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Abstract: Skincare products play a crucial role in preventing the dry skin induced by various causes.
Certain ingredients can help to improve the efficacy of skincare products. Galactomyces ferment
filtrate (GFF) is such a functional ingredient. Its use originated from the empirical observation
that the hands of sake brewers who deal with yeast fermentation retain a beautiful and youthful
appearance. Consequently, skincare products based on GFF are widely used throughout the world.
Recent studies have demonstrated that GFF activates an aryl hydrocarbon receptor (AHR) and
upregulates the expression of filaggrin, a pivotal endogenous source of natural moisturizing factors,
in epidermal keratinocytes. It also activates nuclear factor erythroid-2-related factor 2 (NRF2), the
antioxidative master transcription factor, and exhibits potent antioxidative activity against oxidative
stress induced by ultraviolet irradiation and proinflammatory cytokines, which also accelerate
inflammaging. GFF-mediated NRF2 activation downregulates the expression of CDKN2A, which is
known to be overexpressed in senescent keratinocytes. Moreover, GFF enhances epidermal terminal
differentiation by upregulating the expression of caspase-14, claudin-1, and claudin-4. It also promotes
the synthesis of the antiinflammatory cytokine IL-37 and downregulates the expression of proallergic
cytokine IL-33 in keratinocytes. In addition, GFF downregulates the expression of the CXCL14 and
IL6R genes, which are involved in inflammaging. These beneficial properties might underpin the
potent barrier-protecting and anti-inflammaging effects of GFF-containing skin formulae.

Keywords: Galactomyces ferment filtrate PiteraTM; aryl hydrocarbon receptor; NRF2; filaggrin;
CDKN2A; caspase-14; claudin; IL-37; IL-33; CXCL14

1. Introduction

The skin is a vital organ that protects the bodies of terrestrial animals from the effects
of dry harsh environments. It also acts as a functional barrier against external mechanical,
chemical, and climatological stresses [1,2]. For example, exposure to ultraviolet (UV)
rays and environmental pollutants induces varying degrees of oxidative stress in the
skin and the subsequent production of proinflammatory cytokines [3–6]. Low-grade
chronic inflammation is a significant risk factor for the type of accelerating aging known as
inflammaging [7,8]. An aged skin appearance and a corresponding histological frailty are
aggravated in sun-exposed areas of skin compared with those protected from sunlight [9].
Therefore, the inhibition of oxidative stress by daily applications of suitable antioxidants
might be beneficial in retarding skin inflammaging induced by various environmental
oxidative stress factors [10,11].

The barrier function of skin is mainly provided by its outermost epidermal layer, the
stratum corneum or cornified layer [1,2]. The human epidermis is composed of multiple lay-
ers of keratinocytes, including basal, spinous, granular, and cornified layers. Keratinocytes
proliferate in the basal layer, move up through the spinous and granular layers, and die,
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but remain functional as corneocytes in the cornified layer, before finally detaching from
the skin [1,2]. Corneocytes are the major components of the cornified layer. However, other
biological materials, including the extracellular lamellae of lipids, such as ceramides and
cholesterol, and various natural moisturizing factors (NMFs), including free amino acids,
pyrrolidone carboxylic acids, lactates, glucose, urea, hyaluronic acid, and electrolytes, are
essential for maintaining a healthy skin–water balance [1,2,12]. During the differentiation
process from the basal to the cornified layer, keratinocytes sequentially produce epidermal
differentiation complex proteins, such as involucrin, loricrin, and filaggrin [13]. The integra-
tion of these proteins into cytoskeletal keratin fiber is essential for the proper differentiation
of keratinocytes into corneocytes [1,2,12,13]. The degradation of filaggrin by proteolytic
enzymes, such as caspase-14, in the granular layer is also pivotal in the production of
NMFs [1,2,12–17].

The differentiation of keratinocyte is coordinately regulated by various transcription
factors, including the aryl hydrocarbon receptor (AHR) [18,19], OVO-like 1/2 (OVOL1
/2) [20–23], MYC [22,23], NOTCH1 [22,24], CEBP [25,26], and PPAR [27,28]. The expression
or activation of these transcription factors is modulated by certain inflammatory cytokines,
phytochemicals, and UV-mediated oxidative stress [29–38]. For instance, the expression
of filaggrin is downregulated by the interleukins IL-4 and IL-13, which are pathogenic for
atopic dermatitis, as well as by IL-17A, which is pathogenic for psoriasis [29]. These might
contribute, at least in part, to the dry barrier-impaired skin lesions in atopic dermatitis and
psoriasis [39].

In general, dry barrier-impaired skin exhibits a decrease in skin hydration and an
increased rate of transepidermal water loss (TEWL) [39]. The topical application of a
moisturizer increases skin hydration and decreases TEWL [39,40]; therefore, skin moistur-
ization is recommended as a basic treatment, especially for atopic dermatitis and senile
xerosis [41–44]. It is known that skin moisturization is an important factor in facial skin’s
ability to maintain a youthful and healthy appearance [45]. Moreover, antioxidative mois-
turizers can decrease facial redness and reduce pore dilation [46].

2. Moisturizers and Their Ingredients

Moisturizers essentially consist of various functional agents, including occlusive mate-
rials and humectants. Occlusive materials, such as petrolatum and lanolin, are hydrophobic
and prevent the evaporation of water from the skin by coating its surface with a water-
repellent layer that interferes with the bidirectional movement of water across the skin.
Petrolatum is a classic example of an occlusive agent that reduces water loss through the
epidermis by nearly 99% [47].

Humectants, such as urea, glycerin, and α-hydroxy acids, are compounds that attract
and bind water. They can draw water from the deeper epidermis and dermis [48,49].
Moisturizers commonly contain both occlusives and humectants to increase skin hydration
and decrease TEWL [50]. In addition to the basic occlusives and humectants, recent
advancements in skin biology point to the beneficial potential of topical applications of
ceramides or NMFs in upregulating the skin-barrier function [51–53].

PITERATM, a specialized Galactomyces ferment filtrate (GFF), is a functional ingredient
present in multiple skincare formulations that are used worldwide. Historically, research
on GFF began from the empirical observation that elderly sake brewers had wrinkled faces,
while their hands, which were in constant contact with the sake fermentation process,
retained a soft and youthful appearance.

GFF-containing moisturizers are capable of increasing skin hydration and reducing
TEWL [46,54]. Clinical trials have also shown that the topical application of GFF Pitera™
improves intraday fluctuations in facial redness, skin roughness, and hair pore size [46].
Mask usage aggravates intraday fluctuations in these facial skin conditions [54]. Mask-
induced exacerbation of fluctuations in redness and pore size is also ameliorated by topical
treatment with GFF [54]. Although the action mechanisms of GFF are not fully understood,
it has been demonstrated to operate as a potent antioxidative AHR agonist [10,55,56].
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3. Activation of AHR-Filaggrin Axis by GFF

AHR is a ligand-dependent transcription factor that is pivotal in upregulating the
expression of filaggrin and other differentiation complex proteins in the epidermis [18,19].
In its steady, nonstimulated condition, AHR resides in the cytoplasm of keratinocytes [55].
Upon stimulation by GFF, activated AHR translocates into the nucleus from the cytoplasm
(Figure 1), where it upregulates the expression of filaggrin [55].
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Figure 1. Immunofluorescence staining of AHR (red fluorescence) in human keratinocytes. Nuclei
were stained with 4′,6-diamidino-2-phenylindole (DAPI). Nonstimulated control keratinocytes ((A);
DAPI staining, (B); AHR staining, (C); merged). GFF-treated keratinocytes ((D); DAPI staining, (E);
AHR staining, (F); merged). AHR resides mainly in the cytoplasm in nonstimulated keratinocytes
(B). GFF induces nuclear translocation of AHR ((E), arrows). AHR: aryl hydrocarbon receptor. GFF:
Galactomyces ferment filtrate. Bar; 25 µm.

GFF-mediated filaggrin upregulation is AHR-dependent because it is abrogated by
the knockdown of AHR [55] (Figure 2).

The interleukins IL-4 and IL-13 reduce the expression of filaggrin [29,57] and weaken
the permeability barrier of keratinocytes [58]; these effects might be responsible for the
pathogenic actions of IL-4 and IL-13 in atopic dermatitis [29,59]. Notably, GFF is capable of
counteracting the IL-4- and IL-13-mediated downregulation of filaggrin expression [55]. In
addition to the upregulation of filaggrin, GFF upregulates the expression of loricrin and
counteracts the IL-4-induced inhibition of loricrin expression [55]. A similar AHR-mediated
action has also been confirmed to occur with various phytochemicals, such as extracts
of Houttuynia cordata [60], Opuntia ficus-indica [61], and Artemisia princeps [62], which are
widely used as folk medicines or as cosmetic ingredients.

The traditional dermatological remedies coal tar and soybean tar glyteer are active
AHR ligands and upregulate the expression of filaggrin [63,64]. Both coal tar and glyteer
are known to be effective in the treatment of atopic dermatitis, psoriasis, and other inflam-
matory skin diseases [63,64]. Tapinarof is a recently discovered natural AHR agonist that
stimulates the AHR–filaggrin axis [65,66]. Recent clinical trials revealed that the topical
application of tapinarof efficiently reduces the skin symptoms of atopic dermatitis and
psoriasis [67,68]. Therefore, certain AHR agonists are called therapeutic AHR-modulating
agents (TAMAs), and are recognized as promising treatments for inflammatory skin dis-
eases [69]. Considering its active AHR-stimulating potency, GFF is a functional moisturizing
ingredient with TAMA-like activity.
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Figure 2. Biological response induced in keratinocytes treated with GFF. GFF: Galactomyces ferment
filtrate. AHR: Aryl hydrocarbon receptor. NRF2: Nuclear factor erythroid 2-related factor 2. CDKN2A:
cyclin-dependent kinase inhibitor 2A. CXCL14: chemokine (C-X-C motif) ligand 14. IL6R: IL-6
receptor. SLPI: secretory leukocyte peptidase inhibitor.

4. Antioxidative Properties of GFF

The skin is continuously exposed to various oxidative stressors, such as UV radiation,
environmental pollutants, and inflammatory cytokines such as tumor necrosis factor-α
(TNF-α) [64,70–73]. These oxidative stressors generate reactive oxygen species (ROS) in
skin cells. To ameliorate oxidative damage, excess amounts of ROS require neutralization
by an antioxidative system. Nuclear factor erythroid-2-related factor 2 (NRF2) is the
antioxidative master transcription factor [10]. Like AHR, nonstimulated NRF2 is mainly
located in the cytoplasm of keratinocytes [72,74]. Upon stimulation, the activated NRF2
translocates from the cytoplasm into the nucleus, where it upregulates the transcription
of genes for antioxidative enzymes such as glutathione peroxidase 2 (GPX2), NAD(P)H
quinone oxidoreductase 1 (NQO1), and heme oxidase 1 (HMOX1), which are responsible
for neutralizing excess ROS [56,72,75,76]. For example, GPX2 is known to play a critical
role in preventing UVB-mediated carcinogenesis in keratinocyte [75].

In addition to its AHR-stimulating properties, GFF induces nuclear translocation of
NRF2 in the cytoplasm (Figure 3) and upregulates the expression of GPX2, NQO1, and
HMOX1 [10,56,74,76,77].

GFF significantly ameliorates both TNF-α-induced [10] and UVB-induced [76] pro-
duction of ROS in human keratinocytes. IL-13 is also an ROS-inducing cytokine [78].
IL-13-induced ROS production in keratinocytes is also inhibited by GFF (Figure 4).
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Figure 3. Immunofluorescence staining of NRF2 (green fluorescence) in human keratinocytes. Non-
stimulated control keratinocytes ((A); DAPI staining, (B); NRF2 staining, (C); merged). GFF-treated
keratinocytes ((D); DAPI staining, (E); NRF2 staining, (F); merged). NRF2 mainly resides in the
cytoplasm in nonstimulated keratinocytes (B). GFF induces nuclear translocation of NRF2 ((E), ar-
rows). DAPI: 4′,6-diamidino-2-phenylindole. NRF2: nuclear factor erythroid-2-related factor 2. GFF:
Galactomyces ferment filtrate. Bar; 25 µm.
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µm. DAPI: 4′,6-diamidino-2-phenylindole. ROS: reactive oxygen species. GFF: Galactomyces ferment
filtrate.
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Secretory leukocyte peptidase inhibitor (SLPI) is another epidermal differentiation and
desquamation maker that is upregulated by NRF2 activation [79]. The increased expression
of SLPI is known to impede infection by human papilloma virus by blocking its entry into
keratinocytes [80]. Notably, it is reported that GFF upregulated the expression of the SLPI
gene [81].

5. Downregulation of Senescence by GFF

Oxidative stress is also a factor in senescence, as it induces the production of proin-
flammatory cytokines [6,71], which are involved in inflammaging [7,8,82]. Therefore,
antioxidants might have anti-inflammaging action. Senescent keratinocytes have a 30-fold-
higher intracellular ROS concentration compared with those in the nonsenescent growth
phase [83]. It is known that the senescent cells accumulate an intracellular cyclin-dependent
kinase inhibitor 2A (CDKN2A or p16INK4A), which induces cell-cycle arrest [83–85]. The
epidermal atrophy seen in the elderly is associated with an increase in CDKN2A+ senescent
keratinocytes [84]. Transcriptomic profiling of biopsied human skin from the face, arm, or
buttock in various age groups has demonstrated that the expression of CDKN2A increases
with age, especially in skin samples from sun-exposed facial and arm epidermis [9].

GFF upregulates the expression of the antioxidative enzyme GPX2 in keratinocytes,
which is abrogated by NRF2 knockdown [56]. In contrast, GFF significantly decreases
CDKN2A expression in keratinocytes [56]. Notably, the GFF-induced downregulation
of CDKN2A is also NRF2-dependent. Therefore, daily applications of a GFF-containing
skincare product might be beneficial in preventing the aging process by downregulating
CDKN2A expression by upregulating GFF-NRF2-GPX2 axis. GFF-induced NRF2 activation
is also observed in melanocytes [77] and, probably, in macrophages [86]. The expression of
the antioxidative enzymes HMOX1 and NQO1 is upregulated in GFF-treated melanocytes
in an NRF2-mediated fashion [77]. In parallel, UVB-induced ROS generation in melanocytes
is alleviated in the presence of GFF [77].

In certain AHR agonists, the activation of NRF2 is mediated, at least in part, through
AHR activation [64,87,88]. GFF is also known to activate the AHR–NRF2 signaling pathway,
because knockdown of AHR partially ameliorates the GFF-NRF2-mediated induction of
NQO1 [76].

In addition, it should be noted that the aforementioned beneficial AHR agonists,
tapinarof [65], coal tar [63], glyteer [64], Houttuynia cordata extract [60], Opuntia ficus-indica
extract [61], and Artemisia princeps extract [62] are all potent inducers of antioxidative
enzymes through NRF2 activation. These facts suggest that dual agonists for AHR and
NRF2 might be suitable as cosmetic ingredients to maintain the epidermal barrier and to
protect against oxidation-induced inflammaging.

6. Enhanced Expression of Caspase-14 by GFF

Caspase-14 is preferentially expressed in the granular and cornified layer of skin. It
is a cysteinyl aspartate-specific protease that is involved in the degradation of filaggrin
into NMFs [89]. Caspase-14-deficient mice exhibit a substantial reduction in amounts of
NMFs such as urocanic acid and pyrrolidone carboxylic acid [17]. The skin of Caspase-14-
deficient mice is rough, with decreased skin hydration and increased TEWL, underscoring
the important role of caspase-14/filaggrin in maintaining skin moisturization [90]. In
addition, Caspase-14-deficient mice are more susceptible to UVB-induced phototoxicity [90].
Moreover, IL-4 is known to inhibit the synthesis of caspase-14, which might contribute to
barrier disruption in atopic dermatitis [89].

Notably, the expression of caspase-14 is strongly upregulated in GFF-treated ker-
atinocytes [91] (Figure 2). An enhancing activity for caspase-14 expression has been reported
for other cosmetic ingredients and natural phytochemicals [92–94]. The physiocosmetic
implications of caspase-14 upregulation in maintaining skin homeostasis remain uncertain;
however, targeting caspase-14 might be a promising strategy for discovering new beneficial
ingredients for healthy skin [95,96].
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7. Upregulation of Tight Junction Molecules by GFF

Tight junctions are cell–cell junctions that connect neighboring cells closely [97]. In
the human epidermis, mature tight junctions are located in the granular layer and play a
crucial role in the paracellular permeability barrier to water, solutes, and high-molecular-
weight materials [97]. The tight junction is a protein complex composed of the claudin
family, occludin, and other plaque proteins, such as ZO-1 [97,98]. Among the tight-junction
molecules, claudin-1 and claudin-4 are critical for maintaining the permeability barrier; this
is usually evaluated by measurements of the transepithelial electric resistance (TER) for
the transport of ions and of labeled-tracer permeability for the transport of high-molecular-
weight substances [98–100]. A high TER and a low labeled-tracer permeability indicate
a stronger zipper function of the tight junction [98–101]. Mice with a complete Cldn1
deficiency die in the first day after birth due to an increased TEWL and a leaky skin [99].
Human subjects lacking CLDN1 suffer from neonatal ichthyosis-sclerosing cholangitis
syndrome, a very rare ichthyosis with severe permeability impairment [102]. Like that of
claudin-1, the downregulation of claudin-4 in keratinocytes treated with ochratoxin A is
known to promote dysfunction of the epidermal permeability barrier [98].

Notably, GFF increases the expression of claudin-1, claudin-4, occludin, and ZO-1 in
keratinocytes [55,81,100] (Figure 2). In parallel, GFF also enhances cell–cell attachment in
cultured keratinocytes and augments the permeability barrier, as assessed by an increase in
TER [100]. The knockdown of AHR partially downregulates the expression of occludin,
whereas it does not affect the expression of claudin-1 or claudin-4 [55]. These results indicate
that the GFF-mediated upregulation of claudin-1 and claudin-4 is independent of AHR
activation. The GFF-induced upregulation of claudin-1 and claudin-4 might contribute to
the moisturizing effects of GFF-containing skin formulae [46,54].

8. Increased Production of Antiinflammatory Cytokine IL-37 by GFF

Epidermal keratinocytes are a rich source of the IL-1 family of cytokines, including
IL-33 and IL-37 [103–105]. IL-33 is a proinflammatory or proallergic cytokine that is overex-
pressed in keratinocytes derived from a tape-stripped barrier-disrupted epidermis [106].
IL-33 stimulates antigen-presenting cells and shifts naïve T cell differentiation toward type
2 T helper cells, which produce proallergic IL-4 and IL-13 [107,108]. House-dust-mite
allergen, a major allergen associated with atopic diseases, activates keratinocytes through
toll-like receptor 6 and induces IL-33 production [109]. In addition, house-dust-mite aller-
gen has a protease activity and cleaves the keratinocyte-derived IL-33 to a mature active
form [110].

In contrast to IL-33, IL-37 is an antiinflammatory cytokine [111]. IL-37 can inhibit the
proinflammatory process induced by a wide range of stimuli, including toll-like receptor,
IL-1, and IL-33 [112,113]. The human IL-37 homologue is found in many mammals, though
not in the mouse or chimpanzee [111,114,115].

Notably, GFF upregulated IL-37 expression in human keratinocytes in an AHR-
dependent fashion [116] (Figure 2). The GFF-induced IL-37 is biologically active, because
it downregulates the expression of IL-33 in keratinocytes [116]. Moreover, the GFF-AHR-
IL-37-induced downregulation of IL-33 is canceled by the knockdown of either AHR or
IL-37 [116]. Like GFF, the therapeutic AHR agonist tapinarof decreases IL-33 production
in keratinocytes through the AHR-IL-37 axis [116]. These results agree with our previous
finding that the IL-33 expression is downregulated through activation of the AHR-OVOL1
axis [117] and further point to a critical role of AHR in inducing IL-37 expression in human
keratinocytes. GFF-mediated IL-33 downregulation might also be attributable to GFF-
mediated claudin-1 upregulation, because IL-33 inhibits the expression of claudin-1 [118].

Notably, GFF is likely to potentiate other antiinflammatory systems. GFF was proved
to strongly inhibit the expression of the CXCL14 gene for the chemokine (C-X-C motif)
ligand 14 in keratinocytes [81]. CXCL14 is a potent chemoattractant of immune cells,
especially monocytes and dendritic cells [119,120]. It is also known to be closely related to
inflammaging [121,122]. GFF also downregulated the expression of the IL6R gene for the
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interleukin-6 receptor [81]. The proinflammatory cytokine IL-6 is related to eczematous
dermatitis [123] and is linked to inflammaging [7,8]. Thus, GFF-mediated downregulation
of CXCL14 and IL6R might contribute to a retardation of the progress of inflammaging in
keratinocytes.

9. Conclusions

Recent advances in skin biology not only provide rational evidence and a strategy for
understanding the beneficial effects of cosmetic ingredients, but can also help to improve
the efficacy of skincare products in treating various skin complaints. Ceramide- and NMFs-
containing skincare products are good examples of treatments that significantly alleviate
signs of dry skin, even in inflammatory skin diseases [51–53]. GFF is a functional cosmetic
ingredient whose adoption was inspired by the empirical observation that sake brewers
often had youthful and soft skin on their hands. GFF has since been shown to be a potent
dual agonist for AHR and NRF2. The GFF–AHR axis upregulates filaggrin production and
induces the expression of antiinflammatory IL-37, with subsequent downregulation of the
expression of proallergic IL-33. The GFF–NRF2 axis provides a potent antioxidative effect
and is probably beneficial in preventing inflammaging, partly through the downregulation
of CDKN2A. GFF might also ameliorate inflammaging by downregulating the expression
of CXCL14 and IL6R. In addition, GFF increases the expression of caspase-14 and claudins,
which are essentially involved in epidermal terminal differentiation and tight-junction
maturation.

Medicinal TAMAs, such as tapinarof, coal tar, and glyteer, are potent dual agonists of
AHR and NRF2 [63–65,69]. Many recent and ongoing clinical studies have demonstrated
the therapeutic usefulness of TAMA in atopic dermatitis and psoriasis [67,68,124]. As
the biological and functional properties of GFF are similar to those of TAMA, GFF might
be categorized as an antioxidative cosmetic AHR-modulating agent. However, the in-
depth cellular mechanisms of GFF activity have not been fully elucidated in keratinocytes.
Although GFF affects melanocytes [77] and sebocytes [46], the biological significance of GFF
with respect to these cell types also remains unclear. Considering its antioxidative, barrier-
protecting, and anti-inflammaging/antisenescence properties, GFF can be considered a
potent cosmetic agent for preventing and repairing skin damage caused by various external
and internal insults, and for maintaining healthy, youthful-appearing skin by retarding
skin aging.
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