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Abstract: Background: Thanks to the rapid development of computer-based systems and deep-
learning-based algorithms, artificial intelligence (AI) has long been integrated into the healthcare field.
AI is also particularly helpful in image recognition, surgical assistance and basic research. Due to the
unique nature of dermatology, AI-aided dermatological diagnosis based on image recognition has
become a modern focus and future trend. Key scientific concepts of review: The use of 3D imaging
systems allows clinicians to screen and label skin pigmented lesions and distributed disorders,
which can provide an objective assessment and image documentation of lesion sites. Dermatoscopes
combined with intelligent software help the dermatologist to easily correlate each close-up image
with the corresponding marked lesion in the 3D body map. In addition, AI in the field of prosthetics
can assist in the rehabilitation of patients and help to restore limb function after amputation in
patients with skin tumors. The aim of the study: For the benefit of patients, dermatologists have an
obligation to explore the opportunities, risks and limitations of AI applications. This study focuses on
the application of emerging AI in dermatology to aid clinical diagnosis and treatment, analyzes the
current state of the field and summarizes its future trends and prospects so as to help dermatologists
realize the impact of new technological innovations on traditional practices so that they can embrace
and use AI-based medical approaches more quickly.

Keywords: deep learning; pattern recognition; dermatology; skin cancer; intelligent diagnosis;
3D imaging

1. Introduction

Long considered futuristic, artificial intelligence has now substantially improved
our quality of life through the instrumentalization of machines and robots in industry,
autonomous driving and the widespread use of smartphones [1]. Recent years have
also seen significant improvements in the productivity, accuracy and efficiency of AI-
optimized workflows in the healthcare sector. Deep learning and convolutional cloud
neural-network-based algorithms can greatly improve the efficiency of image classification,
object detection, segmentation, registration and other tasks [2]. In those areas of medicine
that rely on imaging data, AI medical image recognition and analysis is greatly beneficial
for high-speed, high-precision diagnosis alongside professional evaluation, especially in
the dermatology area. The massive learning capacity of AI allows it to recognize subtle
differences in lesion features such as size, texture and shades, and far surpasses that of
humans [3–5].

The trend towards digitization and technology has been happening in the dermatolog-
ical field for a while [6–9]. As a morphological feature-dependent discipline, dermatology
plays a groundbreaking role in the utilization of AI for diagnostics and assessment [10].
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The burgeoning technology offer a precious and valuable chance for dermatologists. They
should comprehensively know of the utilization and limitation of this novel tool, and
propel its safe and effective implementation [11]. Regarding diagnosis, AI’s ability to learn
skin lesions’ features far exceeds that of humans, allowing it to quantify lesion features and
make judgements to assist in the discovery and analysis of lesions, improving the accuracy
and efficiency of clinicians’ diagnosis [12]. In terms of treatment, AI can select the best
treatment for the patient and predict the number of treatments required and the efficacy of
the treatment for patients with skin diseases [13,14]. AI-based surgical robotic systems can
also help to reduce manpower consumption, eliminate human fatigue and potential errors
and significantly reduce surgery times, as well as improve the surgical treatment [15,16].
For these above reasons, we explain the definition of AI and the core ultimate principles
and technology to help dermatologists and dermatologic surgeons understand how AI
works and how these procedures are accomplished. We outlined the relevant developments
and applications of AI in dermatology and discussed the attitudes of different populations
towards AI.

Although there are several reviews summarizing the application of AI in dermatology,
they mainly focused on the implementation of AI for binary-classification of skin disease
and were arranged as different sections, one for each disease. Thus, the problem addressed
in each is mostly a binary classification of present/absent rather than considering the multi-
class problem faced in real clinical scenarios where the patient comes to the doctor with any
of them. In addition, the metadata representing information such as site, age and sex are
not included in these studies, even though such information is collected by doctors in their
examination of patients and is included in the diagnostic decision for doctors. It is therefore
unrealistic to compare the performance of doctors with AI systems in this context [17–19].
The papers of the winners of the International Skin Imaging Collaboration (ISIC) annual
competitions in the past several years (2016 to 2020), which represent the benchmark for
different research groups working in this area, were included in the literature surveyed
in this work. The ISIC challenges consider AI systems that can identify the presence of
many different pathologies and make the metadata available for the labeled cases, therefore
allowing for a more realistic comparison between AI systems and clinical scenarios [20–23].
In addition, former reviews concentrated more on the mechanism and theory of an AI
computer-aided diagnosis (CAD) system without a summarization of existing AI-CAD
systems on the market. This may prove beneficial for dermatologists to better understand
AI and learn its mechanisms in skin lesion image recognition, but it is of limited help in
guiding them to apply AI in specific clinical practice.

To fill these gaps and to benefit more grassroots dermatologists than just researchers,
in our current review:

We comprehensively summarize the birth and development of AI and focus on emerg-
ing AI-CAD applications in the dermatosis field, not only for binary classification but also
for multiple classification. Firstly, we focus on emerging AI applications in aided clinical
diagnoses and treatment, summarizing the development of artificial intelligence in the
dermatosis field and providing a novel perspective for dermatological studies. Secondly,
we describe not only the principle and mechanism of the AI system but also introduced the
current AI CAD systems and products in the dermatology field on the market thoroughly,
which provides detailed guide and perspectives for normal clinical practice. Thirdly, based
on clinical practice, we have comprehensively analyzed the attitudes of healthcare workers
and patients towards artificial intelligence. Fourthly, we make reasonable predictions
and future trends about the use of AI in dermatology in the context of a domestic and
international government policy document. Lastly, we objectively evaluated the potential
and limitation of its application, along with the underlying ethical issues.

We hope that this all-round survey will allow more dermatologists to have a deeper
and more intuitive understanding of AI-based diagnostic tools and medical means so that
more dermatology patients can benefit from these emerging healthcare models.
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2. Overview of AI

AI can be divided into two parts: “artificial” and “intelligence”. “Artificial “ means
designed, created and manufactured by humans. The definition of intelligence remains
controversial: it is widely accepted that the only intelligence is human intelligence, but
our understanding of human intelligence is still limited [24]. Below, we will give a brief
overview from the following three aspects.

2.1. What Is AI?

AI refers to the intelligence manifested by machines made by humans. It is used to
describe machines (or computers) that mimic the “cognitive” functions associated with
human thought, such as “learning” and “problem solving” [25]. Intelligent agents are
systems which can observe their surroundings and adopt action to reach their targets
directly [5], learn from them and use that knowledge to achieve specific goals and tasks
with flexibility [26,27].

2.2. The History of AI and Its Development Path in Medicine

In 1936, Alan Turing published a paper expounding on “Entscheidungsproblem” and
proposed “effective calculability” for solving the problem. They laid the foundation of
computational models called algorithms [28]. In 1943, the first artificial neural network
made of electrical circuits was modeled to simulate brain neuronal interactions [29]. The
concept of AI was born in 1956 at Dartmouth College [30]. Three years later, the first
computer research using an ANN was completed through models called “ADALINE”
and “MADALINE” [31]. In 1963, the computer-aid-diagnosis was firstly applied in the
analysis of pulmonary nodules detected in chest radiographs [32]. Fifteen years after the
birth of AI, scientists discovered its relevance in bioscience, most evidently in the Dendral
experiments [33]. However, technology limited the depth of AI’s application in medicine
until 1998, when the first mammography CAD system was approved by U.S.FDA [34].
Soon after, CAD was brought into dermatology. The MelaFindTM multispectral digital
dermoscopy system uses the same feature-based classifiers to discriminate the malignant
melanoma from benign pigmented skin lesions [35]. After the 2010s, a subfield of machine
learning called deep learning has emerged. Deep learning allows computers to learn
certain features by themselves from large datasets without explicit programming [36]. The
application of AI in medicine and dermatology has been growing exponentially into the
2020s. A pioneering work developed by DeepMind successfully predicted the 3D structure
of proteins, the basic molecules of life [37]. The creation of a more powerful computer
vision model, SEER, and a new generation of generative adversarial networks (Style GAN3)
have provided more powerful tools for AI to learn from image sets, contributing to more
robust dermatology AI CAD systems in future [38,39]. In Figure 1, more historical details
are presented as a timeline.

Figure 1. Flow chart illustrating the literature search and study selection.

2.3. Relevant Concept of AI in Dermatology

Knowledge representation and knowledge engineering are central to classical AI
research [25,40]. Machine learning and its sub-field deep learning are foundations of the AI
framework. “Machine Learning” refers to the automatic improvement of AI algorithms
through experience and massive historical data (training datasets) to build models based
on datasets that allow the algorithm to generate prediction and make decisions without
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programming [41]. “Deep learning” is a division of machine learning founded on artificial
neural networks (ANNs) and representation learning. The ANN is a mathematical model
that simulates the structure and function of biological neural networks, and an adaptive
system with learning capabilities. The performance of an ANN depends on the number and
structure of its neural layers and training dataset [42,43]. Deep learning is already widely
used to detect and classify skin cancers and other skin lesions [44–46]. The most prominent
deep learning networks can be divided into recursive neural networks (RvNNs), recurrent
neural networks (RNNs), Kohonen self-organizing neural networks (KNNs), generative
adversarial neural networks (GANs) and convolutional neural networks (CNNs) [47].
CNNs, a subtype of ANNs, are most frequently used for image processing and detection in
medicine, particularly in dermatology, pathology and radiology [48]. Currently, the most
implemented CNN architectures in the field of dermatology are GoogleNet, Inception-V3,
V4, ResNet, Inception-ResNet V2 and Dense Net [47]. As the raw data source for training
CNN architectures for applying deep learning, image sets with a large number of high-
quality images are decisive for the diagnostic accuracy, sensitivity and specificity of the
final trained AI algorithm [49]. An image set can be used to be managed for image data.
The object contains a description of the image, the location of the image and the number
of images in the set [50]. The most common image sets used to train AI CAD systems in
dermatology today are ISIC archives (2016–2021), HAM10000, BCN20000 and PH2 image
sets [51–56]. The concepts and components related to AI in the dermatology field are
displayed systematically in Table 1.

Table 1. Essential terminologies involved in AI in dermatology.

Terminology Paraphrase

Artificial Intelligence (AI) The intelligence manifested by machines made by humans, i.e., the ability of the
machine to simulate natural intelligence.

Knowledge Representation
It is the field of AI dedicated to representing information about the world in a form
that a computer system can utilize to solve complex tasks such as diagnosing a
medical condition or having a dialog in a natural language.

Representation Learning (Feature Learning) A set of techniques that allows a system to automatically discover the
representations needed for feature detection or classification from raw data.

Machine Learning
The study of computer algorithms that improve automatically through experience.
The algorithms use computational methods to learn from data without being
explicitly programmed.

Deep Learning A branch of machine learning methods based on artificial neural networks with
representation learning.

Supervised Learning
Refers to the machine learning task of learning a function that maps an input to an
output based on example input–output pairs. It infers a function from labeled
training data consisting of a set of training examples.

Transfer Learning Transfer learning is a machine learning model that allows a model developed from
one task to be transferred for another task after fine-tuning and augmentation.

Artificial Neural Networks (ANNs)

ANNs, usually simply called neural networks (NNs), are computing systems
vaguely inspired by the biological neural networks that constitute animal brains.
An ANN is based on a collection of connected units or nodes called artificial
neurons, which loosely model the neurons in a biological brain

Convolutional Neural Networks (CNNs)
CNNs are a class of neural networks; they are feedforward neural networks. Their
artificial neurons can respond to a part of the surrounding units in the coverage
area, most commonly applied to analyzing visual imagery.

Generative Adversarial Networks (GANs) GANs are a method of unsupervised learning that learn by playing two neural
networks against each other.

Pattern Recognition The automated recognition of patterns and regularities in data. The environment
and objects are collectively referred to as patterns.

Image Set
An object stores information about an image data set or a collection of image data
sets. It contains image descriptions, locations of images and the number of images
in the collection.
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3. Method

This work was carried out by one reviewer (ZXL) and checked by a second reviewer
(KCK) in the event of uncertainty.

3.1. Search Strategy

A literature search was conducted systematically in three English language electronic
databases (PubMed, Web of Science and Google scholar) and three Chinese databases
(CQVIP, Wanfang Data and CNKI) to find biomedical and clinical studies of AI and derma-
tology. We used combinations of terms concerning greenspace (e.g., ‘artificial intelligence’,
‘AI’, ‘AI Algorithm, ‘Deep Learning’, ‘Machine Learning’, ‘Transfer Learning’, ‘Computer
Aided Diagnosis’, ‘Meta Data’ ‘Generative Adversarial Networks’ and ‘Convolutional
Neural Network’) and dermatology (e.g., ‘dermatology’, ‘dermatoses’, ‘skin lesion’, ‘skin
disease’, ‘pigmented skin lesion’, ‘ISIC ’, ‘ISIC challenge’, ‘Melanoma’ and ‘skin cancer’)
for the search. Our search was limited to studies written in English, German or Chinese.
We also manually searched for a number of studies and other relevant review articles that
were included in the references.

3.2. Studies Selection

The search results were filtered and only studies that investigated the relationship
between AI and dermatology or skin-related surgery were included. Reviews, letters to the
editor and clinical research studies were also considered.

3.3. Data Extraction

For each study, information on paper (author and publication time), study location,
study disease, the type and aim of AI algorithm, image number of learning dataset, out-
comes, accuracy, sensitivity and specialty was extracted. A detailed summary of each is
provided in Figure 2.

Figure 2. Timeline and major nodes of AI development.
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4. The Implementation of AI in Dermatology

The diagnosis of skin diseases is mainly based on the characteristics of the lesions [57].
However, there are more than 2000 different types of dermatological diseases, and some
skin lesions of different diseases show similarities, which makes antidiastole difficult [58].
At present, the global shortage of dermatologists is increasing with the high incidence
of skin diseases. There is a serious deficit of dermatologists and uneven distribution,
especially the developing countries and remote areas, which urgently require more medical
facility, professional consultation and clinical assistance [59,60]. Rapid iteration in big data,
image recognition technology and the widespread use of smartphones worldwide may be
creating the largest transformational opportunity for skin diseases’ diagnosis and treatment
in this era [61,62]. In addition to addressing the needs of underserved areas and the poor,
AI now has the ability to provide rapid diagnoses, leading to more diverse and accessible
treatments approaches [63]. An AI-aided system and algorithm will quickly turn out to
be normal diagnosis and evaluation-related techniques. The morphological analysis of
a lesion is the classic basis of dermatological diagnostics, and the face recognition and
aesthetic analysis from AI have also matured and become more reliable [64,65]. Currently,
some applications of AI in dermatology have already found their way into clinical practice.
Tables 2–4 illustrates specific implementation of AI in dermatology visualized with a
mind map (Figure 3) [53,66,67]. AI systems based on a deep learning algorithm use
plentiful public skin lesion image datasets to distinguish between benign and malignant
skin cancers. These datasets contain massive original images in diverse modalities, such
as dermoscopy, clinical photographs or histopathological images [68]. In addition, deep
learning was used to process the disagreements of human annotations for skin lesion
images. An ensemble of Bayesian fully convolutional networks (FCNs) trained with ISIC
archive was applied for the lesion image’s segmentation by considering two major factors
in the aggregations of multiple truth annotations. The FCNs implemented a robust-to-
annotation noise learning scheme to leverage multiple experts’ opinions towards improving
the generalization performance using all available annotations efficiently [69]. Currently,
the most representative and commonly used AI model is the CNN. It transmits input data
through a series of interconnected nodes that resemble biological neurons. Each node is a
unit of mathematical operation, a group of interconnected nodes in the network is called
a layer and multiple layers build the overall framework of the network (Figure 4) [70,71].
Deep CNNs have also been applied to the automatic understanding of skin lesion images in
recent years. Mirikharaji et al., proposed a new framework for training fully convolutional
segmentation networks from a large number of cheap unreliable annotations, as well as
a small fraction of expert clean annotations to handle both clean and noisy pixel-level
annotations accordingly in the loss function. The results show that their spatially adaptive
re-weighting method can significantly decrease the requirement for the careful labelling of
images without sacrificing segmentation accuracy [72].
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Table 2. The application of AI in multi-classification for skin lesions.

Authors Refer ence Year Country AI Algorithm Model The Purpose of AI
Algorithm Image (Datasets) Recourse No. of Images in

Datasets Usage Types of Images Accuracy
/Precision (%)

Sensitivity/Recall
(%) Specificity (%)

Kassem et al. [23] 2020 Egypt Deep CNNs (modified
GoogleNet)

Classification of multiple
skin lesions ISIC 2016–2019 25,331 Multi-class (8) Dermoscopy 94.92 79.8 97

Rezvantalab et al. [52] 2018 Iran
Four deep learning
convolutional neural
networks (CNNs)

Investigating the ability of
deep convolutional neural
networks in classification of
multiple skin lesion

HAM10000; PH2 10,135 Multi-class (8) Dermoscopy 80.22–89.01 82.26–99.10 79.60–89.01

Gessert et al. [53] 2018 German y Ensemble of CNN Diagnosis of multiple skin
lesions ISIC-2018, HAM10000 23,515 Multi-class (7) Dermoscopy 85.1 93.1–97.6 N/A

Gessert et al. [54] 2020 German y Ensemble of
multi-resolution CNN

Classification of multiple
skin lesions

HAM10000, BCN20000,
MSK,7-
point,

47,049 Multi-class (8) Dermoscopy 80.5–96 72.5–74.2 94–99.9

Haenssle et al. [55] 2018 German y
Deep convolutional neural
network (Google’s
Inception v4 architecture)

Detection of melanoma and
comparison of its
performance with 58
dermatologists

ISIC archive, clinical images >150,000 Multi-class (20) Macroscopy
and Dermoscopy 86 86.6–88.9 71.3–75.7

Haenssle et al. [56] 2020 Multi- country FotoFinder® Moleanalyzer
Pro

Classification of skin
lesions and comparison of
the performance of the AI
model with 96
dermatologists

ISIC archive, clinical images >150,000 Multi-class (25) Macroscopy
and Dermoscopy 84 95 76.7

Esteva et al. [66] 2017 USA
Deep convolutional neural
networks (GoogleNet
Inception v3)

Classification of skin cancer
and comparison of the
performance of AI model
with 21 dermatologists

Online repositories and
clinical data from 129,450 Multi-class (2032) Macroscopy

and Dermoscopy
1: 72.1 ± 0.9;
2: 55.4 ± 1.7 N/A N/A

Mahbod et al. [67] 2020 Austria
Multi-scale
multi-convolutional neural
networks (MSM-CNNs)

Investigating the effect of
image size for skin lesion
classification

ISIC-2016, 2017, 2018
HAM10000 12,927 Multi-class (7) Dermoscopy 96.3 N/A N/A

Iqbal et al. [71] 2020 China Deep CNN Classification of multiple
skin lesion ISIC-2017, 2018, 2019 25,331 Multi-class (8) Dermoscopy 94 93 91

Qin et al. [73] 2020 China Generative adversarial
networks (GANs)

Classification of multiple
skin lesion ISIC-2018 10,015 Multi-class (7) Dermoscopy 95.2 83.2 74.3

Cano et al. [74] 2021 Panama NasNet Classification of multiple
skin lesions ISIC-2019 25,331 Multi-class (8) Dermoscopy 71–99 73–98 70–99

Barhoumi et al. [75] 2021 Tunisia Transfer learning CNN
model

Classification of multiple
skin lesions ISIC 2018 5057 Multi-class (7) Dermoscopy 95 96 N/A

Ratul et al. [76] 2020 Canada Dilated CNNs (VGG-16,-19,
MobileNet, Inception-V3)

Classification of multiple
skin lesions HAM10000 10,015 Multi-class (7) Dermoscopy 87–89 87–89 N/A

Rashid et al. [77] 2020 Pakistan Semi-supervised GANs Classification of multiple
skin lesions ISIC 2018 10,000 Multi-class (7) Dermoscopy 73–94 69–92 N/A

Maron et al. [78] 2019 German y CNNs

Classification of multiple
skin lesions and
comparison of the
performance of the AI
model with 112
dermatologists

ISIC 2018, HAM10000 11,444 Multi-class (5) Dermoscopy N/A 90.2–97.7 94.2–99.5

Sun et al. [79] 2021 China CNNs Classification of multiple
skin lesions

ISIC-2019, MED- NODE,
PH2, 7-
point

18,460 Multi-class (7) Dermoscopy 66.2–89.5 66.2–89.5 95.2–99.3

Jain et al. [80] 2021 India Six transfer learning nets Classification of multiple
skin lesions HAM10000 10,015 Multi-class (7) Dermoscopy 66–90 66–90 N/A

Winkler et al. [81] 2020 Gemany FotoFinder® Moleanalyzer
Pro (CNN)

Detection of various
melanoma localizations and
subtypes

ISIC archive, clinical images >150,000 Multi-class (6) Macroscopy
and Dermoscopy 50.8–95.4 53.3–100 65–94

Binder et al. [82] 1994 Austria Artificial neural networks
(ANNs)

Classification of naevi and
malignant melanoma and
comparison of the
performance of AI model
with 3 dermatologists

Oil immersion images of
pigmented skin lesions 200 Multi-class (3) Microscopy 86 95 88

Sies et al. [83] 2020 German y

FotoFinder® Moleanalyzer

Pro/FotoFinder®Moleanalyzer-
3,
Dynamole

Detection of various
melanoma localizations and
subtypes

ISIC dermoscopic archive,
multicentric clinical images >150,000 Multi-class (20) Dermoscopy 92.8 77.6 95.3
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Table 2. Cont.

Authors Refer ence Year Country AI Algorithm Model The Purpose of AI
Algorithm Image (Datasets) Recourse No. of Images in

Datasets Usage Types of Images Accuracy
/Precision (%)

Sensitivity/Recall
(%) Specificity (%)

Yang et al. [84] 2020 China CNNs (DenseNet-96,
ResNet-152, ResNet-99)

Classification of multiple
benign hyperpigmented
dermatitis and comparison
of the performance of AI
model with 11
dermatologists

Clinical images 12,816 Multi-class (6) Macroscopy 75.3–97.8 75.5–94.4 95.6–99.8

Lyakhov et al. [85] 2022 Russia Multimodal neural network Recognition of multiple
pigmented skin lesions ISIC-2016–2021 41,725 Multi-class (10) Dermoscopy 83.6 N/A N/A

Guzman et al. [86] 2015 Philippin es Singe/multi-level and
multi-models ANN

Detection of eczema skin
lesion Clinical images 504 Multi-class (3) Macroscopy Single: 78.17–87.30

Multi: 81.34–85.71 N/A N/A

Han et al. [87] 2018 Korea Region-based convolutional
deep neural networks

Diagnosis of
onychomycosis and
comparison of the
performance of AI model
with 42 dermatologists

Clinical images 49,567 Multi-class (6) Macroscopy 82–98 82.7–96 69.3–96.7

A.Blum et al. [88] 2004 Gemany Vision algebra algorithms
Diagnosis of melanocytic
lesions and validation of its
diagnostic accuracy

Clinical images 837 Multi-class (20) Dermoscopy 82.3–84.1 80–88.1 82.4–82.7

Marchetti et al. [89] 2020 USA CNNs and deep learning
algorithms

Classification of melanoma
and comparison of the
performance of AI model
with 17 dermatologists

ISIC-2017 2750 Multi-class (3) Dermoscopy 86.8 76 85

Shen et al. [90] 2018 China Convolutional neural
networks

Diagnosing for facial acne
vulgaris Clinical images Binary: 6000

Multi:42,000

Binary-class/Multi-
class
(7)

Macroscopy 88.7–89.5 81.7–92 87–95.7

Seité et al. [91] 2019 France Deep learning algorithm

Determination of the
severity of facial acne and
identification of subtypes of
acne lesion

Clinical images 4958 Multi-class (3) Macroscopy N/A N/A N/A

Zhao et al. [92] 2019 China CNNs Identification of psoriasis XiangyaDerm-Pso9 8021 Multi-class (9) Macroscopy 88 83–95 96–98

Han et al. [93] 2020 Korea Deep Neural Networks

Predicting malignancy and
suggesting treatment
option, as well as
multi-classification for 134
skin disorders

Clinical images 220,680 1:Binary- class
2:Multi-class (134) Macroscopy 1: 56.7–92 2:

44.8–78.1 N/A N/A

Table 3. The application of AI in binary classification for skin lesions.

Authors Reference Year Country AI Algorithm Model The Purpose of AI
Algorithm

Image (Datasets)
Recourse

No. of Images in
Datasets Types of Images Accuracy/

Precision (%) Sensitivity/Recall (%) Specificity (%)

Filho et al. [51] 2018 Germany Structural
Co-occurrence matrix

Classification of
melanoma

ISIC-2016, 2017,
PH2 3100 Dermoscopy 89.93–99 89.9–99.2 95.15–99.4

Marchetti et al. [89] 2018 USA

Non-learned
approaches and
machine learning
methods

Classification of
melanoma and
comparison of the
performance of AI
model with 8
dermatologists

ISIC-2016 1279 Dermoscopy 85–86 46–70 88–92

Roffman et al. [94] 2018 USA Artificial neural
network

Detection of
non-melanoma skin
cancer

NHIS 1997–2015 462,630 Macroscopy 81 86.2–88.5 62.2–62.7

Alzubaidi [95] 2021 Australia Transfer learning
model

Discrimination of skin
cancer and normal skin

ISIC-2016–2020, Med-
Node,
Dermofit

>200,000 Dermoscopy 89.69–98.57 85.60–97.90 N/A

Guimarães et al. [96] 2020 Germany Convolutional neural
networks

Diagnosis of atopic
dermatitis

Multiphoton
tomography Images 3663 Multiphoton

tomograph 97.0 ± 0.2 96.6 ± 0.2 97.7 ± 0.3

Ho. et al. [97] 2020 USA Deep neural network
Image segmentation of
plexiform
neurofibromas

MRI images 35 MRI N/A N/A N/A
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Table 3. Cont.

Authors Reference Year Country AI Algorithm Model The Purpose of AI
Algorithm

Image (Datasets)
Recourse

No. of Images in
Datasets Types of Images Accuracy/

Precision (%) Sensitivity/Recall (%) Specificity (%)

Fink et al. [98] 2018 Germany

Edge-preserving
thresholding
automated shape
recognition

Classification of
psoriasis and
measurement of lesion
area andseverity index

Clinical images 10 patients Macroscopy N/A N/A N/A

Fink et al. [99] 2019 Germany

Edge-preserving
thresholding
automated shape
recognition

Validation of the
precision and
reproducibility of
algorithm in PASI
measurements

Clinical images 120
patients Macroscopy N/A N/A N/A

Schnuerle et al. [100] 2017 Switzerland Support vector
machines

Detection of hand
eczema Clinical images N/A Macroscopy 74.5–89.29 48–71.43 77.24–93.63

Gao et al. [101] 2020 Chinas
Deep learning network
architecture
(ResNet-50)

Detection for fungal
skin lesion Clinical images 292 Macroscopy N/A 95.2–99.5 91.4–100

Bashat et al. [102] 2018 Israel N/A
Differentiation of
benign and malignant
neurofibroma

MRI images 30 MRI 80 72 87

Duarte et al. [103] 2014 Portugal Support vector
machines

Classification of
whole-brain grey and
white matter of MRI
between NF1 patients
and normal person

T1-weighted MRI scans 99 MRI Images 94 92 96

Meienberger et al. [104] 2019 Switzerland Convolutional neural
networks (Net 16)

Establishment of an
accurate and objective
psoriasis assessment
method

Clinical images 203 Macroscopy 92 N/A N/A

Gustafson et al. [105] 2017 USA
Electronic health record
based phenotype
algorithm

Identification of atopic
dermatitis and
comparison of the
performance of AI
model with 4
dermatologists

Clinical images 562 N/A N/A 53.6–75 N/A

Luo et al. [106] 2020 China Cycle-consistent
adversarial networks

Classification of vitiligo
skin lesion Clinical Images 80,000 Macroscopy 85.69 80.73 66.2

Makena et al. [107] 2019 USA Convolutional neural
networks

Segmentation of
vitiligo skin lesion

RGB images of vitiligo
lesions 308 Macroscopy

(UV/natural light) 74–88.7 N/A N/A

Table 4. The application of AI in aesthetic dermatology.

Authors Reference Year Country AI Algorithm
Model

The Purpose of AI
Algorithm

Image (Datasets)
Recourse

No. of Images in
Datasets Types of Images Accuracy/Precision

(%)

Eisentha et al. [64] 2006 Israel Deep learning
algorithm

Predicting facial
attractiveness
ratings

Volunteer images 194 Macroscopy 0.65 correlation with
human

Kagian et al. [65] 2008 Israel Linear regression
algorithm

Extraction of facial
features from raw
images and rating
facial attractiveness

Volunteer images 91 Macroscopy 0.82 correlation with
human

Zhang et al. [108] 2017 China

Hypergraph-based
semi-supervised
learning method
(HSSL)

Analysis of human
face attractiveness

Shanghai Database
and celebrity
portrait from
Internet

2354 Macroscopy 81.47–84.21
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Figure 3. A schematic illustrates the hierarchy of the implementation of AI in dermatology.

Figure 4. A diagram depicting how to perform classification tasks in an AI neural network.

Information from the image data set is transmitted through a structure composed of
multi-layer connection nodes. Each line is a weight connecting one layer to the next, with
each circle representing an input, neuron or output. In convolutional neural networks,
these layers contain unique convolutional layers that act as filters. The network made up of
many layered filters learn increasingly high-level representations of the image.

4.1. AI in Aid-Diagnosis and Multi-Classification for Skin Lesions
4.1.1. Multi-Classification for Skin Lesions in ISIC Challenges

In recent years, the classification of multiple skin lesions has become a hotspot with
the increasing popularity of using deep learning algorithms in medical image analysis.
Before, metadata indicating information such as site, age, gender, etc., were not included,
even though this information is collected by doctors in daily clinical practice and has an
impact on their diagnostic decisions. Therefore, the algorithm or AI system that includes
this information is better able to reproduce the actual diagnostic scenario, and its diagnostic
performance will be more credible. The ISIC challenges consider AI systems that can
identify the presence of many different pathologies and provide metadata for labelled
cases, thus allowing for a more realistic comparison between AI systems and clinical
scenarios. Since the International Skin Imaging Collaboration (ISIC) challenge was held
in 2016, it represents the benchmark for diverse research groups working in this area. To
date, their database has accumulated over 80,000 labelled training and testing images,
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which are openly accessible to all researchers and have been used for training algorithms
to diagnose and classify various skin lesions [109]. In ISIC 2016–2018, subsets of the image
datasets were divided into seven classes: (1) actinic keratosis and intraepithelial carcinoma,
(2) basal cell carcinoma, (3) benign keratosis, (4) dermatofibroma, (5) melanocytic nevi,
(6) melanoma and (7) vascular skin lesion. From 2019, the atypical nevi were added
as the eighth subset. Garcia-Arroyo and Garcia-Zapirain designed a CAD system to
participate in ISIC 2016, 2017 Challenge and were ranked 9th and 15th, respectively [110].
In 2018, Rezvantalab et al., investigated the effectiveness and capability of four pre-trained
algorithms with HAM10000 (comprising a large part of the ISIC datasets) and PH2 state-of-
the-art architectures (DenseNet 201, ResNet 152, Inception v3, Inception ResNet v2) in the
classification of eight skin diseases. Their overall results show that all deep learning models
outperform dermatologists (by at least 11%) [52]. Iqbal et al., proposed a deep convolutional
neural network (DNN) model trained using ISIC 2017–2019 datasets that proved to be able
to automatically and efficiently classify skin lesions with 0.964 AUR in ROC curve [71].
Similarly, Lucius’ team developed a DNN trained with HM10000 to classify seven types of
skin lesions. Statistics showed that the diagnostic accuracy of dermatologists is significantly
improved with the help of DNNs [111]. MINAGAWA et al., trained a DNN using ISIC-2017,
HAM10000 and Shinshu datasets to narrow the diagnostic accuracy gap for dermatologists
facing patients from different regions [112]. Qin et al., established a skin lesion style-based
generative adversarial network (GAN) and tested it in the ISIC 2018 dataset, showing
that the GAN can efficiently generate high-quality images of skin lesions, resulting in
an improved performance of the classification model [73]. Cano et al., applied CNNs
based on NASNet architecture trained with a skin image lesion from the ISIC archive for
multiple skin lesion classification, which has been cross validated. Its excellent performance
suggests that it can be utilized as a novel classification system for multiple classes of skin
diseases [74]. Al-masni et al., integrated a deep learning full-resolution convolutional
network and a convolutional neural network classifier for segmenting and classifying
various skin lesions. The proposed integrated deep learning model was evaluated in ISIC
2016–2018 datasets and achieved an over 80% accuracy in all three for segmentation and
discrimination among seven classes of skin lesions, with the highest accuracy of 89.28%
in ISIC 2018 [113]. In 2018, Gessert et al., employed an ensemble of CNNs in the ISIC
2018 challenge and achieved second place [53]. Next year, they exploited a set of deep
learning models trained with BCN20000 and HAM10000 datasets to solve the skin lesion
classification problem, including EfficientNets, SENet and ResNeXt WSL to address the
classification of skin lesions and predict unknown classes by analyzing patients’ metadata.
Their approach achieved first place in the ISIC 2019 challenge [54].

In recent years, transfer learning technology has also been applied for classifying
multiple skin lesions. Transfer learning allows a model developed from one task to be
transferred for another task after fine-tuning and augmentation. It is very helpful when
we don’t have enough training data sources. When lesion images are difficult to acquire,
the algorithmic model can be initially performed with natural images and subsequently
fine-tuned with an enhanced lesion dataset to increase the accuracy and specificity of the
algorithm, thereby improving the performance on image processing tasks. Singhal et al.,
utilized transfer learning to train four different state-of-the-art architectures with the ISIC
2018 dataset and demonstrated their practicability for the detection of skin lesions [114].
Barhoumi et al., trained content-based dermatological lesion retrieval (CBDLR) systems
using transfer learning, and their results showed that it outperformed a similar CBDLR sys-
tems using standard distances [75]. There are also some more studies that have devised AI
systems or architectures trained or tested in ISIC datasets and that have gained outstanding
performances; we summarize them in detail in Table 2 [23,68,76–80,115,116].

Lately, the ISIC-2021 datasets have just been released. Except for the ISIC 18, ISIC
2019 and ISIC 2020 melanoma datasets, it also contains extra seven datasets with a total of
approximately 30,000 images, such as Fitzpatric 17k, PAD-UFS-20, Derma7pt and Dermofit
Image. This greatly increases the richness and diversity of the ISIC-2021 archive and
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correlates the patient’s skin lesion condition with the other disorders of the body, which
will provide the basis for the future training of AI algorithms with a more comprehensive
and higher diagnostic accuracy. We are also looking forward to the publication of high-
quality papers based on this archive [117].

4.1.2. Multi-Classification for Skin Lesions in Specific Dermatosis

In addition to the eight major categories of skin diseases defined in the ISIC challenge,
in many specific skin diseases, a differential diagnosis for multiple subtypes is also an
urgent issue to be solved. For example, in melanoma, while the common melanoma
subtypes superficial spreading melanoma (SSM) and lentigo maligna melanoma (LMM)
are relatively easy to diagnose, the morphological features of melanomas on other specific
anatomical sites (e.g., mucosa, limb skin and nail units) are often overlooked [81]. On top on
that, some benign nevus of melanocytic origin can also be easily confused with malignant
melanoma in morphology [118]. Among the common pigmentation disorders, many are
caused by abnormalities in melanin in the skin. Although they are similar in appearance,
they are diseases with different pathological structures and treatment strategies. Diagnostic
models based on AI algorithms can improve the diagnostic accuracy and specificity of
these diseases so as to benefit dermatologists by reducing the time and financial cost of
the diagnosis [119].

Melanocytic Skin Lesions

Since Binder’s team applied an ANN to discriminate between benign naevi and
malignant melanoma in 1994, increasing numbers of AI algorithms are employed for
the multi-classification of melanocytic skin lesions [82]. Moleanalyzer pro is a proven
commercial CNN system for the classification of melanogenic lesions. Winkler and his
team used the system, which was trained with more than 150,000 images, to investigate
its diagnostic performance across different melanoma localizations and subtypes in six
benign/malignant dermoscopic image sets. The CNN showed a high-level performance in
most sets, except for the melanoma in mucosal and subungual sites, suggesting that the
CNN may partly offset the impact of a reduced human accuracy [81]. In two studies by
HA Haenssle et al., in 2018 and 2020, CNNs were also used in comparison with specialist
dermatologists to detect melanocytic/non-melanocytic skin cancers and benign lesions. In
2018, the CNN trained with Google’s Inception v4 CNN architecture was compared with
58 physicians. The results showed that most dermatologists outperformed the CNN, but
the CNN ROC curves revealed a higher specificity and doctors may benefit from assistance
by a CNN’s image classification [55]. In 2020, Moleanalyzer pro was compared with 96
dermatologists. Even though dermatologists accomplish better results when they have
richer clinical and textual case information, the overall results show that the CNN and most
dermatologists perform at the same level in less artificial conditions and a wider range
of diagnoses [56]. Sies et al., utilize the Moleanalyzer pro and Moleanalyzer daynamole
systems for the classification of melanoma, melanocytic nervus and other dermatomas. The
results showed that the two market-approved CAD systems offer a significantly superior
diagnostic performance compared to conventional image analyzers without AI algorithms
(CIA) [83].

Benign Pigmented Skin Lesions

Based on a wealth of experience and successful clinical practice, scholars have gradu-
ally tried to apply AI to differentiate a variety of pigmented skin diseases with promising
results. Lin’s team pioneered the use of deep learning to diagnose common benign pig-
mented disorders. They developed two CNN models (DenseNet-96 and ResNet-152) to
identify six facial pigmented dermatoses (the nevus of Ota, acquired nevus of Ota, chloasma,
freckles, seborrheic keratosis and cafe-au-lait spots).Then, they introduced ResNet.99 to
build a fusion network, and evaluated the performance of the two CNN with fusion net-
works separately. The results showed that the fusion network performance was the best
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and could reach a level comparable to that of dermatologists [84]. In 2019, Tschandl et al.,
conducted the world largest comparison study between the machine-learning algorithm
and 511 dermatologists for the diagnosis accuracy of pigmented skin lesion classification.
The algorithm was, on average, 2.01% more correct in its diagnosis compared to all human
readers. The result disclosed that machine-learning classifiers outperform dermatologist
in the diagnosis of skin pigmented lesions and should be more widely used in clinical
practice [120]. In the latest study, Lyakhov et al., established a multimodal neural net-
work for the hair removal preliminary process and differentiation of the 10 most common
pigmented lesions (7 benign and 3 malignant). They found that fusing metadata from
various sources could provide additional information, thereby improving the efficiency
of the neural network analysis and classification system, as well as the accuracy of the
diagnosis. Experimental results showed that the fusion of metadata led to an increase in
recognition accuracy of 4.93–6.28%, with a maximum diagnosis rate of 83.56%. The study
demonstrated that the fusion of patient statistics and visual data makes it possible to find
extra connections between dermatoscopic images and medical diagnoses, significantly
improving the accuracy of neural network classification [85].

Inflammatory Dermatoses

Inflammatory dermatoses are a group of diseases caused by the destruction of skin
tissue as a result of immune system disorders, including eczema, atopic dermatitis, psoria-
sis, chronic urticarial and pemphigus. Newly recorded histological findings and neoteric
applications of immunohistochemistry have also refined the diagnosis of inflammatory
skin diseases [121]. AI CAD systems are able to optimize the workflow of highly routinely
diagnosed inflammatory dermatoses. A multi-model, multi-level system using an ANN
architecture was designed for eczema detection. This system is conceived as an architecture
with different models matching input features, and the output of these models are inte-
grated through a multi-level decision layer to calculate the probability of eczema, resulting
in a system with a higher confidence level than a single-level system [86]. From 2017
onwards, neural networks have been shown to be useful for diagnosing acne vulgaris [90].
The latest publications on the use of computer-aided systems in acne vulgaris are based
on a wealth of data from cell phone photographs of affected patients, which enable the
development of AI-based algorithms to determine the severity of facial acne and to identify
different types of acne lesions or post-inflammatory hyperpigmentation [91]. Scientists in
South Korea trained various image analysis algorithms to recognize images of fungal nails.
For this purpose, they used datasets of almost 50,000 nail images and 4 validation datasets
of a total of 1358 images. A comparison of the respective diagnostic accuracy (measured
in this study by the Youden index) of differently trained assessors and the AI algorithm
showed the highest diagnostic accuracy in the computer-based image analysis and was
significant superior to dermatologists (p = 0.01) [87].

4.2. AI in Aid-Diagnosis and Binary-Classification for Specific Dermatosis
4.2.1. Skin Cancer

The incidence of skin cancer has been increasing yearly [58,122]. Although its mortality
rate is relatively low [123], it remains a heavy economic burden on health services and can
cause severe mental problems, especially as most skin cancers occur in highly visible areas
of the body [124]. Due to the low screening awareness, a lack of specific lesion features in
early skin cancer and insufficient adequate clinical expertise and services, most patients
were only diagnosed at an advanced stage, thus leading to a poor prognosis [124,125], so
there is an urgent need for AI systems to help clinicians in this field.

Melanoma

Melanoma is the deadliest type of skin cancer. The early screening and early diagnosis
of melanoma is essential to improve patient survival [126]. Currently, dermatologists
diagnose melanoma mainly by applying the ABCD principle based on the morphological
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characteristics of melanoma lesions [127]. However, even for experienced dermatologists,
this manual examination is non-trivial, time consuming and can be easily confused with
other benign skin lesions [128]. Thus, most AI-driven skin cancer research has focused on
the classification of melanocytic lesions to aid melanoma screening. In 2004, Blum et al.,
pioneered the use of computer algorithms for the diagnosis of cutaneous melanoma and
proved that a diagnostic algorithm for the digital image analysis of melanocytic diseases
could achieve a similar accuracy to expert dermatoscopy [88]. In 2017, Esteva et al., trained
a GoogleNet-Inception-v3-based CNN with the training dataset, including 129,450 clinical
images of 2032 different diseases from 18 sites. The performance of the CNN was compared
with 21 dermatologists in two critical binary classifications (the most common cancer and
the deadliest skin cancer) of biopsy-confirmed clinical images. The CNN’s performance
on both tasks was competent, and comparable to that of dermatologists, demonstrating its
ability to classify skin cancer [66]. The ISIC Melanoma Project has also created a publicly
accessible archive of images of skin lesions for education and research. Marchetti et al.,
summarized the results of a melanoma classification for ISIC challenge in 2016, which
involved 25 competing teams. They compared the algorithm’s diagnosis with those of eight
experienced dermatologists. The outcomes showed that automated algorithms significantly
outperformed the dermatologists in diagnosing melanoma [89]. Subsequently, they made a
comparison of the computer algorithms’ performance of 32 teams in the ISIC 2017 challenge
with 17 human readers. The results also demonstrated that deep neural networks could
classify skin images of melanoma and its benign simulants with a high precision and have
the potential to boost the performance of human readers [22]. Filho and Tangs’ team have
utilized the ISIC 2016, 2017 challenge and PH2 datasets to develop the algorithm for the
classification and segmentation of the melanoma area automatically. Their test outcomes
indicated that these algorithms could dramatically improve the doctors’ efficiency in
diagnosing melanoma [51,129]. In MacLellan’s study, three AI-aid diagnosis systems were
compared with dermatologists using 209 lesions in 184 patients. The statistics showed
that the Moleanalyzer pro had a relative high sensitivity and the highest specificity (88.1%,
78.8%), whereas local dermatologists had the highest sensitivity but a low specificity (96.6%,
32.2%) [130]. Consistently, Moleanalyzer pro also showed its reliability in the differentiation
of combined naevi and melanomas [131]. It is also possible for dermatologists to build a
whole-body map using a 3D imaging AI system; its application is of particular relevance
in the context of skin cancer diagnostics. The 360◦ scanner uses whole-body images to
create a “map” of pigmented skin lesions. Using a dermatoscope, atypical and altered
nevi can also be examined microscopically and stored digitally. With the help of intelligent
software, emerging lesions or lesions that change over time are automatically marked
during follow-up checks—an important feature for recognizing a malignancy and initiating
therapeutic measures [132]. In addition, in the long term, high-risk melanoma populations
will benefit from a clinical management approach that combines an AI-based 3D total-body
photography monitor with sequential digital dermoscopy imaging and teledermatologist
evaluation [133,134].

Non-Melanoma Skin Cancer

AI is also widely used to differentiate between malignant and benign skin lesions,
along with the detection of non-melanoma skin cancer (NMSC). Rofman et al., proposed a
multi-parameter ANN system based on personal health management data that can be used
to forecast and analyze the risk of NMSC. The system was trained and validated by 2056
NMSC and 460,574 non-cancer cases from the 1997–2015 NHIS adult survey data, and was
then further tested by 28058 individuals from the 2016 NHIS survey data. The ANN system
is available for the risk assessment of non-melanoma skin cancer with a high sensitivity
(88.5%). It can classify patients into high, medium and low cancer risk categories to provide
clinical decision support and personalized cancer risk management. The study’s model is
therefore a prediction, where clinicians can obtain information and the patient risk status
to detect and prevent non-melanoma skin cancer at an early stage [94]. Alzubaidi et al.,
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propose a novel approach to overcome the lack of enough input-labeled raw skin lesion
images by retraining a deep learning model based on large unlabeled medical images on
a small number of labeled medical images through transfer learning. The model has an
F1-score value of 98.53% in distinguishing skin cancer from normal skin [95].

Neurofibroma

Neurofibromatosis (NF) is a group of three conditions in which tumors grow in the
nervous system, and are NF1, NF2 and schwannomatosis [135]. NF1 is the most common
neurofibroma and cancer susceptibility disease. Most patients with NF1 have a normal life
expectancy, but 10% of them develop malignant peripheral nerve sheath tumors (MPNST),
which is a major cause of morbidity [136]. Therefore, the timely differentiation of benign
and malignant lesions has direct significance for improving the survival rate of patients. Wei
et al., successfully established a Keras-based machine-learning model that can discriminate
between NF1-related benign and malignant craniofacial lesions with a very high accuracy
(96.99 and 100%) in validation cohorts 1 and 2 and a 51.27% accuracy in various other
body regions [137]. Plexiform neurofibroma (PN) is a prototypical and most common
NF1 tumor. Ho et al., created a DNN algorithm to conduct a semi-automated volume
segmentation of PNs based on multiple b-value diffusion-weighted MRI. They evaluated
the accuracy of semi-automated tumor volume maps constructed by a DNN compared to
manual segmentation and revealed that the volumes generated by the DNN from multiple
diffusion data on PNs have a good correlation with manual volumes, and that there is a
significance between PN and normal tissue [97]. Interestingly, Bashat and his colleagues
also demonstrated that a quantitative image representation method based on machine
learning may assist in the classification between benign PNs and MPNST in NF1 [102]. In
a similar initiative, Duarte et al., used grey matter density maps obtained from magnetic
resonance (MR) brain structure scans to create a multivariate pattern analysis algorithm
to differentiate between NF1 patients and healthy controls. A total of 83% of participants
were correctly classified, with 82% sensitivity and 84% specificity, demonstrating that
multivariate techniques are a useful and powerful tool [103].

4.2.2. Application of AI for Inflammatory Dermatosis

Psoriasis

The prevalence of psoriasis is 0% to 2.1% in children and 0.91% to 8.5% in adults [138].
The psoriasis area and severity index (PASI), body surface area (BSA) and physician global
assessment (PGA) are the three most commonly used indicators to evaluate psoriasis
severity [139,140]. However, both PASI and BSA have been repeatedly questioned for their
objectivity and reliability [141]. It would therefore be of great help to use AI algorithms
to make a standardized and objective assessment. Nowadays, machine-learning-based
algorithms are available to determine BSA scores. Although this algorithm had slight
limitations in detecting flaking as diseased skin, it has reached an expert level in BSA
assessment [104]. At present, there are already computer-assisted programs for PASI
evaluation, which, however, still require human assistance and function by recognizing
predefined threshold values for certain characteristics [98]. Another study by Fink’s team
is also based on image analysis with the FotoFinderTM. The accuracy and reproducibility
of PASI has been impressively improved with the help of semi-automatic computer-aided
algorithms [99]. These technological advances in BSA and PASI measurements are expected
to greatly reduce the workload of doctors while ensuring a high degree of repeatability
and standardization. In addition to the three above indicators, Anabik Pal et al., used
erythema, scaling and induration to build a DNN to determine the severity of psoriatic
plagues. The algorithm is given a psoriasis image and then makes a prediction about the
severity of the three parameters. This task is seen as a new multi-task learning (MTL)
problem formed by three interdependent subtasks in addition to three different single task
learning (STL) problems, so the DNN is trained accordingly. The training dataset consists
of 707 photographs and the training results show that the deep CNN-based MTL approach
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performs well when grading the disease parameters alone, but slightly less well when all
three parameters are correctly graded at the same time [142].

AI can also assist in evaluating and diagnosing psoriasis. Munro’s microabscesses
(MM) is a sign of psoriasis. Anabik Pak et al., presented a computational framework
(MICaps) to detect neutrophils in the epidermal stratum corneum of the skin from biopsy
images (a component of MM detection in skin biopsies). Using MICaps, the diagnosis
performance was increased by 3.27% and model parameters were reduced by 50% [143].
A CNN algorithm that differentiated among nine diagnoses based on photos made fewer
misdiagnoses and had a lower omission diagnostic rate of psoriasis compared to 25 derma-
tologists [92]. In addition, Emma et al., used machine learning to find out which psoriasis
patient characteristics are associated with long-term responses to biologics [144]. Thanks to
AI, an amelioration in diagnosis and treatment can be inferred in psoriasis patients.

Eczema

The challenge in the computer-aided image diagnosis of eczematous diseases is to
correctly differentiate not only between disease and health, but also between different forms
of eczema. The eczema stage and affected area are the most essential factors in effectively
assessing the dynamics of the disease. It is not trivial to accurately identify the eczema
area and other inflammatory dermatoses on the basis of photographic documentation.
The macroscopic forms of eczema are diverse, with different stages and varying degrees
of distribution and severity [145]. The prerequisite for training algorithms for the AI-
supported image analysis of all of these various assessment parameters is therefore a
correspondingly large initial quantity of image files that have been optimized and adjusted
in terms of the recording technology. Forms of eczema with disseminated eruption, such
as the corresponding manifestation patterns of atopic dermatitis, would also be linked to
the availability of automated digital, serial whole-body photography for an efficient and
time-saving AI-supported calculation of an area score. Han et al., trained a deep neural-
network-based algorithm. The algorithm is able to differentiate between eczema and other
infectious skin diseases and to classify very rare skin lesions, which has direct clinical
significance, and to serve as augmented intelligence to empower medical professionals in
diagnostic dermatology. They even showed that treatment recommendations (e.g., topical
steroids versus antiseptics) could also be learned by differentiating between inflammatory
and infectious causes. It remains to be seen and questioned, however, whether an AI-aided
severity assessment and a clinically practicable area score can be derived from this as a
prerequisite for a valid follow-up in the case of eczema [93]. Schnuerle et al., designed a
support-vector-machine-based image processing method for hand eczema segmentation
with industry swiss4ward for operational use at the University Hospital Zurich. This
system uses the F1-score as the primary measurement and is superior to a few advanced
methods that were tested on their gold standard dataset likewise [100]. Presumably, a
combination of such an AI-aided image analysis and molecular diagnostics can optimize
the future differential diagnostic classification of eczema diseases, as recently predicted for
various clinical manifestations of hand dermatitis [146].

Atopic Dermatitis

Atopic dermatitis (AD) is the most common chronic inflammatory disease, with a
prevalence of 10% to 20% in developed countries [147]. It usually starts in childhood and
recurs multiple times in adulthood, greatly affecting patients’ quality of life [148]. In 2017,
Gustofson’s team identified patients with AD via a machine-learning-based phenotype
algorithm. The algorithm combined code information with the collection of electronic
health records to achieve a high positive predictive value and sensitivity. These results
demonstrate the utility of natural language processing and machine learning in EHR-
based phenotyping [105]. An ANN algorithm was developed to assess the influence of air
contaminants and weather variation on AD patients; their results proved that the severity
of AD symptoms was positively correlated with outdoor temperatures, RH, precipitation,
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NO2, O3 and PM10 [149]. In the latest study, a fully automatic approach based on CNN
was proposed to analysis multiphoton tomography (MPT) data. The proposed algorithm
correctly diagnosed AD in 97.0 ± 0.2% of all images presenting living cells, with a sensitivity
of 0.966 ± 0.003 and specificity of 0.977 ± 0.003, indicating that MPT imaging can be
combined with AI to successfully diagnose AD [96].

Acne

The assessment of AI has been very effective. Melina et al., showed an excellent
correlation between the automatic and manual evaluation of the investigator’s global
assessment with r = 0.958 [150]. In the case of acne vulgaris in particular, such a procedure
could prevent far-reaching consequences with permanent skin damage in the form of scars.

Vitiligo

The depigmented macules of vitiligo are usually in high contrast to unaffected skin.
Vitiligo is more easily recognized by AI systems than features of eczema or psoriasis
lesions with poorly defined borders. Computer-based algorithms used for the detection
of vitiligo with an F1 score of 0.8462 demonstrated an impressive superiority to pustular
psoriasis [151]. Luo designed a vitiligo AI diagnosis system employing cycle-consistent
adversarial networks (cycle GANs) to generate images in Wood’s lamp and improved the
image resolution via an attention-aware dense net with residual deconvolution (ADRD).
The system achieved a 9.32% improvement in classification performance accuracy compared
to direct classification of the original images using Resnet50 [106]. Makena’s team built a
CNN that performs vitiligo skin lesion segmentation quickly and robustly. The network
was trained on 308 images with various lesion sizes, intricacies and anatomical locations.
The modified network outperformed the state-of-the-art U-Net with a much higher Jaccard
index score (73.6% versus 36.7%) and shorter segmentation time than the previously
proposed semi-autonomous watershed approach [107]. These novel systems have proved
promising for clinical applications by greatly saving the testing time and improving the
diagnostic accuracy.

Fungal Dermatosis

Gao et al., invented an automated microscope for fungal detection in dermatology
based on deep learning. The system is as proficient as a dermatologist in detecting skin
and nail specimens, with sensitivities of 99.5% and 95.2% and specificities of 91.4% and
100%, respectively [101].

4.3. Application of AI for Aesthetic Dermatology

AI combined with new optical technologies is also increasingly being applied in
aesthetics dermatology. Examples include face recognition, automatic beautification in
smartphones and related software. So-called smart mirror analyzers are now available
on the Internet, which are AI-assisted technologies with image recognition systems that
analyze the skin based on its appearance and current external environment and recommend
skin care products accordingly [152]. The program ArcSoft Protrait can automatically
identify the wrinkles, moles, acne and cicatrice and intelligently soften, moisturize and
smooth the skin while retaining a maximum skin texture and detail, greatly simplifying the
cumbersome and time-consuming portrait process [61,64,153]. AI also plays an essential
role in facial aesthetics assessing. For this purpose, ANNs are trained using face image
material that people judge independently according to aesthetic criteria based on various
criteria. The ANN learns from photos and their respective attractiveness ratings to make
human-like judgments about the aesthetics of the face [65]. New applications objectively
evaluate each photo on the basis of over 80 facial coordinates and nearly 7000 associated
distances and angles [108] (Table 4).
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4.4. Applications of AI for Skin Surgery

Radical resection and amputation are the best means of preventing recurrence and
fatal metastasis for malignant dermatoma [154]. A skin or flap graft via microsurgery and
the application of prosthesis play a crucial role in improving the quality of life of patients
after resection [155,156]. Adequate microvascular anastomosis is the key to a successful
microvascular-free tissue transfer. As a basic requirement in this regard, the surgeon must
have excellent microsurgery skills. Thanks to the support of a series of auxiliary equipment
such as microscopes, magnifications of up to 10 to 15 times are possible and allow for the
anastomosis of small vessels. Nevertheless, due to physiological tremor, only vessels of
up to approximately 0.5–1 mm in size can be safely anastomosed, especially in lymphatic
surgery or perforator-based flaps, where the vascular caliber may even be smaller, which is
why surgeons reach their limits here [157]. In this background, the expansion of surgical
microscopes to include robotics and AI capabilities represents a promising and innovative
approach for surpassing the capabilities of the human hand. The aim is to use robots
equipped with AI to eliminate human tremor and to enable motion scaling for an increased
precision and dexterity in the smallest of spaces [158]. By downscaling human movements,
finer vessels can be attached. In the future, advances could be achieved in the field of ultra-
microsurgery and anastomoses in the range of 0.1–0.8 mm on the smallest vessels or nerve
fascicles. In the long term, intelligent robotics could also automate technically demanding
tasks, such as microsurgical anastomosis performed by robots, or the implementation of a
real-time feedback system for the surgeon.

Prosthetics have also evolved with the implementation of AI. After amputation injuries,
prostheses can now restore not only the shape but also essential functions of the amputated
extremity; in this way, they make a significant contribution to the reintegration of the patient
into society. The mental control of the extremity remains in the brain even after amputation.
When movement patterns are imagined, despite the lack of end organs to perform them,
neurons will still transmit corresponding nerve signals [159]. Prostheses can now receive
the electrical potential via up to eight electrodes and assign them to the respective functions
via pattern recognition and innovative technological methods equipped with AI, and can
ensure that patients better use the prosthesis in their daily lives [160,161]. This enables the
patient to directly control different grip shapes and movements, which means that gripping
movements can be realized much faster and more naturally in terms of movement behavior.

The application of AI-based surgical robots in skin surgery is now also becoming
widespread. Compared to traditional open surgery, robotic-assisted surgery offers 3D
vision systems and flexible operating instruments, with potentially fewer postoperative
complications as a result. In 2010, Sohn et al., first applied this technique to treat two pelvic
metastatic melanoma patients [162]. In 2017, Kim successfully treated one case of vaginal
malignant melanoma using robotic-assisted anterior pelvic organ resection with ileoccys-
tostomy [15]. One year later, Hyde successfully treated four cases of malignant melanoma
using robotic-assisted inguinal lymph node dissection [163]. Miura et al., found that robotic
assistance provided a safe, effective and minimally invasive method of removing a pelvic
lymph from patients with peritoneal metastases melanoma, with shorter hospital stays
compared to normal open surgery [164]. Medical robots are also involved in the field of
hair transplantation. In 2011, the ARTAS system was officially approved by the US-FDA for
male hair transplantation, providing clear and detailed characteristics of the donor area by
capturing microscopically magnified images and computer-aided parameters to facilitate
the acquisition of complete follicular units from the donor area [16]. The system reduces
labor consumption and eliminates human fatigue and potential errors, and the procedure
time is significantly reduced [165].

5. Computer-Aided Dermatology AI Systems on Market

With the rapid development of AI over the past decade, a number of ‘skin’ medical
systems and instruments with multiple applications have been commercialized. These sys-
tems and instruments have ample image datasets to assist in skin examination, monitoring
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the skin condition, clinical follow-up and providing treatment advice or guidance. Here,
we briefly summarize the most widely used dermatology AI systems and smartphone apps
of the last 15 years (Table 5).

As a state-of-the-art full-body scanning imaging and intelligent identification system,
the Vectra WBS360 allows the entire skin surface to be acquired with a macroscopic quality
resolution through a single capture. Clinicians can map and survey pigmented lesions and
distributed dermatoses with integrated software. Other applications include documenting
pigmented lesions, psoriasis and vitiligo with the help of 3D imaging systems that allow
for detailed documentation and organization of pre- and post-operative image records.
Its companion dermoscope VEOS DS3 combines optics and illumination with wireless
capture. The AI-based DermaGraphix imaging software also helps in assessing the risk
of the lesion’s malignancy: it allows physicians to label and monitor lesions and process
images in a protected and implementable image management system [132–134].

Another AI skin system from Canfield, VISIA has been in the market for over 15 years
and has evolved into its seventh generation. The system uses cross-polarization and UV
illumination to record and measure surface and sub-surface skin conditions. Canfield’s
RBX® technology isolates the distinctive color characteristics that lead to the red and brown
skin components of color concentration, such as spider veins and hyperpigmentation.
Its new AI wrinkle algorithm dramatically increases the detection and precision of fine
lines and wrinkles. It can also simulate the effect of each region after injecting different
volumes, and can simulate how patients might appear from the ages of 18–80. It provides a
finer visualization of sub-surface melanin and vascularity conditions for all skin types and
ethnicities. In addition, it allows for the grading of patients’ skin using the world’s largest
database of skin characteristics, and measures blemishes, wrinkles, texture, pores, UV spots,
red areas and porphyrins [166,167]. A study assessing the clinical value of VISIA suggests
that 86% of respondents agreed that VISIA analysis had improved their understanding of
and attention toward their skin health. They would all recommend VISIA analysis to other
people and 62% of them preferred a clinical practice with a VISIA system [168].

An AI system specifically designed to identify skin cancer, FotoFinder, debuted in
1991. It performs skin cancer diagnosis through automated whole-body mapping and
digital dermoscopy, as well as psoriasis documentation and aesthetic imaging. In addition,
FotoFinder systems are used in daily practice and related studies. Its AI-based software
Moleanalyzer pro, working with deep learning algorithms, allows for a risk-of-malignancy
evaluation. It is a market-approved CNN and currently has the largest dataset of dermo-
scopic images, including their associated diagnosis. The CNN has already been involved in
several comparative studies in skin lesions diagnosis, and its reliability and feasibility have
been recognized [55,56,81,83,130,131]. Dermascan is also a medical imaging system focus-
ing on monitoring and differential diagnostics in skin cancer. It uses polarization to capture
the skin surface and automatically analyzes traces of hyperpigmentation. All patient and
localization-related images are saved in a database and linked to the video–dermoscopy sys-
tem. By using digital photo documentation, the system can identify emerging pigmentation
marks and diagnose changes in existing lesions [169].

Miravex’s Antera 3D imaging system is a device and software complex with pow-
erful and versatile data handling and consultation tools for the analysis and qualitative
measurement of wrinkles, texture, pigmentation, redness and other various dermatologic
conditions. Antera 3D uses an AI algorithm to reconstruct full 3D images of the skin surface
and is particularly suitable for the analysis of topographical features such as wrinkles, skin
texture, pores and volume. For morphological analysis (wrinkles, texture, volumes, etc.),
tests on artificial skin samples under controlled conditions have established an instrumental
error of less than 2%, demonstrating the high level of measurement reproducibility offered
by the Antera 3D camera [170–172].

Following the commercially available artificial intelligence skin system, AIDERMA
was born as the first AI-assisted comprehensive platform for the diagnosis and treatment
of skin diseases. With leading AI image recognition technology as its core, AIDERMA
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provides doctors with integrated support for assisting diagnosis, case management, pro-
fessional education and patient management, helping doctors to improve their diagnosis
and treatment efficiency in all aspects and escorting them in their clinical work. AIDERMA
can intelligently identify skin lesion photos and give the names of skin diseases directly. In
the competition with the FotoFinder system in 2018, its diagnosis accuracy rate reached
80%. Smart skin is now open to Chinese certified physicians and can identify 90 types of
diseases with an average accuracy rate of 86%. The product has been clinically tested in
more than 3400 hospitals since its launch, helping doctors complete nearly 80,000 auxiliary
diagnoses and supporting them to access over three million clinical contents [173,174].

Out of complex and large AI systems and platforms, some light-weight AI-based
dermatology diagnostic apps for smart phones have also recently emerged. Dermacompass
by swiss4ward is a learning tool for dermatologists. It contains skin disease images along
with treatment algorithms and also provides an individual case diagnosis and image
comparison. This app uses automatic image analysis to grade the medical severity of
hand eczema and detects hand eczema through computer vision and machine learning.
DermoScanner is an application leveraging the power of AI and deep learning and allows
users to analyze skin moles and detect skin cancers via a mobile camera [61,153,175].

Table 5. On market aid-dermatology AI system and apps.

Name Manufacturer Country On Market Year Platform Application Reference

Moleanalyzer pro Fotofinder Germany 2018 Windows
Analyzes melanocytic as well as
non-melanocytic skin lesions and calculates
an AI score for mole risk assessment

[97,137]

Vectra WBS 360 Canfiield USA 2017 Windows

Capturing the entire skin surface in macro
quality resolution with a single capture, to
identify and monitors pigment lesions
automatically or mannually

[102,103,138]

Visia skin Canfiield USA 2007 Windows

Capturing key visual information for eight
areas affecting complexion health and
appearance and to provide an informative
comparison of patient’s complexion’s
characteristics to others of same age and skin
type

[173–175]

Antera 3D Miravex Ireland 2011 Windows
Analysis and measurement of wrinkles,
texture, pigmentation, redness and other
lesions

[176]

Dermoscan X2 Dermoscan Germany 2017 Windows

Identification of the new or modified lesions
with digital photo documentations and
makes automatic comparison of
pigmentation marks

[177]

AIDERMA Dingxiangyuan China 2018 Online
Automatic identification of skin disorders
and stores patient’s medical record in the
cloud safely

[178,179]

DermEngine MetaOptima Technology
Inc. Canada 2015 Android and iOS

Imaging, documentation and analysis of
skin conditions including skin cancer; offers
business intelligence features designed for
practice management

[71]

Skin-App Swiss4ward Switzerland 2017 Android and iOS Detection of hand eczema automatically [71]

Neurodermitis
Helferin|Nia Nia Health Germany 2019 Android and iOS

Marks affected areas on the clear body
diagram, takes photos and documents of the
current severity of the neurodermatitis and
gives personalized suggestions after further
analysis

[157]

DermoScanner Neat Technology lnc. N/A 2019 Android
Analysis of skin moles and detects skin
cancers at an early stage when it is most
treatable.

[159]

Dermacompass Swiss4ward Switzerland 2017 Android and iOS

It contains skin diseases, pictures and
algorithms for treatment and provides
individual case diagnosis and image
comparison for dermatologists

[180]

6. Attitudes of Different Groups of People towards AI in Dermatology

In recent years, the application of AI in medical image recognition and dermatology
has become increasingly intensive and broader. AI has also gradually become a hot topic of
discussion in dermatology and dermatopathology. The current health care society and legal
framework are more suitable for using AI as a decision aid for dermatologists, especially
in terms of assisting the diagnosis (Figure 5). On account of the rapid development of AI
and its already widespread use by patients and doctors, several international and regional
survey studies were conducted. From January to June 2019, 1271 people from 92 countries
were surveyed via an online questionnaire. Respondents identified dermoscopic images
as the mightiest potential application of AI in dermatology. A total of 77.3% approved or
strongly approved that AI would strengthen dermatology and 79.8% used AI as a part
of medical training. In comparison, only 5.5% (70 of 1271) agreed or strongly agreed that
dermatologists will be replaced by AI in the foreseeable future [176]. Following an interna-
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tional survey of dermatopathologists from the same research team, responses were received
from 718 people, which included 91 countries. In general, 72.3% of respondents agreed or
strongly agreed that AI will improve dermatopathology and 84.1% thought that AI should
be part of medical training. Only 6.0% of the responders agreed that the human pathologist
will be replaced by AI in the future. Concerning diagnosis classification, the automated
detection of mitosis had the highest potential (79.2%) and 42.6% felt that automated recom-
mendations for skin tumor diagnosis had strong or very strong potential [181]. Compared
to doctors, most patients know less about AI. A qualitative study using semi-structured
interview analysis and recruiting 48 patients was conducted from May to July 2019. A total
of 60% participants cited an improved diagnostic speed and access to healthcare as the
most common advantages of AI for skin cancer monitoring. An increased patient anxiety
was the most common risk (40%). Patients identified more precise diagnoses (33 [69%])
and less precise diagnoses (41 [85%]) as the greatest advantages and disadvantages of AI,
respectively. A total of 36 patients (75%) would recommend AI to family and friends [182].

Figure 5. The schematic diagram shows the hypothetical use of machine learning algorithms to
help dermatologists diagnose lesions to make appropriate clinical decisions. An emerging AI model
CNN can help non-expert clinicians narrow the range of differential diagnosis and provide appropri-
ate treatments.

In summary, both dermatologists and pathologists are generally optimistic about the
impact and potential benefit of AI in dermatology. However, only a minority had either
good or excellent knowledge of AI. Most dermatologists believe that it will improve our
diagnostic capabilities and most pathologists deemed that the greatest potential of AI is
expected for narrowly specified tasks rather than global automated diagnostic recommen-
dations. A minority of dermatologists and pathologists are concerned about being replaced
by AI in the foreseeable future. Patients appear willing to use AI for skin cancer monitoring
if applied in a way that maintains the integrity of the human doctor–patient relationship.

7. Current Limitations of the Application of AI in the Field of Dermatology

At present, there are several major challenges toward the application of AI in the
medical field: (1) a small sample size and inadequate quality manual annotation. The
current training datasets for AI algorithms is insufficient and there is also a lack of plentiful
experienced doctors involved in the identification and labelling of samples. This deficiency
directly leads to the accuracy and practicability of AI algorithms not meeting the needs
of daily clinical applications [177]; (2) the disjunction between AI algorithms and actual
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medical requirements and application scenarios. Due to the lack of sufficient high-quality
training sets, AI algorithms and applications are generally only developed based on existing
samples. Unlike human doctors, AI cannot be upgraded and updated with the vast
experience gained over time. As a result, they are unable to meet the growing clinical and
scientific demands of reality. Certain specific locations, such as hairy scalp and mucous
membranes and rare skin conditions, currently remain a limitation for AI recognition. The
accuracy of ANNs is currently also restricted by image artifacts, such as colored markings
on the skin, including tattoos [178]. (3) The variety of diseases in dermatology and the
lack of uniform criteria for identification and diagnosis make it difficult to teach AI how to
identify and diagnose multiple skin diseases [179]. Currently, AI is more commonly used to
distinguish between normal and abnormal. A bottleneck still exists for the use of AI for the
automatic recognition and diagnosis of multiform dermatopathological images [180,183].
In addition, there are rare diseases in dermatology, where the number of cases is very small
and the amount of specimens is not sufficient to provide the necessary training for the
machine learning, which is also a major challenge for AI in dermatology [184].

8. Future Trends of Artificial Intelligence in Medical Field and Dermatology

Al models, computing power and big data are the three cornerstones for the devel-
opment of AI technology [185]. The deep learning algorithm, represented by the ANN,
has become the core engine of AI application. In the dermatological sector, as we have
summarized above, AI can provide better patient care as well as diagnosis and medical
imaging interpretation; its technology can screen for various diseases more accurately and
effectively [21,22,29–39]. The application of AI and related technologies in public health is
evolving rapidly since the first computer-aided systems were still built up by humans in the
1990s [82]. In recent years, the use of AI-aided systems and deep learning processes with
ANNs has been further developed. In the era of big data, swarm intelligence, cross-media
intelligence, human–machine hybrids and enhanced augmented autonomous intelligence
systems are five new trends for the prospective evolution of AI [186,187].

As technology advances, AI is constantly expanding its subdivisions that can be applied,
and shows five trends for future development in the medical and dermatological field.

The first trend is the increasing support of AI diagnostic platforms for dermatologists.
AI imaging systems can reduce the physician workload, and many AI systems have
achieved an accuracy comparable to doctors in the diagnosis of pigments lesions. Many of
the studies above show that AI has an accuracy in well-defined tasks comparable to that of
human doctors, and a greater efficiency. In a wide range of tasks with dichotomous inputs
and outputs, AI typically has a higher sensitivity and specificity than dermatologists, and
can also identify more subtle lesion locations [66,188,189]. In the face of multi-classification
diagnoses that are more closely aligned with clinical scenarios, AI algorithms have also
proven their dermatologist-level accuracy [129,190].

The second trend is the emergence of a new generation of intelligent medical devices
and instruments. The development of AI is not limited to stand-alone software, but a large
amount of hardware has also undergone disruptive changes. In the comparative studies
mentioned above, systems such as FotoFinder, Canfield Vectra WBS360 and Antera 3D
have been applied in several hospitals and have proven their reliability. These devices offer
patients and doctors a more intuitive and diverse examination modality than traditional
devices, with significantly higher diagnostic rates [33–38,75–80,115–117].

The third trend is the emergence of transmedia intelligent medical equipment. The
“hand-eye system + doctor” is at the heart of the cross-media intelligent medical equipment.
Overlaying and integrating images of lesions seen by doctors with images of previously
examined lesions on the same platform allows doctors to more clearly compare changes in
disease progression during follow-up visits [191,192].

The fourth trend is the medical devices and services + 5G network. The 5G network
has three essential features. The first is broadband transmission, which facilitates the
high-resolution remote transmission of medical images. The second is massive access and a
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quasi-equal clock, facilitating the remote control and remote observation of medical devices.
The third is a high reliability, low-latency signal transmission. These three features have
great supporting significance for the combination of medical devices with 5G, thus enabling
the extensive and regular realization of telemedicine and promoting the formation of a new
generation of medical devices [193–197].

The fifth trend is the widespread implementation of an intelligent cloud healthcare
model based on the Internet of things (IoT). A new healthcare model has emerged supported
by the intelligent cloud platform. The technology model combines smart devices with cloud
platforms on the basis of IoT, which can not only be utilized by healthcare providers but
also by patients and their families, and can connect another ancillary agency to the cloud
platform for medical research, teaching and management. The models in healthcare are of
great use in monitoring the progression of chronic skin diseases, as well as preventing and
controlling them, and, through remote monitoring, hospitals and health-related institutions
can access patient data and can further analyze them [198–202].

The sixth trend is the popularization of AI consultation in dermatology. In addition to
intelligent recognition, AI can also perform consultations. There are already APPs and websites
for automatic diabetes consultation that can answer common questions from patients with a
single disease by giving a list of standardized questions and answers [203,204]. These initial
consultations and interactions by AI can replace a certain amount of the doctor’s work and
greatly improve the efficiency. For people in remote areas and those with limited access to
healthcare, AI consultations would provide medical suggestions and direct guidance, thereby
effectively delivering real-time help in an interactive format [205].

In conclusion, AI is unlikely to replace dermatologists at the moment, either on a
technical level or on an ethical and legal level. AI still lacks some basic human qualities,
such as compassion and human concern, which means that physicians should continue to
assume their role here as the future link to the patient. In the future, AI should be the right
hand of doctors, which can bring convenience to doctors and better services to patients.
Over-promoting or avoiding AI is the incorrect attitude. Only with a proper understanding
of AI can AI develop sustainably and bring help to dermatology.

9. The Challenge Posed to Humanity by the Development of AI

At present, there are several major challenges with the application of AI in the medical
field: (1) The challenge of AI to the human way of thinking. The human doctors’ mind
relies on common sense and, in many cases, personal preferences and emotions, whereas
AI relies on historical judgement data to make correct or incorrect assertions [206]. With
the introduction of deep learning, AI can highly mimic the way humans think and rely
on neural networks for unsupervised self-learning. This quality can enable machines to
learn far faster than humans and win several times against them [207]. As AI evolves,
human doctors have a risk of being highly dependent on AI-assisted diagnostic systems
and losing their enthusiasm for learning and self-improvement. (2) The threat to medical
practitioner positions. Although dermatologists will not be replaced by AI at the moment,
with the increasing amount of human knowledge and skills that are being acquired and
surpassed by AI, more practitioners, such as medical technicians and nursing staff, could
be replaced [208]. Whereas the first three industrial revolutions replaced human physical
labor with machines, artificial intelligence not only replaces human physical labor, but also
replaces a portion of mental labor [209]. This revolution has inevitably led to a dramatic
transformation of the labor market. How to avoid the impact of AI development on em-
ployment is a considerable challenge. (3) The greatest prerequisite for the broad application
of any AI is safety and security [210]. The greatest challenge is that humans lose control of
AI or the novel technology controlled by non-humanitarians. If artificial intelligence loses
control, the damage to humanity can be immeasurable. Artificial intelligence is built on
algorithms, neural networks and large amounts of data [42,211]. The development of the
internet and big data has made the security of artificial intelligence unpredictable. On the
one hand, AI benefits from the Internet’s big data development resource advantage; on the
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other hand, the Internet’s human factor of hackers and viruses can pose a huge threat to
AI [212]. Therefore, in the process of promoting AI-assisted diagnostic platforms and AI
surgical robots, humans need to keep an eye on the uncontrollable consequences that it
could potentially bring. (4) The new ethical and moral issues raised by AI are a common
challenge for all doctors [213,214]. On the one hand, artificial intelligence can be a great
facilitator for the treatment of dermatology. On the other hand, it can also have a huge
impact on the current diagnosis and treatment patterns of skin diseases and surgeries. It is
therefore of great concern to dermatologists and ethicists [215,216].

10. Prospects of the Application of AI in the Field of Dermatology

According to the summary above, we can see that AI for skin diseases represented
by image recognition and analysis has now developed to a very advanced level. However,
image recognition is only a part of clinical diagnosis and treatment, and medical service is
a personalized service combining science and human care [217]. With the modification and
refinement of AI technology and its closer integration with medical needs and scenarios, AI
is expected to take on a part of boring and repetitive tasks, as well as improve the work
efficiency of physicians, and is expected to alleviate the shortage of doctors [188,218]. AI can
improve the accuracy of diagnosis and treatment, promote the optimal allocation of high-
quality medical resources and push forward the efficient operation of a hierarchical medical
system so as to accelerate the formation of medical consortia. For patients, it can provide
large-scale quantitative analysis, promoting a more advanced stage of quantitative analysis in
medical diagnosis, and spawn new diagnostic methods and treatment plans [174,219,220].

Healthcare is one of the industries that is most vulnerable to the impact of AI [221,222].
Whereas dermatologists have innovative, aesthetic, social and consultative strengths in
healthcare, AI is unlikely to replace them both on a technical, ethical and legal level [208].
However, every day, dermatologists are also faced with a great deal of repetitive labor that
does not require complex thinking and can be mastered through training. In the future, AI
should be the right hand of doctors, which can bring convenience to doctors and better
services to patients. Over-promoting or avoiding AI is the incorrect attitude. Only with a
proper understanding of AI can AI develop sustainably and bring help to dermatology.

11. Conclusions and Perspective

This article demonstrates the enormous potential of AI-based diagnosis and assess-
ment in dermatology-related fields. Besides the already established discrimination between
nevus and melanoma, there are also many potential utilizations regarding diagnosing in-
flammatory dermatoses, evaluating skin beauty and assisting in dermatologic surgery. The
quality and informative value of research data could be increased by using AI to improve
their objectivity and reproducibility. AI can provide more detailed and precise suggestions
for beauty consultation and improve the accuracy and efficiency of skin lesion diagnosis,
as well as relieve doctors’ burden in daily work by taking over the drudgery. Although it
is foreseeable that AI will outperform humans in certain well- defined decision-making
areas, human interactions and human–AI symbiosis will remain indispensable in everyday
clinical practice. The aim of applying AI is not to replace the dermatologist, but to expand
their possibilities and approaches with a meaningful new tool. The use of AI in derma-
tology within the framework of human-AI symbiosis has proven to be crucial. While AI
cannot achieve a 100% correct diagnosis rate, combining machines with physicians reliably
enhances the system performance. It is conceivable that the AI-based procedures will be
part of the daily routine of dermatologists.
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