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Abstract: A large amount of recent literature has focused on impaired iron homeostasis in the patho-
physiology of schizophrenia. Specifically, microarray analysis has illustrated associations between the
transferrin locus and schizophrenia. To elaborate on the effects of transferrin on schizophrenia and its
psychiatric phenotypes, our study aimed to investigate whether transferrin gene polymorphism was
correlated with cognitive deficits and clinical symptoms in schizophrenia. We recruited 564 patients
with chronic schizophrenia and 422 healthy controls (HCs) in a Han Chinese population, collected
phenotypic data, and genotyped the rs3811655 polymorphism of the transferrin gene. Our results
showed that the rs3811655 polymorphism was related to cognitive performance in both patients and
HCs, as well as negative symptoms in patients (all p < 0.05), and patients carrying at least one G-allele
showed worsened cognition/severe negative symptoms (all p < 0.05). Further analyses also found
that the rs3811655 polymorphism in combination with cognition may exert small but significant
contributions to the negative (β = −0.10, t = −2.48, p < 0.05) or total psychiatric symptoms (β = −0.08,
t = −1.92, p < 0.05) in patients. Our findings indicated that the rs3811655 polymorphism may be
implicated in the cognitive deficits of schizophrenia and HCs as well as psychiatric symptoms in
patients, which suggested the possible iron regulatory mechanism in the pathology of schizophrenia.
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1. Introduction

Increasing evidence indicates that the dysregulation of iron homeostasis may be in-
volved in the pathophysiology and progression of schizophrenia [1]. Previous studies
have demonstrated that serum iron levels and brain iron concentrations in patients with
schizophrenia have changed [2–4]. In the brain, iron-mediated electron exchange may be in-
volved in a subset of neurobiological processes, such as oxygen transport, neurotransmitter
synthesis or metabolism, and the production of myelin [5,6]. The results of a cohort study
supported that maternal iron deficiency that was indicated by the reduction of hemoglobin
concentration significantly increased the likelihood of schizophrenia spectrum disorders
(SSDs) in offspring [7–9]. Animal models also demonstrated that severe or moderate iron
deficiency induces a risk of developing schizophrenia-like phenotypes [10,11]. For example,
in mice, maternal iron deficiency induces early motor abnormalities, prepulse inhibition
deficits, imbalances in bioactive amines such as serotonin and dopamine, reduction in hip-
pocampal volume, and impaired cognitive performance [12]. These clinical or experimental
kinds of literature have suggested that an imbalance of iron homeostasis may play a pivotal
role in the etiology of schizophrenia.
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Several studies have shown that impaired iron homeostasis may affect cognitive func-
tion in schizophrenia [13,14]. Previous studies have shown that perinatal iron-deficient
rats exhibit reduced open-field exploratory behavior and longer path lengths to reach
the platform in the Morris water maze test [15]. Pisansky et al. reported that although
the impacts of hippocampal iron on prepulse inhibition (PPI) were eliminated, both the
hippocampus-specific iron-deficient DMT-1 KO mouse and gestational iron-deficient ane-
mia rat models exhibited impaired PPI in adulthood, which suggested that iron may play a
critical role in the development of sensorimotor gating [16]. Several reviews have identified
various mechanisms to explain the link between iron deficiency and cognition. For example,
it has been observed that iron delimitation may cause tissue hypoxemia, enzyme deficiency,
impaired myelin formation, development of oxidative stress, and neurodegenerative pro-
cesses in the central nervous system, all of which have significant influences on human
neurocognitive ability [17]. However, clinical studies reported that patients with low serum
ferritin levels exhibit significantly more prominent negative symptoms, but unchanged
cognitive performance in first-episode schizophrenia spectrum disorder [18]. Thus, the
impacts of iron metabolism on the cognition of schizophrenia still remain speculative.

Another issue to account for is that decreased serum iron levels were found to be
associated with psychiatric symptoms in schizophrenia cases such as acute psychotic
relapse [19], negative symptoms [20], and catatonia-behavioral syndrome [21]. Moreover,
pre-existing cognitive dysfunction in people at clinical high risk for psychosis may predict
the transition to psychosis [22]. Notably, real-time declines in cognitive performance
may proceed positive symptom expression in schizophrenia [23], and a much-debated
question is whether general impairment in verbal fluency, decision making, and executive
control might also be related to negative symptoms such as avolition and alogia [24]. This
may suggest that the amendment of cognition could promote the recovery of psychotic
symptoms [25].

Some psychiatric research has paid special attention to transferrin (TF), because it is
the major iron delivery protein in the brain, and iron is critical for neuron survival and
myelination [26]. Previous studies have demonstrated decreased serum transferrin levels in
treatment-naïve schizophrenia patients [27]; however, some studies have reported normal
serum transferrin levels in patients [28,29]. In humans, the gene encoding transferrin
is located on chromosome 3q21, encoding a molecule that binds to hemochromatosis
(HFE) protein to form a stable complex that regulates iron transport [30]. Furthermore,
some researchers believe that transferrin, an iron mediator linked to eicosanoid signaling,
is linked to synaptic plasticity and social impairment in people with autism spectrum
disorders [31]. Another study discovered that after death, patients with schizophrenia had
lower levels of transferrin mRNA expression in the prefrontal cortex of brain [32].

A series of microarray analyses showed that the logarithm of the odds (LOD) scores for
the transferrin gene in schizophrenia were between 2.0 and 3.0 [33]. The study also reported
that an intronic single-nucleotide polymorphism of the transferrin gene (rs3811655) was
strongly associated with schizophrenia, yet there were no significant differences in allele
and genotype frequencies of six other SNPs in the transferrin gene between schizophre-
nia patients and controls [34]. Another study also demonstrated that the investigated
HFE mutations (C282Y and H63D) and/or TF-C2 polymorphism were not correlated with
schizophrenia/schizoaffective disorder [35]. In our previous study, it had been found that
the mediation model of psychiatric symptoms on the relations between Cu/Zn-SOD and
cognition in schizophrenia patients may vary with the rs3811655 polymorphism, which may
thus act as a modulator in oxidative-stress-induced cognitive dysfunction [36]. Although
these studies have been carried out on the transferrin gene and schizophrenia, few studies
have examined the correlation pattern of transferrin gene polymorphism on cognitive per-
formance among both schizophrenia patients and community controls, as well as the effects
of transferrin gene polymorphism on symptoms of psychosis. Therefore, our study aimed
to better understand the association between transferrin gene polymorphism, cognitive
deficits, and psychiatric symptoms in a large sample of chronic schizophrenia patients. We
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hypothesized that (a) whether the association pattern between rs3811655 genotype and
cognition among schizophrenia patients would be different from that of healthy controls;
(b) whether the rs3811655 genotype was related to psychiatric symptoms in schizophrenia
cases; and (c) whether genotype and cognition alone might predict psychiatric symptoms
in individuals with chronic schizophrenia.

2. Methods
2.1. Subjects

A total of 564 patients with chronic schizophrenia were recruited from Beijing Hui-
Long-Guan Psychiatric hospital and HeBei Province Veterans Psychiatric Hospital; more
than half of the patients (n = 319) came from the latter hospital and were all male. Chronic
schizophrenia was referred to those with a DSM-IV diagnosis of schizophrenia assessed via
the Structured Clinical Interview for DSM-IV (SCID) by two independent psychiatrists and
did not meet the criterion of recent-onset schizophrenia as mentioned by Sponheim [37].
Patients were between 25 and 75 years old (average: 47.8 ± 9.0 years) with at least 5 years of
disease course (average years: 24.6 ± 8.7 years) and had received long-term antipsychotic
treatment for at least 12 months. The minimum effective dose method described by
Woods was used to calculate the chlorpromazine equivalent (CPZeq) dose for the first- and
second-generation antipsychotic drugs, and patients in our study had a mean CPZeq of
433.6 ± 366.6 mg/day [38].

Healthy controls (n = 422; age range 16 to 70 years, average: 46.1 ± 13.2 years) were
enlisted from the local community in Beijing during the same recruitment period, and those
who have any biological relationship with the patient were not included in the present
study. Two research assistants assessed the control subjects’ current mental status and
personal or family history of mental disorders to exclude individuals with Axis I disorders.

All patients and healthy controls were Han Chinese. We excluded subjects with
medical abnormalities, including central nervous system diseases, neurological disorders,
unstable diabetes, hypertension, cardiovascular disease, or drug or alcohol abuse except for
tobacco. All subjects voluntarily gave informed consent to participate in this study, which
was approved by the Institutional Review Board of Beijing HuiLongGuan Hospital.

2.2. Clinical Examination and Cognitive Assessments

A standardized data collection protocol was used to gather demographic and clinical
information through patient interviews and available medical records. Four experienced
psychiatrists attended a training course to use the Positive and Negative Syndrome Scale
(PANSS) during the research preparation stage. After training, repeated assessments
showed that the inter-rater correlation coefficient (ICC) of PANSS total score for the four
psychiatrists exceeded 0.80.

The translated Chinese version of the Repeatable Battery for the Assessment of Neu-
ropsychological Status (RBANS) [39] was administered to assess neuropsychological func-
tion. RBANS consists of 12 subtests that are clustered into a total scale and five index scores,
namely, immediate memory, visuospatial/constructional function, language, attention, and
delayed memory. The inter-rater correlation coefficient (ICC) of RBANS for 4 experienced
psychiatrists was 0.84.

2.3. DNA Extraction and SNP Genotyping

DNA was extracted from the whole blood of all participants using the salting-out
method [40] and then stored at −80 ◦C. The genotype of the rs3811655 polymorphism was
identified by matrix-assisted laser desorption/ionization time of flight mass spectrometry
(MALDI-TOF MS) in the MassARRAY System (Sequenom Inc., San Diego, CA, USA).

2.4. Statistical Analysis

One-way ANOVA for continuous variables and chi-squared for categorical variables
were used to compare group differences in demographics. The χ2 test for goodness of
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fit was used to compute the Hardy–Weinberg equilibrium in schizophrenia and healthy
controls, and χ2 tests were used to see if there were any differences in allele and genotype
frequencies across groups. After correcting for confounding factors, a logistic regression
analysis was used to see if the distribution of the rs3811655 genotype was significantly
different between the groups. Using multivariate analysis of covariance (MANCOVA),
the effects of genotype on the RBANS total score and its five subscores in patients and
healthy controls as well as genotype on PANSS subscale and total scores were studied
with gender, age, education, and smoking status as covariates. Non-parametric tests were
used to test the main effects of genotype on cognition in the SZ male, SZ female, HC
male, and HC female groups, individually. Partial Spearman’s rank correlation analyses
were performed to acquire the partial rank correlation between the rs3811655 genotype
and cognition/psychiatric symptoms, in which independent variable X and dependent
variable Y were regressed out from covariate Z (gender, age, education, and smoking status).
After obtaining the probability-scale residuals from the model of X on Z and the model
of Y on Z, we then calculated Pearson’s r between the two residuals. Moreover, stepwise
multiple regression analysis was employed to investigate the influences of demographic,
cognitive, and genotypic parameters on PANSS subscale and total scores. All p-values
were two-tailed, and the significance threshold was 0.05. The Shapiro–Wilk test, kurtosis,
and skewness values were applied to check the normal distribution for all continuous
variables. Bonferroni correction was used to adjust for multiple tests, and the G*Power
3.1.9.7 software was employed to calculate the sample sizes for genotypic groups as well as
carry out a power calculation. The effect size was calculated as eta-squared and Cohen’s d.
The Holm–Bonferroni method [41] was also conducted for multiple correlation correction.

3. Results
3.1. Clinical Data, and Allele and Genotype Frequencies

The demographic and clinical characteristics of the participants are illustrated in
Table S1. The χ2 goodness-of-fit test showed that genotype frequencies of the rs3811655
polymorphism were consistent with the Hardy–Weinberg equilibrium in both patients
(χ2 = 0.26 p > 0.05) and controls (χ2 = 0.61, p > 0.05). Moreover, there were no statistically
significant differences in genotype distribution or allele frequency between the two groups
(genotype χ2 = 0.64, p > 0.05; allele χ2 = 0.03, p > 0.05) (Table S2). A logistic regression
analysis was performed to adjust for gender, age, education, and smoking, but still, no
significant differences in the genotype distributions and allele frequencies were found
(all p > 0.05).

3.2. Genotypic Effects on Cognitive Functions between Patients and Controls

The total score and subscores of RBANS for patients and HCs are shown in Table 1.
MANCOVA omnibus effects are found to be significant for all the cognitive neurometric
indices (all p < 0.05). We found that diagnosis alone significantly affected the RBANS total
and all index scores except for visuospatial/constructional (all p < 0.001). There were also
significant genotypic effects on RBANS total scores after controlling for covariates (F = 3.12,
p = 0.045, eta-squared = 0.006), while genotypic effects on language (F = 2.41, p = 0.090,
eta-squared = 0.005) and attention (F = 2.57, p = 0.077, eta-squared = 0.005) index scores
approached significance. Marginally significant interaction of genotype × diagnosis was
found in delayed memory index scores (F = 2.37, p = 0.094, eta-squared = 0.005).

Then, we analyzed the data of patients and controls separately. There were significant
genotypic effects on attention (F = 5.55, p = 0.004, eta-squared = 0.020) in schizophrenia
patients. Bonferroni post hoc analysis revealed that the GG genotype subgroup had a
significantly lower attention index score than the CC and GC genotype groups (p = 0.003,
Cohen’s d = 0.62, 1-β = 0.883; p = 0.019, Cohen’s d = 0.55, 1-β = 0.771, respectively).
In addition, MANCOVA analysis for HCs showed a significant genotype effect on the
delayed memory subscore (F = 3.30, p = 0.038, eta-squared = 0.016) and RBANS total
score (F = 3.98, p = 0.019, eta-squared = 0.019). Post hoc analysis revealed no significant
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differences in delayed memory and total RBANS scores between genotype groups after
Bonferroni correction (all p > 0.05).

Table 1. Genotypic effects on cognitive functions between schizophrenia patients and HCs.

Schizophrenia Patients Healthy Controls
FGenotypic Effects

(p)
FCase vs. Controls

(p)
FIntreaction Effects

(p)

RBANS Scores C/C (n = 350) G/C (n = 186) G/G (n = 28) C/C (n = 256) G/C (n = 148) G/G (n = 18)
Immediate memory 58.6 ± 16.2 59.2 ± 16.5 54.8 ± 13.9 74.0 ± 16.4 75.7 ± 17.8 70.1 ± 13.2 1.86 (0.16) 46.78 (<0.001) 0.46 (0.63)
Visuospatial 77.6 ± 18.8 77.7 ± 18.2 73.1 ± 20.8 78.4 ± 14.1 79.4 ± 15.2 76.4 ± 15.0 0.90 (0.41) 0.11 (0.74) 0.37 (0.69)
Language 81.7 ± 15.8 82.1 ± 14.4 76.8 ± 15.0 93.3 ± 12.4 94.5 ± 13.7 89.7 ± 10.6 2.41 (0.09) 50.03 (<0.001) 0.38 (0.69)
Attention 71.4 ± 17.5 70.3 ± 17.4 61.4 ± 14.7 85.8 ± 18.8 87.3 ± 19.3 82.9 ± 21.5 2.57 (0.08) 59.07 (<0.001) 1.85 (0.16)
Delayed memory 67.2 ± 19.0 65.6 ± 19.8 63.5 ± 19.1 85.0 ± 14.6 87.9 ± 14.4 81.4 ± 15.8 1.09 (0.34) 74.01 (<0.001) 2.37 (0.09)
Total index 64.7 ± 15.1 64.5 ± 14.9 60.4 ± 12.7 78.4 ± 13.7 80.7 ± 15.0 73.3 ± 14.4 3.12 (<0.05) 57.34 (<0.001) 1.97 (0.14)

To further explore sex effects on the association between transferrin gene polymor-
phism and cognition, we divided the entire sample into four groups: SZ males (n = 499),
SZ females (n = 65), HC males (n = 174), and HC females (n = 248). As some subgroups
had a too small sample size for the GC genotype, non-parametric tests were used for
analysis. Kruskal–Wallis H-tests showed that there are significant genotypic effects on
the RBANS attention subscore in SZ males (χ2(2) = 11.87, p < 0.01) as well as the RBANS
delayed memory (χ2(2) = 1.27, p < 0.05) and language (χ2(2) = 6.52, p < 0.05) subscores in
HC females. Pairwise comparisons demonstrated that for SZ males, GG genotype carriers
had significantly lower attention subscores than subjects carrying at least one C-allele (all
p < 0.05), and for HC females, GG genotype carriers showed marginally and significantly
lower language and delayed memory subscores than GC carriers (p = 0.061, p = 0.084,
respectively).

3.3. Relationship between the rs3811655 Genotypes and Clinical Characteristics in Patients
with Schizophrenia

The clinical characteristics of the patients with different genotypes of rs3811655 are
summarized in Table 2. MANCOVA omnibus effects were found to be significant for all
the psychiatricsymptoms (all p < 0.05). Moreover, there was a significant main effect of
rs3811655 on PANSS-N score (F = 4.27, p = 0.014, eta-squared = 0.015). The Bonferroni post
hoc test indicated that compared with subjects homozygous for the C allele, carriers of the
GC genotype exhibited more severe negative psychopathology (p = 0.048, Cohen’s d = 0.18).
The effects of the rs3811655 genotype on psychiatric symptoms were also explored in SZ
male and female groups, and a significant genotypic effect on the PANSS-N score (F = 6.66,
p = 0.001, eta-squared = 0.026) as well as a marginally significant genotypic effect on PANSS
total score (F = 2.83, p = 0.060, eta-squared = 0.011) in SZ males were noticed, but not
in SZ females. The Bonferroni post hoc test revealed that SZ male carriers of GG and
GC showed higher PANSS-N scores than the CC genotype subgroup (p = 0.010, Cohen’s
d = 0.77, 1-β = 0.952; p = 0.030, Cohen’s d = 0.24, 1-β = 0.697, respectively). In addition,
hemoglobin concentration, as an indicator of iron deficiency, was not significantly different
across the genotypic groups in patients, and no effect of genotype on hemoglobin levels
was found in SZ male and female subjects (all p > 0.05).

Table 2. Clinical characteristics of patients in the rs3811655 genotype groups.

Genotype
F/χ2 (p)

C/C (n = 350) G/C (n = 186) G/G (n = 28)

Age of onset (years) 23.1 ± 4.8 23.3 ± 4.8 24.4 ± 4.5 0.31 (0.73)
Duration of illness (years) 24.6 ± 8.8 24.2 ± 8.8 26.5 ± 7.6 0.23 (0.80)
Daily antipsychotic dose (mg/day)
(chlorpromazine equivalent) 437.5 ± 389.7 426.8 ± 287.7 463.3 ± 443.0 0.17 (0.84)

HGB (g/dl) 141.4 ± 21.6 139.1 ± 12.0 140.6 ± 13.8 0.06 (0.94)
PANSS scores

P subscore 11.1 ± 4.6 11.4 ± 5.0 11.0 ± 4.8 0.42 (0.66)
N subscore 21.7 ± 7.2 23.0 ± 7.3 25.1 ± 7.4 4.27 (<0.05)
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Table 2. Cont.

Genotype
F/χ2 (p)

C/C (n = 350) G/C (n = 186) G/G (n = 28)

G subscore 24.6 ± 5.2 25.2 ± 6.0 25.0 ± 4.9 0.81 (0.45)
Total score 57.3 ± 13.0 59.7 ± 14.8 61.1 ± 11.5 2.27 (0.10)

HGB, hemoglobin concentration.

3.4. Stepwise Multiple Regression Predicting Psychiatric Symptoms from Transferrin Gene
Polymorphism, Cognitive Measures, and Demographic Measures among Patients
with Schizophrenia

Figure 1 illustrates pairwise rank correlations between the rs3811655 genotype and
cognition/psychiatric symptoms. The unadjusted rank correlations between the RBANS
total score and either PANSS-N subscore (ρ = −0.373, p = 0.000) or total score (ρ = −0.281,
p = 0.000) were significantly negative, whereas after adjusting for the covariates, the RBANS
total score turned out to be negatively associated with PANSS-P (ρ = −0.085, p = 0.044),
-N (ρ = −0.373, p = 0.000), -G (ρ = −0.124, p = 0.003), and -T scores (ρ = −0.281, p = 0.000).
Moreover, partial Spearman’s rank correlation showed that the rs3811655 polymorphism
was significantly correlated with the PANSS negative component (ρ = 0.107, p = 0.011),
while there were no significant correlations between the rs3811655 genotype and PANSS-P,
PANSS-G, and global PANSS scores as well as RBANS subscores and the total score (all
p > 0.05). However, the significant correlation between the rs3811655 polymorphism and
PANSS-N score did not pass the Holm–Bonferroni correction (adjusted p = 0.066, adjusted
α = 0.008). Furthermore, significant partial Spearman’s rank correlations between the
rs3811655 genotype and the PANSS negative component (ρ = 0.142, p = 0.002) were found
in SZ male patients, but not in SZ females (p > 0.05).
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Figure 1. Heat map showing the partial Spearman’s rank correlations between the rs3811655 genotype
and cognition/psychiatric symptoms. The upper-left correlations are unadjusted, and the lower-right
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shows the strength of the correlation with those closer to −1 and 1 being darker. Red boxes are placed
around significant correlations.

Next, a stepwise multiple regression analysis found that RBANS language (β = −0.23,
t = −4.93, p < 0.001), delayed memory (β = −0.15, t = −2.95, p < 0.001) subscales, and
rs3811655 GC genotype (homozygous genotype CC as the reference group) (β = −0.10,
t =−2.48, p< 0.05) were the influencing factors for the PANSS negative symptoms in patients
with schizophrenia (Table 3). The model was statistically significant (F (15, 548) = 13.32,
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p < 0.001) and accounted for approximately 24.7% of the variance of PANSS negative symp-
toms. As listed by the squared semipartial correlations (sr2), RBANS language, delayed
memory, and transferrin rs3811655 polymorphism uniquely accounted for approximately
4.0%, 2.0%, and 1.0% of the PANSS negative symptoms, respectively. Another stepwise
multiple regression analysis revealed that the only predictors of the PANSS total symptoms
were daily antipsychotic dose (β = 0.10, t = 2.45, p < 0.05, sr2 = 1.0%), RBANS language
(β = −0.14, t = −2.98, p < 0.001, sr2 = 2.0%), delayed memory (β = −0.24, t = −4.36, p < 0.001,
sr2 = 3.0%) subscales, and rs3811655 GC genotype (with the CC genotype as the reference
group) (β = −0.08, t = −1.92, p = 0.055, sr2 = 1.0%). F (15, 548) = 8.57, p < 0.001, accounted
for approximately 16.8 percent of the variance in PANSS total symptoms.

Table 3. Stepwise multiple regression analysis for related factors predicting psychiatric symptoms in
patients with schizophrenia.

Predictors
Stepwise Regression Correlations

B (95%CI) SE B β p Partial * Part †

Dependent Variable: PANSS-N
Constant 34.18 (28.08 to 40.28) 3.11 0.00
Language −0.11 (−0.15 to −0.06) 0.02 −0.23 0.00 −0.21 −0.18
Delayed memory −0.06 (−0.10 to −0.02) 0.02 −0.15 0.00 −0.12 −0.11
rs3811655 genotype 0.73 (0.17 to 1.29) 0.29 0.09 0.01 0.11 0.09

Dependent Variable: PANSS-T
Constant 54.07 (42.09 to 66.04) 6.10 0.00
Daily antipsychotic dose 0.00 (0.00 to 0.01) 0.00 0.10 0.01 0.10 0.09
Language −0.13 (−0.21 to −0.04) 0.04 −0.14 0.00 −0.13 −0.11
Delayed memory −0.17 (−0.24 to −0.09) 0.04 −0.24 0.00 −0.18 −0.17
rs3811655 genotype 1.08 (−0.02 to 2.19) 0.56 0.07 0.06 0.08 0.07

β = standardized regression coefficients; B = unstandardized regression coefficients; SE = standard error. * Shared
contributions of the predictors. † Unique contributions of the predictors.

4. Discussion

The current study demonstrated three major findings: (a) the rs3811655 genotype
was associated with cognitive performance in both schizophrenia patients and community
controls, and the association between GG genotype and worsened cognition was only
evident among schizophrenia patients or SZ males; (b) negative symptoms varied with
rs3811655 genotypes, and patients carrying at least one G-allele showed more severe nega-
tive symptoms; (c) the transferrin rs3811655 polymorphism exerted a small but significant
contribution to the psychopathology of psychiatric symptoms of schizophrenia.

Our results indicated that the transferrin gene polymorphism (rs3811655) was not
associated with the development of schizophrenia. This finding is consistent with other
studies that established that a series of transferrin genes polymorphisms, such as rs8177191,
rs1799852, rs3811647, TF C2, and TF B variants, are not high-risk genetic variants for
schizophrenia in Japanese, Croatian, or Barcelona populations [35,42,43]. However, it was
reported that rs3811655 had a strong association with schizophrenia in a Han Chinese pop-
ulation [34]. In addition, microarray analysis of postmortem brain tissue in schizophrenia
patients illustrated that myelin-related genes, such as transferrin and myelin-associated
glycoprotein, are not associated with myelin abnormalities in schizophrenia [32]. This
difference between these association studies may be due to ethnic differences, clinical
heterogeneity of schizophrenia, and locus or allele heterogeneity.

Additionally, our study observed that the rs3811655 genotype was associated with
cognitive performance in either schizophrenia patients or community controls, both with a
small effect size. This indicated that either patients or controls with different genotypes of
rs3811655 exhibited subtly unequal cognition. Some important findings came from a twin
MRI study in healthy adults, which showed that additive genetic determinants of serum
transferrin levels and brain microstructure were partially overlapped. The hemochromato-
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sis HFE gene polymorphism (H63D at rs1799945) is also associated with reduced transferrin
levels and white matter fiber integrity in the external capsule [44]. Another study showed
that the abnormal homeostasis of iron may inhibit myelination and reduce the axon insula-
tion function, which is a pivotal player in the high-efficient conduction of neural electrical
impulses, the achievement of new skills, and the maintenance of cognition [45]. Studies
of patients with Alzheimer’s disease have found that the iron concentration in deep gray
matter and neocortex increases, and changes in temporal lobe iron levels are associated with
cognitive decline over time [46]. Furthermore, our research has demonstrated that only GG
patients or GG male patients showed obviously worse cognitive performance than GC and
CC patients. Although this finding needs to be further confirmed to know whether the pres-
ence of the GG genotype may be a risk factor for more serious impairment of cognition, our
results are consistent with the haplotype findings that the risk haplotype G-G in transferrin
gene was significantly more frequent in schizophrenia patients than that in controls [34].
Therefore, GG variants in the transferrin gene may be involved in iron metabolism and
myelination in the brain, which in turn increases the risks of detrimental cognition.

By exploring the effects of genotype on psychiatric symptoms, this study observed
significant differences in the severity of negative symptoms among patients or SZ males
with different rs3811655 genotypes. Furthermore, post hoc analyses showed that negative
symptoms among cases carrying at least one G-allele are significantly different from that of
CC patients. In particular, GG male patients showed obviously worse negative symptoms
than CC ones, with an almost large effect size. It inferred that rs3811655 G carriers might
exhibit more signs of avolition apathy and expressive deficit, which needs to be proved in
future studies.

Interestingly, our findings elucidated that the transferrin rs3811655 polymorphism,
cognition, and taking of daily antipsychotics do alone contribute minor but significant
amounts to the psychopathology of schizophrenic symptoms, and rs3811655 polymorphism
in particular was shown to predict the negative or total psychiatric symptoms in individuals
with chronic schizophrenia. Our findings are in accordance with some current clinical data
that suggest that negative symptoms may be more closely related to clinical characteristics
than positive symptoms in schizophrenia [25,47], and also are affected by adverse effects of
pharmacological treatment or environmental factors [48]. In addition, Kim et al. reported
that patients with iron deficiency showed a higher PANSS negative symptom score, while
patients with severe negative symptoms had lower serum ferritin levels but normal trans-
ferrin saturation [49]. A rodent model of inactivation of ferroportin in dopamine neurons
found that the loss of transferrin receptor 1 instead of ferroportin leads to nerve iron de-
ficiency, degeneration of dopaminergic neurons, impaired mitochondrial accumulation,
and oxidative stress response, indicating neuro-degeneration of dopaminergic neurons in
mice [50]. Moreover, iron plays a pivotal role in the synthesis of dopamine and its receptors.
For example, iron acts as a co-factor of tyrosine hydroxylase, which is the rate-limiting
enzyme for dopamine synthesis [51], whereas the D2 receptor is an iron-incorporating
protein, and iron deficiency further contributes to the hypo-functionality of D2 recep-
tors [52]. Generally, the change in the expression of the transferrin gene mediated by the
rs3811655 polymorphism may lead to the dysregulation of brain iron, thus resulting in
abnormal dopaminergic transmission and further facilitating the psychiatric symptoms of
schizophrenia. These findings illustrated that rs3811655 polymorphism might be a potential
endophenotype linked to schizophrenia and may provide clinically useful and genetically
advised risk prediction for the psychiatric symptoms in cases with chronic psychosis.

Several limitations should be acclaimed in this study. First, although the exploratory
analysis was conducted to examine the effects of genotype on hemoglobin in schizophrenia
patients, we did not measure plasma transferrin levels or other iron-related proteins. Hence,
we were unable to assess the effects of the rs3811655 polymorphism on the iron status
and its correlation with phenotypes of schizophrenia. Future studies will need to further
address this question. Second, it is worth noting that the patient and control samples did
not match in terms of some demographic characteristics, although they were adjusted
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as covariates in statistical analysis, which may still cause bias in statistical analysis. In
particular, the gender composition ratio of the two groups was quite different, despite our
study findings affording some evidence for the impacts of transferrin gene polymorphisms
on cognition in the SZ males and HC females, and a larger sample matched for gender
would be more convincing. Third, TF and HFE are two genes previously claimed to
affect serum transferrin levels and brain function [53,54]. In particular, the HFE H63D
polymorphism was considered to alter the matter development of brain pathways that
support various cognitive abilities [44]. There is a possibility that our patients may possess
some of these genetic variations and have a confounding effect on the current results.
Future research is required to explore more iron-related polymorphisms associated with
schizophrenia. Fourth, the current study did not include first-episode schizophrenia
patients with available resources, and relevant evidence should be accumulated in the
early stages of the disease because antipsychotic drugs and long-term hospitalization may
also affect negative symptoms and cognitive ability. Fifth, although we have provided
some evidence of the homozygous GG genotype correlating with degraded cognition in
schizophrenic patients, it may still be difficult to elucidate whether the effects of genotype
on cognition are biased by premorbid IQ. Prospective longitudinal study designs should
then be taken into account in subsequent studies. Sixth, although the RBANS could make
it easy to conduct a quick comprehensive cognitive test, it is hard to predict cognitive
functional outcomes in real-world settings. Therefore, in order to generalize experiment
results to behaviors outside of the lab, neuropsychological assessment with high ecological
validity should be used in future studies.

In summary, our study showed the same association of the polymorphism in the
transferrin gene with cognitive performance in both schizophrenia patients and commu-
nity controls, which may suggest that the relation is quantitative rather than qualitative:
rs3811655 would not associate with the development of schizophrenia but causes more
severe cognitive impairment in SZ patients. Additionally, the rs3811655 polymorphism
seems to be a significant predictor of psychiatric symptoms in combination with cognition.
These findings may help to understand the patterns of cognitive performance associated
with transferrin gene polymorphism in patients and controls, as well as inform the poten-
tial clinical use of rs3811655 to predict pathological symptoms in patients with chronic
schizophrenia.
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Author Contributions: X.Z. was responsible for study design and manuscript drafting. P.C. was
responsible for literature searches, data analysis, data interpretation, and manuscript writing. D.W.,
M.X., and D.C. were responsible for clinical data collection. B.L., H.E.W., and L.W. were involved in
evolving the ideas and reviewing the manuscript. All authors have contributed to and approved the
final manuscript and lab experiments. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (61673391),
the Psychosis project of the Beijing Key Laboratory (Z161100002616017), and the CAS International
Cooperation Research Program (153111KYSB20190004).

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki. Ethical review and approval by the Institutional Review Board of Beijing HuiLongGuan
Hospital were received. All patients submitted signed informed consent prior to inclusion in this
study (reference number: BJ-7072035).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Data are available on reasonable request.

https://www.mdpi.com/article/10.3390/jcm11216414/s1
https://www.mdpi.com/article/10.3390/jcm11216414/s1


J. Clin. Med. 2022, 11, 6414 10 of 12

Acknowledgments: The authors would like to thank Shuping Tan, Yunlong Tan, Zhiren Wang,
Baohua Zhang, Guigang Yang, and Fan Wang for all of their hard work and significant contributions
to the study.

Conflicts of Interest: The authors declared no conflict of interest.

References
1. Lange, K.W.; Kornhuber, J.; Kruzik, P.; Rausch, W.D.; Gabriel, E.; Jellinger, K.; Riederer, P. Brain iron and schizophrenia. In Iron in

Central Nervous System Disorders; Springer: Vienne, Autriche, 1993; pp. 37–43.
2. Peralta, V.; Cuesta, M.J.; Mata, I.; Serrano, J.F.; Perez-Nievas, F.; Natividad, M.C. Serum iron in catatonic and noncatatonic

psychotic patients. Biol. Psychiatry 1999, 45, 788–790. [CrossRef]
3. Xu, M.; Guo, Y.; Cheng, J.; Xue, K.; Yang, M.; Song, X.; Feng, Y.; Cheng, J. Brain Iron Assessment in Patients with First-episode

Schizophrenia using Quantitative Susceptibility Mapping. NeuroImage Clin. 2021, 31, 102736. [CrossRef] [PubMed]
4. Yanik, M.; Kocyigit, A.; Tutkun, H.; Vural, H.; Herken, H. Plasma manganese, selenium, zinc, copper, and iron concentrations in

patients with schizophrenia. Biol. Trace Elem. Res. 2004, 98, 109–118. [CrossRef]
5. Stankiewicz, J.; Panter, S.S.; Neema, M.; Arora, A.; Batt, C.E.; Bakshi, R. Iron in chronic brain disorders: Imaging and neurothera-

peutic implications. Neurotherapeutics 2007, 4, 371–386. [CrossRef] [PubMed]
6. Ward, R.J.; Zucca, F.A.; Duyn, J.H.; Crichton, R.R.; Zecca, L. The role of iron in brain ageing and neurodegenerative disorders.

Lancet Neurol. 2014, 13, 1045–1060. [CrossRef]
7. Insel, B.J.; Schaefer, C.A.; McKeague, I.W.; Susser, E.S.; Brown, A.S. Maternal iron deficiency and the risk of schizophrenia in

offspring. Arch. Gen. Psychiatry 2008, 65, 1136–1144. [CrossRef] [PubMed]
8. Maxwell, A.M.; Rao, R.B. Perinatal iron deficiency as an early risk factor for schizophrenia. Nutr. Neurosci. 2021, 25, 2218–2227.

[CrossRef] [PubMed]
9. Sørensen, H.J.; Nielsen, P.R.; Pedersen, C.B.; Mortensen, P.B. Association between prepartum maternal iron deficiency and

offspring risk of schizophrenia: Population-based cohort study with linkage of Danish national registers. Schizophr. Bull. 2011, 37,
982–987. [CrossRef] [PubMed]

10. Gambling, L.; Charania, Z.; Hannah, L.; Antipatis, C.; Lea, R.G.; McArdle, H.J. Effect of iron deficiency on placental cytokine
expression and fetal growth in the pregnant rat. Biol. Reprod. 2002, 66, 516–523. [CrossRef] [PubMed]

11. Beard, J.L.; Felt, B.; Schallert, T.; Burhans, M.; Connor, J.R.; Georgieff, M.K. Moderate iron deficiency in infancy: Biology and
behavior in young rats. Behav. Brain Res. 2006, 170, 224–232. [CrossRef]

12. Eyles, D.W.; Dean, A.J. Maternal nutritional deficiencies and schizophrenia: Lessons from animal models with a focus on
developmental vitamin D deficiency. In Handbook of Behavioral Neuroscience; Elsevier: Amsterdam, The Netherlands, 2016;
pp. 243–264.

13. McGrath, J.; Brown, A.; St Clair, D. Prevention and schizophrenia—The role of dietary factors. Schizophr. Bull. 2011, 37, 272–283.
[CrossRef] [PubMed]

14. Jahanshad, N.; Rajagopalan, P.; Thompson, P.M. Neuroimaging, nutrition, and iron-related genes. Cell. Mol. Life Sci. 2013, 70,
4449–4461. [CrossRef]

15. Bourque, S.L.; Iqbal, U.; Reynolds, J.N.; Adams, M.A.; Nakatsu, K. Perinatal iron deficiency affects locomotor behavior and water
maze performance in adult male and female rats. J. Nutr. 2008, 138, 931–937. [CrossRef] [PubMed]

16. Pisansky, M.T.; Wickham, R.J.; Su, J.; Fretham, S.; Yuan, L.-L.; Sun, M.; Gewirtz, J.C.; Georgieff, M.K. Iron deficiency with or
without anemia impairs prepulse inhibition of the startle reflex. Hippocampus 2013, 23, 952–962. [CrossRef] [PubMed]

17. Zhukovskaya, E.; Karelin, A.; Rumyantsev, A. Neurocognitive Dysfunctions in Iron Deficiency Patients. Iron Defic. Anemia 2019.
[CrossRef]

18. Moos, T.; Morgan, E.H. Transferrin and transferrin receptor function in brain barrier systems. Cell. Mol. Neurobiol. 2000, 20, 77–95.
[CrossRef] [PubMed]

19. Wiser, M.; Levkowitch, Y.; Neuman, M.; Yehuda, S.; Wiser, M. Decrease of serum iron in acutely psychotic schizophrenic patients.
Int. J. Neurosci. 1994, 78, 49–52. [CrossRef] [PubMed]

20. Devi, P.U.; Chinnaswamy, P.; Murugan, S.; Selvi, S. Plasma levels of trace elements in patients with different symptoms of
Schizophrenia. Biosci. Biotechnol. Res. Asia 2016, 5, 261–268.

21. Sienaert, P.A.; Dhossche, D.M.; Vancampfort, D.; De Hert, M.; Gazdag, G. A clinical review of the treatment of catatonia. Front.
Psychiatry 2014, 5, 181. [CrossRef]

22. Seidman, L.J.; Giuliano, A.J.; Meyer, E.C.; Addington, J.; Cadenhead, K.S.; Cannon, T.D.; North American Prodrome Longitudinal
Study (NAPLS) Group. Neuropsychology of the prodrome to psychosis in the NAPLS consortium: Relationship to family history
and conversion to psychosis. Arch. Gen. Psychiatry 2010, 67, 578–588. [CrossRef]

23. Dupuy, M.; Abdallah, M.; Swendsen, J.; N’Kaoua, B.; Chanraud, S.; Schweitzer, P.; Fatseas, M.; Serre, F.; Barse, E.; Auriacombe, M.;
et al. Real-time cognitive performance and positive symptom expression in schizophrenia. Eur. Arch. Psychiatry Clin. Neurosci.
2022, 272, 415–425. [CrossRef] [PubMed]

24. Galderisi, S.; Mucci, A.; Buchanan, R.W.; Arango, C. Negative symptoms of schizophrenia: New developments and unanswered
research questions. Lancet Psychiatry 2018, 5, 664–677. [CrossRef]

http://doi.org/10.1016/S0006-3223(98)00137-1
http://doi.org/10.1016/j.nicl.2021.102736
http://www.ncbi.nlm.nih.gov/pubmed/34186296
http://doi.org/10.1385/BTER:98:2:109
http://doi.org/10.1016/j.nurt.2007.05.006
http://www.ncbi.nlm.nih.gov/pubmed/17599703
http://doi.org/10.1016/S1474-4422(14)70117-6
http://doi.org/10.1001/archpsyc.65.10.1136
http://www.ncbi.nlm.nih.gov/pubmed/18838630
http://doi.org/10.1080/1028415X.2021.1943996
http://www.ncbi.nlm.nih.gov/pubmed/34165398
http://doi.org/10.1093/schbul/sbp167
http://www.ncbi.nlm.nih.gov/pubmed/20093425
http://doi.org/10.1095/biolreprod66.2.516
http://www.ncbi.nlm.nih.gov/pubmed/11804970
http://doi.org/10.1016/j.bbr.2006.02.024
http://doi.org/10.1093/schbul/sbq121
http://www.ncbi.nlm.nih.gov/pubmed/20974747
http://doi.org/10.1007/s00018-013-1369-2
http://doi.org/10.1093/jn/138.5.931
http://www.ncbi.nlm.nih.gov/pubmed/18424604
http://doi.org/10.1002/hipo.22151
http://www.ncbi.nlm.nih.gov/pubmed/23733517
http://doi.org/10.5772/intechopen.82620
http://doi.org/10.1023/A:1006948027674
http://www.ncbi.nlm.nih.gov/pubmed/10690503
http://doi.org/10.3109/00207459408986045
http://www.ncbi.nlm.nih.gov/pubmed/7829291
http://doi.org/10.3389/fpsyt.2014.00181
http://doi.org/10.1001/archgenpsychiatry.2010.66
http://doi.org/10.1007/s00406-021-01296-2
http://www.ncbi.nlm.nih.gov/pubmed/34287696
http://doi.org/10.1016/S2215-0366(18)30050-6


J. Clin. Med. 2022, 11, 6414 11 of 12

25. Pelletier-Baldelli, A.; Holt, D.J. Are negative symptoms merely the “real world” consequences of deficits in social cognition?
Schizophr. Bull. 2020, 46, 236–241. [CrossRef]

26. Leitner, D.F.; Connor, J.R. Functional roles of transferrin in the brain. Biochim. Biophys. Acta (BBA)-Gen. Subj. 2012, 1820, 393–402.
[CrossRef]

27. Owiredu, W.; Brenya, P.K.; Osei, Y.; Laing, E.F.; Okrah, C.O.; Obirikorang, C.; Donkor, S. Evaluation of serum iron overload, AST:
ALT ratio and log 10 ferritin: AST ratio among schizophrenia patients in the Kumasi Metropolis, Ghana: A case-control study.
BMC Res. Notes 2019, 12, 802. [CrossRef]

28. Wong, C.; Saha, N.; Tsoi, W. Serum iron, total iron-binding capacity, transferrin and haptoglobin concentration in schizophrenic
patients. Age 1985, 24, 214.

29. Kuloglu, M.; Atmaca, M.; Üstündag, B.; Canatan, H.; Gecici, O.; Tezcan, E. Serum iron levels in schizophrenic patients with or
without akathisia. Eur. Neuropsychopharmacol. 2003, 13, 67–71. [CrossRef]

30. Gemmati, D.; Zeri, G.; Orioli, E.E.; De Gaetano, F.; Salvi, F.; Bartolomei, I.; D’Alfonso, S.; Dall’Osso, C.; A Leone, M.; Singh, A.V.;
et al. Polymorphisms in the genes coding for iron binding and transporting proteins are associated with disability, severity, and
early progression in multiple sclerosis. BMC Med. Genet. 2012, 13, 776–785. [CrossRef]

31. Yui, K.; Imataka, G.; Nakamura, H.; Ohara, N.; Naito, Y. Eicosanoids derived from arachidonic acid and their family prostaglandins
and cyclooxygenase in psychiatric disorders. Curr. Neuropharmacol. 2015, 13, 776–785. [CrossRef]

32. Hakak, Y.; Walker, J.R.; Li, C.; Wong, W.H.; Davis, K.L.; Buxbaum, J.D.; Fienberg, A.A. Genome-wide expression analysis reveals
dysregulation of myelination-related genes in chronic schizophrenia. Proc. Natl. Acad. Sci. USA 2001, 98, 4746–4751. [CrossRef]

33. Davis, K.L.; Davis, K.L.; Stewart, D.G.; Friedman, J.I.; Buchsbaum, M.; Harvey, P.D.; Hof, P.R.; Haroutunian, V. White matter
changes in schizophrenia: Evidence for myelin-related dysfunction. Arch. Gen. Psychiatry 2003, 60, 443–456. [CrossRef] [PubMed]

34. Qu, M.; Yue, W.; Tang, F.; Wang, L.; Han, Y.; Zhang, D. Polymorphisms of Transferrin gene are associated with schizophrenia in
Chinese Han population. J. Psychiatr. Res. 2008, 42, 877–883. [CrossRef] [PubMed]
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