) basal cell carcinoma, (3) benign keratosis, (4) dermatofibroma, (5) 

melanocytic nevi, (6) melanoma and (7) vascular skin lesion. From 2019, the atypical nevi 

were added as the eighth subset. Garcia-Arroyo and Garcia-Zapirain designed a CAD 

system to participate in ISIC 2016, 2017 Challenge and were ranked 9th and 15th, 

respectively [110]. In 2018, Rezvantalab et al., investigated the effectiveness and capability 

of four pre-trained algorithms with HAM10000 (comprising a large part of the ISIC 

datasets) and PH2 state-of-the-art architectures (DenseNet 201, ResNet 152, Inception v3, 

Inception ResNet v2) in the classification of eight skin diseases. Their overall results show 

that all deep learning models outperform dermatologists (by at least 11%) [52]. Iqbal et al., 

proposed a deep convolutional neural network (DNN) model trained using ISIC 2017–

2019 datasets that proved to be able to automatically and efficiently classify skin lesions 
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with 0.964 AUR in ROC curve [71]. Similarly, Lucius’ team developed a DNN trained with 

HM10000 to classify seven types of skin lesions. Statistics showed that the diagnostic 

accuracy of dermatologists is significantly improved with the help of DNNs [111]. 

MINAGAWA et al., trained a DNN using ISIC-2017, HAM10000 and Shinshu datasets to 

narrow the diagnostic accuracy gap for dermatologists facing patients from different 

regions [112]. Qin et al., established a skin lesion style-based generative adversarial 

network (GAN) and tested it in the ISIC 2018 dataset, showing that the GAN can 

efficiently generate high-quality images of skin lesions, resulting in an improved 

performance of the classification model [73]. Cano et al., applied CNNs based on NASNet 

architecture trained with a skin image lesion from the ISIC archive for multiple skin lesion 

classification, which has been cross validated. Its excellent performance suggests that it 

can be utilized as a novel classification system for multiple classes of skin diseases [74]. 

Al-masni et al., integrated a deep learning full-resolution convolutional network and a 

convolutional neural network classifier for segmenting and classifying various skin 

lesions. The proposed integrated deep learning model was evaluated in ISIC 2016–2018 

datasets and achieved an over 80% accuracy in all three for segmentation and 

discrimination among seven classes of skin lesions, with the highest accuracy of 89.28% 

in ISIC 2018 [113]. In 2018, Gessert et al., employed an ensemble of CNNs in the ISIC 2018 

challenge and achieved second place [53]. Next year, they exploited a set of deep learning 

models trained with BCN20000 and HAM10000 datasets to solve the skin lesion 

classification problem, including EfficientNets, SENet and ResNeXt WSL to address the 

classification of skin lesions and predict unknown classes by analyzing patients’ metadata. 

Their approach achieved first place in the ISIC 2019 challenge [54]. 

In recent years, transfer learning technology has also been applied for classifying 

multiple skin lesions. Transfer learning allows a model developed from one task to be 

transferred for another task after fine-tuning and augmentation. It is very helpful when 

we don’t have enough training data sources. When lesion images are difficult to acquire, 

the algorithmic model can be initially performed with natural images and subsequently 

fine-tuned with an enhanced lesion dataset to increase the accuracy and specificity of the 

algorithm, thereby improving the performance on image processing tasks. Singhal et al., 

utilized transfer learning to train four different state-of-the-art architectures with the ISIC 

2018 dataset and demonstrated their practicability for the detection of skin lesions [114]. 

Barhoumi et al., trained content-based dermatological lesion retrieval (CBDLR) systems 

using transfer learning, and their results showed that it outperformed a similar CBDLR 

systems using standard distances [75]. There are also some more studies that have devised 

AI systems or architectures trained or tested in ISIC datasets and that have gained 

outstanding performances; we summarize them in detail in Table 2 [23,68,76–80,115,116]. 

Lately, the ISIC-2021 datasets have just been released. Except for the ISIC 18, ISIC 

2019 and ISIC 2020 melanoma datasets, it also contains extra seven datasets with a total of 

approximately 30,000 images, such as Fitzpatric 17k, PAD-UFS-20, Derma7pt and 

Dermofit Image. This greatly increases the richness and diversity of the ISIC-2021 archive 

and correlates the patient’s skin lesion condition with the other disorders of the body, 

which will provide the basis for the future training of AI algorithms with a more 

comprehensive and higher diagnostic accuracy. We are also looking forward to the 

publication of high-quality papers based on this archive [117]. 

4.1.2. Multi-Classification for Skin Lesions in Specific Dermatosis 

In addition to the eight major categories of skin diseases defined in the ISIC challenge, 

in many specific skin diseases, a differential diagnosis for multiple subtypes is also an 

urgent issue to be solved. For example, in melanoma, while the common melanoma 

subtypes superficial spreading melanoma (SSM) and lentigo maligna melanoma (LMM) 

are relatively easy to diagnose, the morphological features of melanomas on other specific 

anatomical sites (e.g., mucosa, limb skin and nail units) are often overlooked [81]. On top 

on that, some benign nevus of melanocytic origin can also be easily confused with 
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malignant melanoma in morphology [118]. Among the common pigmentation disorders, 

many are caused by abnormalities in melanin in the skin. Although they are similar in 

appearance, they are diseases with different pathological structures and treatment 

strategies. Diagnostic models based on AI algorithms can improve the diagnostic accuracy 

and specificity of these diseases so as to benefit dermatologists by reducing the time and 

financial cost of the diagnosis [119]. 

Melanocytic Skin Lesions 

Since Binder’s team applied an ANN to discriminate between benign naevi and 

malignant melanoma in 1994, increasing numbers of AI algorithms are employed for the 

multi-classification of melanocytic skin lesions [82]. Moleanalyzer pro is a proven 

commercial CNN system for the classification of melanogenic lesions. Winkler and his 

team used the system, which was trained with more than 150,000 images, to investigate 

its diagnostic performance across different melanoma localizations and subtypes in six 

benign/malignant dermoscopic image sets. The CNN showed a high-level performance in 

most sets, except for the melanoma in mucosal and subungual sites, suggesting that the 

CNN may partly offset the impact of a reduced human accuracy [81]. In two studies by 

HA Haenssle et al., in 2018 and 2020, CNNs were also used in comparison with specialist 

dermatologists to detect melanocytic/non-melanocytic skin cancers and benign lesions. In 

2018, the CNN trained with Google’s Inception v4 CNN architecture was compared with 

58 physicians. The results showed that most dermatologists outperformed the CNN, but 

the CNN ROC curves revealed a higher specificity and doctors may benefit from 

assistance by a CNN’s image classification [55]. In 2020, Moleanalyzer pro was compared 

with 96 dermatologists. Even though dermatologists accomplish better results when they 

have richer clinical and textual case information, the overall results show that the CNN 

and most dermatologists perform at the same level in less artificial conditions and a wider 

range of diagnoses [56]. Sies et al., utilize the Moleanalyzer pro and Moleanalyzer 

daynamole systems for the classification of melanoma, melanocytic nervus and other 

dermatomas. The results showed that the two market-approved CAD systems offer a 

significantly superior diagnostic performance compared to conventional image analyzers 

without AI algorithms (CIA) [83]. 

Benign Pigmented Skin Lesions 

Based on a wealth of experience and successful clinical practice, scholars have 

gradually tried to apply AI to differentiate a variety of pigmented skin diseases with 

promising results. Lin’s team pioneered the use of deep learning to diagnose common 

benign pigmented disorders. They developed two CNN models (DenseNet-96 and 

ResNet-152) to identify six facial pigmented dermatoses (the nevus of Ota, acquired nevus 

of Ota, chloasma, freckles, seborrheic keratosis and cafe-au-lait spots).Then, they 

introduced ResNet.99 to build a fusion network, and evaluated the performance of the 

two CNN with fusion networks separately. The results showed that the fusion network 

performance was the best and could reach a level comparable to that of dermatologists 

[84]. In 2019, Tschandl et al., conducted the world largest comparison study between the 

machine-learning algorithm and 511 dermatologists for the diagnosis accuracy of 

pigmented skin lesion classification. The algorithm was, on average, 2.01% more correct 

in its diagnosis compared to all human readers. The result disclosed that machine-

learning classifiers outperform dermatologist in the diagnosis of skin pigmented lesions 

and should be more widely used in clinical practice [120]. In the latest study, Lyakhov et 

al., established a multimodal neural network for the hair removal preliminary process and 

differentiation of the 10 most common pigmented lesions (7 benign and 3 malignant). 

They found that fusing metadata from various sources could provide additional 

information, thereby improving the efficiency of the neural network analysis and 

classification system, as well as the accuracy of the diagnosis. Experimental results 

showed that the fusion of metadata led to an increase in recognition accuracy of 4.93–
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6.28%, with a maximum diagnosis rate of 83.56%. The study demonstrated that the fusion 

of patient statistics and visual data makes it possible to find extra connections between 

dermatoscopic images and medical diagnoses, significantly improving the accuracy of 

neural network classification [85]. 

Inflammatory Dermatoses 

Inflammatory dermatoses are a group of diseases caused by the destruction of skin 

tissue as a result of immune system disorders, including eczema, atopic dermatitis, 

psoriasis, chronic urticarial and pemphigus. Newly recorded histological findings and 

neoteric applications of immunohistochemistry have also refined the diagnosis of 

inflammatory skin diseases [121]. AI CAD systems are able to optimize the workflow of 

highly routinely diagnosed inflammatory dermatoses. A multi-model, multi-level system 

using an ANN architecture was designed for eczema detection. This system is conceived 

as an architecture with different models matching input features, and the output of these 

models are integrated through a multi-level decision layer to calculate the probability of 

eczema, resulting in a system with a higher confidence level than a single-level system 

[86]. From 2017 onwards, neural networks have been shown to be useful for diagnosing 

acne vulgaris [90]. The latest publications on the use of computer-aided systems in acne 

vulgaris are based on a wealth of data from cell phone photographs of affected patients, 

which enable the development of AI-based algorithms to determine the severity of facial 

acne and to identify different types of acne lesions or post-inflammatory 

hyperpigmentation [91]. Scientists in South Korea trained various image analysis 

algorithms to recognize images of fungal nails. For this purpose, they used datasets of 

almost 50,000 nail images and 4 validation datasets of a total of 1358 images. A comparison 

of the respective diagnostic accuracy (measured in this study by the Youden index) of 

differently trained assessors and the AI algorithm showed the highest diagnostic accuracy 

in the computer-based image analysis and was significant superior to dermatologists (p = 

0.01) [87]. 

4.2. AI in Aid-Diagnosis and Binary-Classification for Specific Dermatosis 

4.2.1. Skin Cancer 

The incidence of skin cancer has been increasing yearly [58,122]. Although its 

mortality rate is relatively low [123], it remains a heavy economic burden on health 

services and can cause severe mental problems, especially as most skin cancers occur in 

highly visible areas of the body [124]. Due to the low screening awareness, a lack of 

specific lesion features in early skin cancer and insufficient adequate clinical expertise and 

services, most patients were only diagnosed at an advanced stage, thus leading to a poor 

prognosis [124,125], so there is an urgent need for AI systems to help clinicians in this 

field. 

Melanoma 

Melanoma is the deadliest type of skin cancer. The early screening and early 

diagnosis of melanoma is essential to improve patient survival [126]. Currently, 

dermatologists diagnose melanoma mainly by applying the ABCD principle based on the 

morphological characteristics of melanoma lesions [127]. However, even for experienced 

dermatologists, this manual examination is non-trivial, time consuming and can be easily 

confused with other benign skin lesions [128]. Thus, most AI-driven skin cancer research 

has focused on the classification of melanocytic lesions to aid melanoma screening. In 

2004, Blum et al., pioneered the use of computer algorithms for the diagnosis of cutaneous 

melanoma and proved that a diagnostic algorithm for the digital image analysis of 

melanocytic diseases could achieve a similar accuracy to expert dermatoscopy [88]. In 

2017, Esteva et al., trained a GoogleNet-Inception-v3-based CNN with the training 

dataset, including 129,450 clinical images of 2032 different diseases from 18 sites. The 
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performance of the CNN was compared with 21 dermatologists in two critical binary 

classifications (the most common cancer and the deadliest skin cancer) of biopsy-

confirmed clinical images. The CNN’s performance on both tasks was competent, and 

comparable to that of dermatologists, demonstrating its ability to classify skin cancer [66]. 

The ISIC Melanoma Project has also created a publicly accessible archive of images of skin 

lesions for education and research. Marchetti et al., summarized the results of a melanoma 

classification for ISIC challenge in 2016, which involved 25 competing teams. They 

compared the algorithm’s diagnosis with those of eight experienced dermatologists. The 

outcomes showed that automated algorithms significantly outperformed the 

dermatologists in diagnosing melanoma [89]. Subsequently, they made a comparison of 

the computer algorithms’ performance of 32 teams in the ISIC 2017 challenge with 17 

human readers. The results also demonstrated that deep neural networks could classify 

skin images of melanoma and its benign simulants with a high precision and have the 

potential to boost the performance of human readers [22]. Filho and Tangs’ team have 

utilized the ISIC 2016, 2017 challenge and PH2 datasets to develop the algorithm for the 

classification and segmentation of the melanoma area automatically. Their test outcomes 

indicated that these algorithms could dramatically improve the doctors’ efficiency in 

diagnosing melanoma [51,129]. In MacLellan’s study, three AI-aid diagnosis systems were 

compared with dermatologists using 209 lesions in 184 patients. The statistics showed that 

the Moleanalyzer pro had a relative high sensitivity and the highest specificity (88.1%, 

78.8%), whereas local dermatologists had the highest sensitivity but a low specificity 

(96.6%, 32.2%) [130]. Consistently, Moleanalyzer pro also showed its reliability in the 

differentiation of combined naevi and melanomas [131]. It is also possible for 

dermatologists to build a whole-body map using a 3D imaging AI system; its application 

is of particular relevance in the context of skin cancer diagnostics. The 360° scanner uses 

whole-body images to create a “map” of pigmented skin lesions. Using a dermatoscope, 

atypical and altered nevi can also be examined microscopically and stored digitally. With 

the help of intelligent software, emerging lesions or lesions that change over time are 

automatically marked during follow-up checks—an important feature for recognizing a 

malignancy and initiating therapeutic measures [132]. In addition, in the long term, high-

risk melanoma populations will benefit from a clinical management approach that 

combines an AI-based 3D total-body photography monitor with sequential digital 

dermoscopy imaging and teledermatologist evaluation [133,134]. 

Non-Melanoma Skin Cancer 

AI is also widely used to differentiate between malignant and benign skin lesions, 

along with the detection of non-melanoma skin cancer (NMSC). Rofman et al., proposed 

a multi-parameter ANN system based on personal health management data that can be 

used to forecast and analyze the risk of NMSC. The system was trained and validated by 

2056 NMSC and 460,574 non-cancer cases from the 1997–2015 NHIS adult survey data, 

and was then further tested by 28058 individuals from the 2016 NHIS survey data. The 

ANN system is available for the risk assessment of non-melanoma skin cancer with a high 

sensitivity (88.5%). It can classify patients into high, medium and low cancer risk 

categories to provide clinical decision support and personalized cancer risk management. 

The study’s model is therefore a prediction, where clinicians can obtain information and 

the patient risk status to detect and prevent non-melanoma skin cancer at an early stage 

[94]. Alzubaidi et al., propose a novel approach to overcome the lack of enough input-

labeled raw skin lesion images by retraining a deep learning model based on large 

unlabeled medical images on a small number of labeled medical images through transfer 

learning. The model has an F1-score value of 98.53% in distinguishing skin cancer from 

normal skin [95]. 
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Neurofibroma 

Neurofibromatosis (NF) is a group of three conditions in which tumors grow in the 

nervous system, and are NF1, NF2 and schwannomatosis [135]. NF1 is the most common 

neurofibroma and cancer susceptibility disease. Most patients with NF1 have a normal 

life expectancy, but 10% of them develop malignant peripheral nerve sheath tumors 

(MPNST), which is a major cause of morbidity [136]. Therefore, the timely differentiation 

of benign and malignant lesions has direct significance for improving the survival rate of 

patients. Wei et al., successfully established a Keras-based machine-learning model that 

can discriminate between NF1-related benign and malignant craniofacial lesions with a 

very high accuracy (96.99 and 100%) in validation cohorts 1 and 2 and a 51.27% accuracy 

in various other body regions [137]. Plexiform neurofibroma (PN) is a prototypical and 

most common NF1 tumor. Ho et al., created a DNN algorithm to conduct a semi-

automated volume segmentation of PNs based on multiple b-value diffusion-weighted 

MRI. They evaluated the accuracy of semi-automated tumor volume maps constructed by 

a DNN compared to manual segmentation and revealed that the volumes generated by 

the DNN from multiple diffusion data on PNs have a good correlation with manual 

volumes, and that there is a significance between PN and normal tissue [97]. Interestingly, 

Bashat and his colleagues also demonstrated that a quantitative image representation 

method based on machine learning may assist in the classification between benign PNs 

and MPNST in NF1 [102]. In a similar initiative, Duarte et al., used grey matter density 

maps obtained from magnetic resonance (MR) brain structure scans to create a 

multivariate pattern analysis algorithm to differentiate between NF1 patients and healthy 

controls. A total of 83% of participants were correctly classified, with 82% sensitivity and 

84% specificity, demonstrating that multivariate techniques are a useful and powerful tool 

[103]. 

4.2.2. Application of AI for Inflammatory Dermatosis 

Psoriasis 

The prevalence of psoriasis is 0% to 2.1% in children and 0.91% to 8.5% in adults 

[138]. The psoriasis area and severity index (PASI), body surface area (BSA) and physician 

global assessment (PGA) are the three most commonly used indicators to evaluate 

psoriasis severity [139,140]. However, both PASI and BSA have been repeatedly 

questioned for their objectivity and reliability [141]. It would therefore be of great help to 

use AI algorithms to make a standardized and objective assessment. Nowadays, machine-

learning-based algorithms are available to determine BSA scores. Although this algorithm 

had slight limitations in detecting flaking as diseased skin, it has reached an expert level 

in BSA assessment [104]. At present, there are already computer-assisted programs for 

PASI evaluation, which, however, still require human assistance and function by 

recognizing predefined threshold values for certain characteristics [98]. Another study by 

Fink’s team is also based on image analysis with the FotoFinderTM. The accuracy and 

reproducibility of PASI has been impressively improved with the help of semi-automatic 

computer-aided algorithms [99]. These technological advances in BSA and PASI 

measurements are expected to greatly reduce the workload of doctors while ensuring a 

high degree of repeatability and standardization. In addition to the three above indicators, 

Anabik Pal et al., used erythema, scaling and induration to build a DNN to determine the 

severity of psoriatic plagues. The algorithm is given a psoriasis image and then makes a 

prediction about the severity of the three parameters. This task is seen as a new multi-task 

learning (MTL) problem formed by three interdependent subtasks in addition to three 

different single task learning (STL) problems, so the DNN is trained accordingly. The 

training dataset consists of 707 photographs and the training results show that the deep 

CNN-based MTL approach performs well when grading the disease parameters alone, 

but slightly less well when all three parameters are correctly graded at the same time [142]. 
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AI can also assist in evaluating and diagnosing psoriasis. Munro’s microabscesses 

(MM) is a sign of psoriasis. Anabik Pak et al., presented a computational framework 

(MICaps) to detect neutrophils in the epidermal stratum corneum of the skin from biopsy 

images (a component of MM detection in skin biopsies). Using MICaps, the diagnosis 

performance was increased by 3.27% and model parameters were reduced by 50% [143]. 

A CNN algorithm that differentiated among nine diagnoses based on photos made fewer 

misdiagnoses and had a lower omission diagnostic rate of psoriasis compared to 25 

dermatologists [92]. In addition, Emma et al., used machine learning to find out which 

psoriasis patient characteristics are associated with long-term responses to biologics [144]. 

Thanks to AI, an amelioration in diagnosis and treatment can be inferred in psoriasis 

patients. 

Eczema 

The challenge in the computer-aided image diagnosis of eczematous diseases is to 

correctly differentiate not only between disease and health, but also between different 

forms of eczema. The eczema stage and affected area are the most essential factors in 

effectively assessing the dynamics of the disease. It is not trivial to accurately identify the 

eczema area and other inflammatory dermatoses on the basis of photographic 

documentation. The macroscopic forms of eczema are diverse, with different stages and 

varying degrees of distribution and severity [145]. The prerequisite for training algorithms 

for the AI-supported image analysis of all of these various assessment parameters is 

therefore a correspondingly large initial quantity of image files that have been optimized 

and adjusted in terms of the recording technology. Forms of eczema with disseminated 

eruption, such as the corresponding manifestation patterns of atopic dermatitis, would 

also be linked to the availability of automated digital, serial whole-body photography for 

an efficient and time-saving AI-supported calculation of an area score. Han et al., trained 

a deep neural-network-based algorithm. The algorithm is able to differentiate between 

eczema and other infectious skin diseases and to classify very rare skin lesions, which has 

direct clinical significance, and to serve as augmented intelligence to empower medical 

professionals in diagnostic dermatology. They even showed that treatment 

recommendations (e.g., topical steroids versus antiseptics) could also be learned by 

differentiating between inflammatory and infectious causes. It remains to be seen and 

questioned, however, whether an AI-aided severity assessment and a clinically 

practicable area score can be derived from this as a prerequisite for a valid follow-up in 

the case of eczema [93]. Schnuerle et al., designed a support-vector-machine-based image 

processing method for hand eczema segmentation with industry swiss4ward for 

operational use at the University Hospital Zurich. This system uses the F1-score as the 

primary measurement and is superior to a few advanced methods that were tested on 

their gold standard dataset likewise [100]. Presumably, a combination of such an AI-aided 

image analysis and molecular diagnostics can optimize the future differential diagnostic 

classification of eczema diseases, as recently predicted for various clinical manifestations 

of hand dermatitis [146]. 

Atopic Dermatitis 

Atopic dermatitis (AD) is the most common chronic inflammatory disease, with a 

prevalence of 10% to 20% in developed countries [147]. It usually starts in childhood and 

recurs multiple times in adulthood, greatly affecting patients’ quality of life [148]. In 2017, 

Gustofson’s team identified patients with AD via a machine-learning-based phenotype 

algorithm. The algorithm combined code information with the collection of electronic 

health records to achieve a high positive predictive value and sensitivity. These results 

demonstrate the utility of natural language processing and machine learning in EHR-

based phenotyping [105]. An ANN algorithm was developed to assess the influence of air 

contaminants and weather variation on AD patients; their results proved that the severity 

of AD symptoms was positively correlated with outdoor temperatures, RH, precipitation, 
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NO2, O3 and PM10 [149]. In the latest study, a fully automatic approach based on CNN 

was proposed to analysis multiphoton tomography (MPT) data. The proposed algorithm 

correctly diagnosed AD in 97.0 ± 0.2% of all images presenting living cells, with a 

sensitivity of 0.966 ± 0.003 and specificity of 0.977 ± 0.003, indicating that MPT imaging 

can be combined with AI to successfully diagnose AD [96]. 

Acne 

The assessment of AI has been very effective. Melina et al., showed an excellent 

correlation between the automatic and manual evaluation of the investigator’s global 

assessment with r = 0.958 [150]. In the case of acne vulgaris in particular, such a procedure 

could prevent far-reaching consequences with permanent skin damage in the form of 

scars. 

Vitiligo 

The depigmented macules of vitiligo are usually in high contrast to unaffected skin. 

Vitiligo is more easily recognized by AI systems than features of eczema or psoriasis 

lesions with poorly defined borders. Computer-based algorithms used for the detection 

of vitiligo with an F1 score of 0.8462 demonstrated an impressive superiority to pustular 

psoriasis [151]. Luo designed a vitiligo AI diagnosis system employing cycle-consistent 

adversarial networks (cycle GANs) to generate images in Wood’s lamp and improved the 

image resolution via an attention-aware dense net with residual deconvolution (ADRD). 

The system achieved a 9.32% improvement in classification performance accuracy 

compared to direct classification of the original images using Resnet50 [106]. Makena’s 

team built a CNN that performs vitiligo skin lesion segmentation quickly and robustly. 

The network was trained on 308 images with various lesion sizes, intricacies and 

anatomical locations. The modified network outperformed the state-of-the-art U-Net with 

a much higher Jaccard index score (73.6% versus 36.7%) and shorter segmentation time 

than the previously proposed semi-autonomous watershed approach [107]. These novel 

systems have proved promising for clinical applications by greatly saving the testing time 

and improving the diagnostic accuracy. 

Fungal Dermatosis 

Gao et al., invented an automated microscope for fungal detection in dermatology 

based on deep learning. The system is as proficient as a dermatologist in detecting skin 

and nail specimens, with sensitivities of 99.5% and 95.2% and specificities of 91.4% and 

100%, respectively [101]. 

4.3. Application of AI for Aesthetic Dermatology 

AI combined with new optical technologies is also increasingly being applied in 

aesthetics dermatology. Examples include face recognition, automatic beautification in 

smartphones and related software. So-called smart mirror analyzers are now available on 

the Internet, which are AI-assisted technologies with image recognition systems that 

analyze the skin based on its appearance and current external environment and 

recommend skin care products accordingly [152]. The program ArcSoft Protrait can 

automatically identify the wrinkles, moles, acne and cicatrice and intelligently soften, 

moisturize and smooth the skin while retaining a maximum skin texture and detail, 

greatly simplifying the cumbersome and time-consuming portrait process [61,64,153]. AI 

also plays an essential role in facial aesthetics assessing. For this purpose, ANNs are 

trained using face image material that people judge independently according to aesthetic 

criteria based on various criteria. The ANN learns from photos and their respective 

attractiveness ratings to make human-like judgments about the aesthetics of the face [65]. 

New applications objectively evaluate each photo on the basis of over 80 facial coordinates 

and nearly 7000 associated distances and angles [108] (Table 4). 
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4.4. Applications of AI for Skin Surgery 

Radical resection and amputation are the best means of preventing recurrence and 

fatal metastasis for malignant dermatoma [154]. A skin or flap graft via microsurgery and 

the application of prosthesis play a crucial role in improving the quality of life of patients 

after resection [155,156]. Adequate microvascular anastomosis is the key to a successful 

microvascular-free tissue transfer. As a basic requirement in this regard, the surgeon must 

have excellent microsurgery skills. Thanks to the support of a series of auxiliary 

equipment such as microscopes, magnifications of up to 10 to 15 times are possible and 

allow for the anastomosis of small vessels. Nevertheless, due to physiological tremor, only 

vessels of up to approximately 0.5–1 mm in size can be safely anastomosed, especially in 

lymphatic surgery or perforator-based flaps, where the vascular caliber may even be 

smaller, which is why surgeons reach their limits here [157]. In this background, the 

expansion of surgical microscopes to include robotics and AI capabilities represents a 

promising and innovative approach for surpassing the capabilities of the human hand. 

The aim is to use robots equipped with AI to eliminate human tremor and to enable 

motion scaling for an increased precision and dexterity in the smallest of spaces [158]. By 

downscaling human movements, finer vessels can be attached. In the future, advances 

could be achieved in the field of ultra-microsurgery and anastomoses in the range of 0.1–

0.8 mm on the smallest vessels or nerve fascicles. In the long term, intelligent robotics 

could also automate technically demanding tasks, such as microsurgical anastomosis 

performed by robots, or the implementation of a real-time feedback system for the 

surgeon. 

Prosthetics have also evolved with the implementation of AI. After amputation 

injuries, prostheses can now restore not only the shape but also essential functions of the 

amputated extremity; in this way, they make a significant contribution to the reintegration 

of the patient into society. The mental control of the extremity remains in the brain even 

after amputation. When movement patterns are imagined, despite the lack of end organs 

to perform them, neurons will still transmit corresponding nerve signals [159]. Prostheses 

can now receive the electrical potential via up to eight electrodes and assign them to the 

respective functions via pattern recognition and innovative technological methods 

equipped with AI, and can ensure that patients better use the prosthesis in their daily lives 

[160,161]. This enables the patient to directly control different grip shapes and 

movements, which means that gripping movements can be realized much faster and more 

naturally in terms of movement behavior. 

The application of AI-based surgical robots in skin surgery is now also becoming 

widespread. Compared to traditional open surgery, robotic-assisted surgery offers 3D 

vision systems and flexible operating instruments, with potentially fewer postoperative 

complications as a result. In 2010, Sohn et al., first applied this technique to treat two pelvic 

metastatic melanoma patients [162]. In 2017, Kim successfully treated one case of vaginal 

malignant melanoma using robotic-assisted anterior pelvic organ resection with 

ileoccystostomy [15]. One year later, Hyde successfully treated four cases of malignant 

melanoma using robotic-assisted inguinal lymph node dissection [163]. Miura et al., found 

that robotic assistance provided a safe, effective and minimally invasive method of 

removing a pelvic lymph from patients with peritoneal metastases melanoma, with 

shorter hospital stays compared to normal open surgery [164]. Medical robots are also 

involved in the field of hair transplantation. In 2011, the ARTAS system was officially 

approved by the US-FDA for male hair transplantation, providing clear and detailed 

characteristics of the donor area by capturing microscopically magnified images and 

computer-aided parameters to facilitate the acquisition of complete follicular units from 

the donor area [16]. The system reduces labor consumption and eliminates human fatigue 

and potential errors, and the procedure time is significantly reduced [165]. 
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5. Computer-Aided Dermatology AI Systems on Market 

With the rapid development of AI over the past decade, a number of ‘skin’ medical 

systems and instruments with multiple applications have been commercialized. These 

systems and instruments have ample image datasets to assist in skin examination, 

monitoring the skin condition, clinical follow-up and providing treatment advice or 

guidance. Here, we briefly summarize the most widely used dermatology AI systems and 

smartphone apps of the last 15 years (Table 5). 

As a state-of-the-art full-body scanning imaging and intelligent identification system, 

the Vectra WBS360 allows the entire skin surface to be acquired with a macroscopic 

quality resolution through a single capture. Clinicians can map and survey pigmented 

lesions and distributed dermatoses with integrated software. Other applications include 

documenting pigmented lesions, psoriasis and vitiligo with the help of 3D imaging 

systems that allow for detailed documentation and organization of pre- and post-

operative image records. Its companion dermoscope VEOS DS3 combines optics and 

illumination with wireless capture. The AI-based DermaGraphix imaging software also 

helps in assessing the risk of the lesion’s malignancy: it allows physicians to label and 

monitor lesions and process images in a protected and implementable image management 

system [132–134]. 

Another AI skin system from Canfield, VISIA has been in the market for over 15 years 

and has evolved into its seventh generation. The system uses cross-polarization and UV 

illumination to record and measure surface and sub-surface skin conditions. Canfield’s 

RBX® technology isolates the distinctive color characteristics that lead to the red and 

brown skin components of color concentration, such as spider veins and 

hyperpigmentation. Its new AI wrinkle algorithm dramatically increases the detection 

and precision of fine lines and wrinkles. It can also simulate the effect of each region after 

injecting different volumes, and can simulate how patients might appear from the ages of 

18–80. It provides a finer visualization of sub-surface melanin and vascularity conditions 

for all skin types and ethnicities. In addition, it allows for the grading of patients’ skin 

using the world’s largest database of skin characteristics, and measures blemishes, 

wrinkles, texture, pores, UV spots, red areas and porphyrins [166,167]. A study assessing 

the clinical value of VISIA suggests that 86% of respondents agreed that VISIA analysis 

had improved their understanding of and attention toward their skin health. They would 

all recommend VISIA analysis to other people and 62% of them preferred a clinical 

practice with a VISIA system [168]. 

An AI system specifically designed to identify skin cancer, FotoFinder, debuted in 

1991. It performs skin cancer diagnosis through automated whole-body mapping and 

digital dermoscopy, as well as psoriasis documentation and aesthetic imaging. In 

addition, FotoFinder systems are used in daily practice and related studies. Its AI-based 

software Moleanalyzer pro, working with deep learning algorithms, allows for a risk-of-

malignancy evaluation. It is a market-approved CNN and currently has the largest dataset 

of dermoscopic images, including their associated diagnosis. The CNN has already been 

involved in several comparative studies in skin lesions diagnosis, and its reliability and 

feasibility have been recognized [55,56,81,83,130,131]. Dermascan is also a medical 

imaging system focusing on monitoring and differential diagnostics in skin cancer. It uses 

polarization to capture the skin surface and automatically analyzes traces of 

hyperpigmentation. All patient and localization-related images are saved in a database 

and linked to the video–dermoscopy system. By using digital photo documentation, the 

system can identify emerging pigmentation marks and diagnose changes in existing 

lesions [169]. 

Miravex’s Antera 3D imaging system is a device and software complex with 

powerful and versatile data handling and consultation tools for the analysis and 

qualitative measurement of wrinkles, texture, pigmentation, redness and other various 

dermatologic conditions. Antera 3D uses an AI algorithm to reconstruct full 3D images of 

the skin surface and is particularly suitable for the analysis of topographical features such 
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as wrinkles, skin texture, pores and volume. For morphological analysis (wrinkles, 

texture, volumes, etc.), tests on artificial skin samples under controlled conditions have 

established an instrumental error of less than 2%, demonstrating the high level of 

measurement reproducibility offered by the Antera 3D camera [170–172]. 

Following the commercially available artificial intelligence skin system, AIDERMA 

was born as the first AI-assisted comprehensive platform for the diagnosis and treatment 

of skin diseases. With leading AI image recognition technology as its core, AIDERMA 

provides doctors with integrated support for assisting diagnosis, case management, 

professional education and patient management, helping doctors to improve their 

diagnosis and treatment efficiency in all aspects and escorting them in their clinical work. 

AIDERMA can intelligently identify skin lesion photos and give the names of skin 

diseases directly. In the competition with the FotoFinder system in 2018, its diagnosis 

accuracy rate reached 80%. Smart skin is now open to Chinese certified physicians and 

can identify 90 types of diseases with an average accuracy rate of 86%. The product has 

been clinically tested in more than 3400 hospitals since its launch, helping doctors 

complete nearly 80,000 auxiliary diagnoses and supporting them to access over three 

million clinical contents [173,174]. 

Out of complex and large AI systems and platforms, some light-weight AI-based 

dermatology diagnostic apps for smart phones have also recently emerged. 

Dermacompass by swiss4ward is a learning tool for dermatologists. It contains skin 

disease images along with treatment algorithms and also provides an individual case 

diagnosis and image comparison. This app uses automatic image analysis to grade the 

medical severity of hand eczema and detects hand eczema through computer vision and 

machine learning. DermoScanner is an application leveraging the power of AI and deep 

learning and allows users to analyze skin moles and detect skin cancers via a mobile 

camera [61,153,175]. 

Table 5. On market aid-dermatology AI system and apps. 

Name 
Manufactur

er 
Country 

On Market 

Year 
Platform Application 

Referenc

e 

Moleanalyzer 

pro 
Fotofinder Germany 2018 Windows 

Analyzes melanocytic as well as non-melanocytic skin 

lesions and calculates an AI score for mole risk 

assessment 

[97,137] 

Vectra WBS 

360 
Canfiield USA 2017 Windows 

Capturing the entire skin surface in macro quality 

resolution with a single capture, to identify and monitors 

pigment lesions automatically or mannually 

[102,103,

138] 

Visia skin  Canfiield USA 2007 Windows 

Capturing key visual information for eight areas 

affecting complexion health and appearance and to 

provide an informative comparison of patient’s 

complexion’s characteristics to others of same age and 

skin type 

[173–

175] 

Antera 3D Miravex Ireland 2011 Windows 
Analysis and measurement of wrinkles, texture, 

pigmentation, redness and other lesions  
[176] 

Dermoscan X2 Dermoscan Germany 2017 Windows 

Identification of the new or modified lesions with digital 

photo documentations and makes automatic comparison 

of pigmentation marks  

[177] 

AIDERMA 
Dingxiangy

uan 
China 2018 Online 

Automatic identification of skin disorders and stores 

patient’s medical record in the cloud safely 
[178,179] 

DermEngine 

MetaOptima 

Technology 

Inc. 

Canada 2015 
Android 

and iOS 

Imaging, documentation and analysis of skin conditions 

including skin cancer; offers business intelligence 

features designed for practice management 

[71] 

Skin-App Swiss4ward 
Switzerlan

d 
2017 

Android 

and iOS 
Detection of hand eczema automatically [71] 

Neurodermitis 

Helferin | Nia 
Nia Health Germany 2019 

Android 

and iOS 

Marks affected areas on the clear body diagram, takes 

photos and documents of the current severity of the 
[157] 
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neurodermatitis and gives personalized suggestions after 

further analysis 

DermoScanner 

Neat 

Technology 

lnc. 

N/A 2019 Android  
Analysis of skin moles and detects skin cancers at an 

early stage when it is most treatable. 
[159] 

Dermacompas

s 
Swiss4ward 

Switzerlan

d 
2017 

Android 

and iOS 

It contains skin diseases, pictures and algorithms for 

treatment and provides individual case diagnosis and 

image comparison for dermatologists 

[180] 

6. Attitudes of Different Groups of People towards AI in Dermatology 

In recent years, the application of AI in medical image recognition and dermatology 

has become increasingly intensive and broader. AI has also gradually become a hot topic 

of discussion in dermatology and dermatopathology. The current health care society and 

legal framework are more suitable for using AI as a decision aid for dermatologists, 

especially in terms of assisting the diagnosis (Figure 5). On account of the rapid 

development of AI and its already widespread use by patients and doctors, several 

international and regional survey studies were conducted. From January to June 2019, 

1271 people from 92 countries were surveyed via an online questionnaire. Respondents 

identified dermoscopic images as the mightiest potential application of AI in 

dermatology. A total of 77.3% approved or strongly approved that AI would strengthen 

dermatology and 79.8% used AI as a part of medical training. In comparison, only 5.5% 

(70 of 1271) agreed or strongly agreed that dermatologists will be replaced by AI in the 

foreseeable future [176]. Following an international survey of dermatopathologists from 

the same research team, responses were received from 718 people, which included 91 

countries. In general, 72.3% of respondents agreed or strongly agreed that AI will improve 

dermatopathology and 84.1% thought that AI should be part of medical training. Only 

6.0% of the responders agreed that the human pathologist will be replaced by AI in the 

future. Concerning diagnosis classification, the automated detection of mitosis had the 

highest potential (79.2%) and 42.6% felt that automated recommendations for skin tumor 

diagnosis had strong or very strong potential [181]. Compared to doctors, most patients 

know less about AI. A qualitative study using semi-structured interview analysis and 

recruiting 48 patients was conducted from May to July 2019. A total of 60% participants 

cited an improved diagnostic speed and access to healthcare as the most common 

advantages of AI for skin cancer monitoring. An increased patient anxiety was the most 

common risk (40%). Patients identified more precise diagnoses (33 [69%]) and less precise 

diagnoses (41 [85%]) as the greatest advantages and disadvantages of AI, respectively. A 

total of 36 patients (75%) would recommend AI to family and friends [182]. 

 

Figure 5. The schematic diagram shows the hypothetical use of machine learning algorithms to help 

dermatologists diagnose lesions to make appropriate clinical decisions. An emerging AI model 
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CNN can help non-expert clinicians narrow the range of differential diagnosis and provide 

appropriate treatments. 

In summary, both dermatologists and pathologists are generally optimistic about the 

impact and potential benefit of AI in dermatology. However, only a minority had either 

good or excellent knowledge of AI. Most dermatologists believe that it will improve our 

diagnostic capabilities and most pathologists deemed that the greatest potential of AI is 

expected for narrowly specified tasks rather than global automated diagnostic 

recommendations. A minority of dermatologists and pathologists are concerned about 

being replaced by AI in the foreseeable future. Patients appear willing to use AI for skin 

cancer monitoring if applied in a way that maintains the integrity of the human doctor–

patient relationship. 

7. Current Limitations of the Application of AI in the Field of Dermatology 

At present, there are several major challenges toward the application of AI in the 

medical field: (1) a small sample size and inadequate quality manual annotation. The 

current training datasets for AI algorithms is insufficient and there is also a lack of 

plentiful experienced doctors involved in the identification and labelling of samples. This 

deficiency directly leads to the accuracy and practicability of AI algorithms not meeting 

the needs of daily clinical applications [177]; (2) the disjunction between AI algorithms 

and actual medical requirements and application scenarios. Due to the lack of sufficient 

high-quality training sets, AI algorithms and applications are generally only developed 

based on existing samples. Unlike human doctors, AI cannot be upgraded and updated 

with the vast experience gained over time. As a result, they are unable to meet the growing 

clinical and scientific demands of reality. Certain specific locations, such as hairy scalp 

and mucous membranes and rare skin conditions, currently remain a limitation for AI 

recognition. The accuracy of ANNs is currently also restricted by image artifacts, such as 

colored markings on the skin, including tattoos [178]. (3) The variety of diseases in 

dermatology and the lack of uniform criteria for identification and diagnosis make it 

difficult to teach AI how to identify and diagnose multiple skin diseases [179]. Currently, 

AI is more commonly used to distinguish between normal and abnormal. A bottleneck 

still exists for the use of AI for the automatic recognition and diagnosis of multiform 

dermatopathological images [180,183]. In addition, there are rare diseases in dermatology, 

where the number of cases is very small and the amount of specimens is not sufficient to 

provide the necessary training for the machine learning, which is also a major challenge 

for AI in dermatology [184]. 

8. Future Trends of Artificial Intelligence in Medical Field and Dermatology 

Al models, computing power and big data are the three cornerstones for the 

development of AI technology [185]. The deep learning algorithm, represented by the 

ANN, has become the core engine of AI application. In the dermatological sector, as we 

have summarized above, AI can provide better patient care as well as diagnosis and 

medical imaging interpretation; its technology can screen for various diseases more 

accurately and effectively [21,22,29–39]. The application of AI and related technologies in 

public health is evolving rapidly since the first computer-aided systems were still built up 

by humans in the 1990s [82]. In recent years, the use of AI-aided systems and deep learning 

processes with ANNs has been further developed. In the era of big data, swarm 

intelligence, cross-media intelligence, human–machine hybrids and enhanced augmented 

autonomous intelligence systems are five new trends for the prospective evolution of AI 

[186,187]. 

As technology advances, AI is constantly expanding its subdivisions that can be 

applied, and shows five trends for future development in the medical and dermatological 

field. 
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The first trend is the increasing support of AI diagnostic platforms for 

dermatologists. AI imaging systems can reduce the physician workload, and many AI 

systems have achieved an accuracy comparable to doctors in the diagnosis of pigments 

lesions. Many of the studies above show that AI has an accuracy in well-defined tasks 

comparable to that of human doctors, and a greater efficiency. In a wide range of tasks 

with dichotomous inputs and outputs, AI typically has a higher sensitivity and specificity 

than dermatologists, and can also identify more subtle lesion locations [66,188,189]. In the 

face of multi-classification diagnoses that are more closely aligned with clinical scenarios, 

AI algorithms have also proven their dermatologist-level accuracy [129,190]. 

The second trend is the emergence of a new generation of intelligent medical devices 

and instruments. The development of AI is not limited to stand-alone software, but a large 

amount of hardware has also undergone disruptive changes. In the comparative studies 

mentioned above, systems such as FotoFinder, Canfield Vectra WBS360 and Antera 3D 

have been applied in several hospitals and have proven their reliability. These devices 

offer patients and doctors a more intuitive and diverse examination modality than 

traditional devices, with significantly higher diagnostic rates [33–38,75–80,115–117]. 

The third trend is the emergence of transmedia intelligent medical equipment. The 

“hand-eye system + doctor” is at the heart of the cross-media intelligent medical 

equipment. Overlaying and integrating images of lesions seen by doctors with images of 

previously examined lesions on the same platform allows doctors to more clearly compare 

changes in disease progression during follow-up visits [191,192]. 

The fourth trend is the medical devices and services + 5G network. The 5G network 

has three essential features. The first is broadband transmission, which facilitates the high-

resolution remote transmission of medical images. The second is massive access and a 

quasi-equal clock, facilitating the remote control and remote observation of medical 

devices. The third is a high reliability, low-latency signal transmission. These three 

features have great supporting significance for the combination of medical devices with 

5G, thus enabling the extensive and regular realization of telemedicine and promoting the 

formation of a new generation of medical devices [193–197]. 

The fifth trend is the widespread implementation of an intelligent cloud healthcare 

model based on the Internet of things (IoT). A new healthcare model has emerged 

supported by the intelligent cloud platform. The technology model combines smart 

devices with cloud platforms on the basis of IoT, which can not only be utilized by 

healthcare providers but also by patients and their families, and can connect another 

ancillary agency to the cloud platform for medical research, teaching and management. 

The models in healthcare are of great use in monitoring the progression of chronic skin 

diseases, as well as preventing and controlling them, and, through remote monitoring, 

hospitals and health-related institutions can access patient data and can further analyze 

them [198–202]. 

The sixth trend is the popularization of AI consultation in dermatology. In addition 

to intelligent recognition, AI can also perform consultations. There are already APPs and 

websites for automatic diabetes consultation that can answer common questions from 

patients with a single disease by giving a list of standardized questions and answers 

[203,204]. These initial consultations and interactions by AI can replace a certain amount 

of the doctor’s work and greatly improve the efficiency. For people in remote areas and 

those with limited access to healthcare, AI consultations would provide medical 

suggestions and direct guidance, thereby effectively delivering real-time help in an 

interactive format [205]. 

In conclusion, AI is unlikely to replace dermatologists at the moment, either on a 

technical level or on an ethical and legal level. AI still lacks some basic human qualities, 

such as compassion and human concern, which means that physicians should continue to 

assume their role here as the future link to the patient. In the future, AI should be the right 

hand of doctors, which can bring convenience to doctors and better services to patients. 
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Over-promoting or avoiding AI is the incorrect attitude. Only with a proper 

understanding of AI can AI develop sustainably and bring help to dermatology. 

9. The Challenge Posed to Humanity by the Development of AI 

At present, there are several major challenges with the application of AI in the 

medical field: (1) The challenge of AI to the human way of thinking. The human doctors’ 

mind relies on common sense and, in many cases, personal preferences and emotions, 

whereas AI relies on historical judgement data to make correct or incorrect assertions 

[206]. With the introduction of deep learning, AI can highly mimic the way humans think 

and rely on neural networks for unsupervised self-learning. This quality can enable 

machines to learn far faster than humans and win several times against them [207]. As AI 

evolves, human doctors have a risk of being highly dependent on AI-assisted diagnostic 

systems and losing their enthusiasm for learning and self-improvement. (2) The threat to 

medical practitioner positions. Although dermatologists will not be replaced by AI at the 

moment, with the increasing amount of human knowledge and skills that are being 

acquired and surpassed by AI, more practitioners, such as medical technicians and 

nursing staff, could be replaced [208]. Whereas the first three industrial revolutions 

replaced human physical labor with machines, artificial intelligence not only replaces 

human physical labor, but also replaces a portion of mental labor [209]. This revolution 

has inevitably led to a dramatic transformation of the labor market. How to avoid the 

impact of AI development on employment is a considerable challenge. (3) The greatest 

prerequisite for the broad application of any AI is safety and security [210]. The greatest 

challenge is that humans lose control of AI or the novel technology controlled by non-

humanitarians. If artificial intelligence loses control, the damage to humanity can be 

immeasurable. Artificial intelligence is built on algorithms, neural networks and large 

amounts of data [42,211]. The development of the internet and big data has made the 

security of artificial intelligence unpredictable. On the one hand, AI benefits from the 

Internet’s big data development resource advantage; on the other hand, the Internet’s 

human factor of hackers and viruses can pose a huge threat to AI [212]. Therefore, in the 

process of promoting AI-assisted diagnostic platforms and AI surgical robots, humans 

need to keep an eye on the uncontrollable consequences that it could potentially bring. (4) 

The new ethical and moral issues raised by AI are a common challenge for all doctors 

[213,214]. On the one hand, artificial intelligence can be a great facilitator for the treatment 

of dermatology. On the other hand, it can also have a huge impact on the current diagnosis 

and treatment patterns of skin diseases and surgeries. It is therefore of great concern to 

dermatologists and ethicists [215,216]. 

10. Prospects of the Application of AI in the Field of Dermatology 

According to the summary above, we can see that AI for skin diseases represented 

by image recognition and analysis has now developed to a very advanced level. However, 

image recognition is only a part of clinical diagnosis and treatment, and medical service 

is a personalized service combining science and human care [217]. With the modification 

and refinement of AI technology and its closer integration with medical needs and 

scenarios, AI is expected to take on a part of boring and repetitive tasks, as well as improve 

the work efficiency of physicians, and is expected to alleviate the shortage of doctors 

[188,218]. AI can improve the accuracy of diagnosis and treatment, promote the optimal 

allocation of high-quality medical resources and push forward the efficient operation of a 

hierarchical medical system so as to accelerate the formation of medical consortia. For 

patients, it can provide large-scale quantitative analysis, promoting a more advanced 

stage of quantitative analysis in medical diagnosis, and spawn new diagnostic methods 

and treatment plans [174,219,220]. 

Healthcare is one of the industries that is most vulnerable to the impact of AI 

[221,222]. Whereas dermatologists have innovative, aesthetic, social and consultative 

strengths in healthcare, AI is unlikely to replace them both on a technical, ethical and legal 
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level [208]. However, every day, dermatologists are also faced with a great deal of 

repetitive labor that does not require complex thinking and can be mastered through 

training. In the future, AI should be the right hand of doctors, which can bring 

convenience to doctors and better services to patients. Over-promoting or avoiding AI is 

the incorrect attitude. Only with a proper understanding of AI can AI develop sustainably 

and bring help to dermatology. 

11. Conclusions and Perspective 

This article demonstrates the enormous potential of AI-based diagnosis and 

assessment in dermatology-related fields. Besides the already established discrimination 

between nevus and melanoma, there are also many potential utilizations regarding 

diagnosing inflammatory dermatoses, evaluating skin beauty and assisting in 

dermatologic surgery. The quality and informative value of research data could be 

increased by using AI to improve their objectivity and reproducibility. AI can provide 

more detailed and precise suggestions for beauty consultation and improve the accuracy 

and efficiency of skin lesion diagnosis, as well as relieve doctors’ burden in daily work by 

taking over the drudgery. Although it is foreseeable that AI will outperform humans in 

certain well- defined decision-making areas, human interactions and human–AI 

symbiosis will remain indispensable in everyday clinical practice. The aim of applying AI 

is not to replace the dermatologist, but to expand their possibilities and approaches with 

a meaningful new tool. The use of AI in dermatology within the framework of human-AI 

symbiosis has proven to be crucial. While AI cannot achieve a 100% correct diagnosis rate, 

combining machines with physicians reliably enhances the system performance. It is 

conceivable that the AI-based procedures will be part of the daily routine of 

dermatologists. 
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