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Abstract: CT-P13 is the first subcutaneous infliximab molecule approved for the management of
inflammatory bowel disease (IBD). Compared to intravenous therapy, SC infliximab offers a range of
practical, micro- and macroeconomic advantages. Data from the rheumatological literature suggest
that subcutaneous CT-P13 may lead to superior disease outcomes in comparison to intravenous inflix-
imab. Existing studies in IBD have focussed on pharmacokinetic comparisons and are inadequately
powered to evaluate efficacy and safety differences between the two modes of administration. How-
ever, emerging clinical trial and real-world data support comparable clinical, biochemical, endoscopic
and safety outcomes between subcutaneous and intravenous infliximab in both luminal Crohn’s
disease and ulcerative colitis. Across the available data, subcutaneous CT-P13 provides relative phar-
macokinetic stability and higher trough drug levels when compared to intravenous administration.
The clinical impact of this observation on immunogenicity and treatment persistence is yet to be
determined. Trough levels between the two methods of administration should not be compared in
isolation as any subcutaneous advantage must be considered in the context of comparable total drug
exposure and the theoretical disadvantage of lower peak concentrations compared to intravenous
therapy. Furthermore, target drug levels for subcutaneous CT-P13 associated with remission are
not known. In this review, we present the available literature surrounding the pharmacokinetics
of subcutaneous CT-P13 in the context of therapeutic drug monitoring and highlight the potential
significance of these observations on the clinical management of patients with IBD.

Keywords: infliximab; CT-P13; subcutaneous; therapeutic drug monitoring

1. Introduction

Inflammatory bowel disease (IBD) comprises a group of chronic, immune-mediated
disorders including both ulcerative colitis (UC) and Crohn’s disease (CD) [1,2]. Anti-
tumour necrosis factor (anti-TNF) biologics such as infliximab and adalimumab are effec-
tive in the induction and maintenance of remission in IBD, with primary response rates
of 40–70% [3–8]. Infliximab, a chimeric IgG1 monoclonal antibody, has over 25 years of
post-marketing efficacy and safety data in IBD [9]. After expiry of the patent for originator
infliximab, a number of biosimilars have been developed, allowing market competition
and consequent cost savings [10,11]. CT-P13 was the first infliximab biosimilar to be ap-
proved for UC and CD in Europe and the USA [12]. Intravenous CT-P13 has demonstrated
non-inferior pharmacokinetics, efficacy and safety outcomes in both rheumatological condi-
tions [13,14] and IBD [15–21]. Adherence to intravenous administration is measurable and
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may be superior to that of self-administered biologic or oral therapy [22–24]. Furthermore,
drug storage conditions are likely to be more regulated within hospital pharmacy depart-
ments in contrast to the variability and inadequacy reported with home-based biologic
storage [22,23,25,26]. However, subcutaneous rather than intravenous biologic therapy is
preferable to many patients and clinicians [27–30]. In comparison to intravenous therapy,
de-centralising care provision may allow greater patient flexibility, convenience and a
range of individual and macroeconomic healthcare benefits [31–35]. The COVID-19 pan-
demic highlighted the advantages of transitioning care away from the hospital setting [36].
In this context, a number of guidelines have suggested considering the prioritisation of
subcutaneous biologics in IBD management [37,38].

The subcutaneous formulation of CT-P13 attained European Medicines Agency (EMA)
approval for IBD in 2020 on the basis of two small randomised controlled trials (RCTs)
reporting comparable pharmacokinetics, efficacy and safety of subcutaneous CT-P13 as
compared to intravenous CT-P13 in both rheumatoid arthritis and active CD [39,40]. A
subsequent meta-analysis comparing subcutaneous CT-P13 with historical intravenous
infliximab outcomes in patients with moderate-severe rheumatoid arthritis suggests a po-
tential efficacy benefit with subcutaneous therapy [41]. Similarly, a network meta-regression
pooling individual patient data from two RCTs comparing subcutaneous and intravenous
CT-P13 in rheumatoid arthritis patients supports subcutaneous CT-P13 providing superior
clinical response and improvements in functional disability [42]. The available interven-
tional controlled studies of subcutaneous CT-P13 in IBD to date are inadequately powered
to assess efficacy and safety differences between the two methods of administration and
are limited to outpatient moderate-severe UC and luminal CD. The pivotal RCT eval-
uating subcutaneous CT-P13 in IBD was conducted in two parts. Part 1, published in
abstract form only, was a phase I, open-label dose-finding RCT in 44 patients with active
CD. Following intravenous infliximab induction at week 0 and week 2, patients were
randomised to receive either standard maintenance intravenous infliximab 5 mg/kg 8-
weekly or 120 mg, 180 mg or 240 mg of subcutaneous CT-P13 2-weekly [40]. Part 2 was
an open-label, non-inferiority trial involving 131 anti-TNF naïve patients with active CD
or UC across 50 centres. Following intravenous induction, patients were randomised to
receive maintenance intravenous infliximab 5 mg/kg 8-weekly or subcutaneous CT-P13 at
a dose of 120 mg (if <80 kg) or 240 mg (≥80 kg) 2-weekly [43]. The primary outcomes were
pharmacokinetic and will be discussed in detail. Consistent with emerging real-world data,
there were comparable clinical, biochemical, endoscopic and safety outcomes between sub-
cutaneous and intravenous infliximab formulations [40,43]. Across all indications, trough
drug levels are consistently higher in patients receiving subcutaneous CT-P13 than those
treated with intravenous infliximab.

However, comparing drug levels at these time points does not adequately reflect total
drug exposure between the two formulations. The significance of this observation on
pharmacokinetics, disease activity, immunogenicity and treatment persistence in IBD is yet
to be determined and requires further studies incorporating therapeutic drug monitoring
(TDM). TDM of intravenous infliximab has been shown to be cost-effective and to improve
clinical and objective outcomes in IBD [44,45]. There is a well-established exposure-response
relationship for intravenous infliximab, with multiple studies having demonstrated that
higher trough drug levels are associated with improved patient outcomes [44–47]. Evidence
supporting TDM of other biologics is less robust, particularly for adalimumab, ustekinumab
and vedolizumab [46,48].

There is an unmet need to confirm the value of TDM of subcutaneous infliximab,
interpret the significance of elevated trough drug levels and determine concentration
thresholds associated with remission. Furthermore, the potential disadvantages of lower
peak concentrations with subcutaneous therapy requires evaluation. This review aims
to appraise the literature surrounding subcutaneous CT-P13 TDM, highlight the current
knowledge gaps, and provide guidance for clinical practice.
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2. Search Strategy

A literature search was conducted using PubMed Online and the Cochrane Library
databases. The search was performed using the following linked search terms: ‘CT-P13
OR infliximab;’ AND ‘subcutaneous;’ AND ‘Crohn’s disease (CD) OR ulcerative colitis
(UC) OR inflammatory bowel disease (IBD).’ The search was restricted to English language
original research including both full-text and abstract publications presenting TDM data
from 1 January 2010 to 22 August 2022. After exclusion of duplicates, 146 articles were
identified and imported into a systematic review platform (www.rayan.ai, accessed on
22 August 2022). Titles and abstracts were screened and approved independently by two
reviewers (RDL and AJJ) to ensure relevance and availability of drug level data. Reference
lists of selected articles were reviewed with additional publications selected as appropriate.
Seven original publications were chosen for discussion (Figure 1), with a further three post
hoc analyses included.
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3. Pharmacokinetics of Subcutaneous CT-P13

The pharmacokinetics of intravenous infliximab are well described [49–52]. In short,
administration via the intravenous route leads to early and rapid peak concentration
followed by a steady decline to trough. Subcutaneously administered biologics have slower
absorption, lower bioavailability, lower peak concentration and smaller differences between
peak and trough concentrations. To date, there has only been one original, peer-reviewed
published article defining the pharmacokinetics of subcutaneous CT-P13. Using patient
data including a total of 2772 infliximab drug levels from the pivotal IBD CT-P13 Part 1 [40]
and Part 2 [43] studies, Hanzel et al. constructed a population pharmacokinetic model

www.rayan.ai


J. Clin. Med. 2022, 11, 6173 4 of 18

incorporating the effect of body weight, anti-drug antibodies and serum albumin, given
their known influence on clearance of intravenous infliximab [53]. The bioavailability of
subcutaneous CT-P13 was reported as 79%, half-life 10.8 days and drug clearance estimated
at 0.355 L/d in a typical patient weighing 70 kg, with a serum albumin of 44 g/L and no anti-
drug antibodies. A prior subcutaneous CT-P13 Assessment Report by the EMA describing
three separate population pharmacokinetic models based on clinical trials across healthy
volunteers, rheumatological and gastroenterological indications calculated a bioavailability
of between 58% and 72% [54]. It is important to note that many of these data are published
in abstract form only or included in non-peer reviewed product reports. The estimated half-
life and clearance of subcutaneous CT-P13 is comparable to findings from previous studies
of intravenous infliximab in IBD, albeit with non-matched disease activity, weight, albumin
and immunomodulator use between the models [49,50]. The calculated bioavailability of
subcutaneous CT-P13 is comparable to that of adalimumab (64%) [55] and golimumab
(52%) [56].

4. Impact of Dosing on Exposure-Response Relationship

Data from Part 1 of the pivotal subcutaneous CT-P13 RCT in patients with CD in-
vestigated the exposure-response relationship of 120 mg, 180 mg and 240 mg fortnightly
subcutaneous CT-P13 doses in comparison to maintenance 5 mg/kg 8-weekly intravenous
infliximab. At week 22–30, median subcutaneous infliximab drug levels incremented
proportionally according to increasing subcutaneous dosing regimens (120 mg 2-weekly
13.3 µg/mL; 180 mg 2-weekly 19.9 µg/mL; 240 mg subcutaneous 2-weekly 26.5 µg/mL)
and were significantly higher than those observed with intravenous infliximab (5 mg/kg
8-weekly 2.3 µg/mL) [40]. Similarly, in the Supplementary Materials of Part 2 of the pivotal
RCT, mean trough levels at week 22 were higher in the 15 patients receiving 240 mg subcu-
taneous CT-P13 compared with 44 patients receiving 120 mg subcutaneous CT-P13 (mean
[standard deviation; SD] 26.2 µg/mL [13.65] vs. 19.8 µg/mL [7.75], respectively) despite
belonging to a higher weight category (80–115 kg vs. <80 kg, respectively) [43]. Despite
allowing escalation to 240 mg 2-weekly from week 30 in patients with loss of response,
data on the frequency of this event and subsequent changes in drug level are not presented.
In contrast, escalating to a dose of 240 mg 2-weekly was strikingly effective in recapturing
response in REMSWITCH, an observational, post-switch cohort of 133 patients [57]. Of the
22 patients who relapsed during the 6-month study period, 15 were escalated to 240 mg
2-weekly infliximab with recapture of clinical and combined clinical and biochemical re-
mission in 93% and 80%, respectively. TDM data for this group of patients were not shown
either at the time of relapse or following dose-intensification, as previously discussed [58].

In contrast, shortening the dose interval to weekly 120 mg subcutaneous CT-P13 may
have less impact on drug levels. In a subgroup of 50 patients on prior dose-intensified
intravenous infliximab from uncontrolled, real-world data by Smith et al., patients who
switched to subcutaneous CT-P13 with a shortened dosing interval of 120 mg weekly had
equivalent serum drug levels as patients switched to 120 mg 2-weekly at 3, 6 and 12 months
despite not having worse baseline C-reactive protein (CRP) or faecal calprotectin (FCP)
activity (median 16 vs. 16 µg/mL, p > 0.05 at all time points) [59]. Furthermore, receiving
weekly vs. fortnightly dosing was not associated with trough infliximab drug levels on a
linear regression analysis when controlled for multiple independent variables including
disease activity, concomitant immunomodulator, anti-drug antibodies and body mass
index (BMI) [59]. In summary, amongst patients requiring dose-intensified subcutaneous
CT-P13, higher doses given fortnightly may achieve greater drug level increments than
shortening the interval using standard 120 mg dosing, although more data are needed. The
mechanism for this preliminary observation is unclear and not consistent with TDM data
in adalimumab showing no difference in trough drug level between patients receiving 40
mg weekly and 80 mg fortnightly doses [60].
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5. Comparing Drug Levels between Intravenous and Subcutaneous Infliximab

There are subcutaneous infliximab TDM data from a total of 465 individual patients
across four published full-text articles [43,57,59,61] with additional data provided by 75 pa-
tients published in abstract or letter form [40,62,63] (Table 1). The majority of these studies
compare drug levels between the two formulations taken at trough. However, trough
drug levels between the two modes of administration are not directly comparable and do
not reflect total drug exposure over a matched treatment period. This section will first
outline available through TDM data, then contextualise these observations by discussing
differing peak concentrations, relative drug level stability and comparable total drug expo-
sure. Lastly, preliminary evidence supporting an exposure-response relationship will be
presented.

Following intravenous induction at week 0 and week 2, receiving subcutaneous CT-
P13 is associated with higher trough drug levels compared to continuing intravenous
infliximab across the two available RCTs [40,43]. Data from Part 2 of the pivotal CT-P13
study in 131 patients show mean (SD) week 22 trough drug levels of 21.5 (9.9) µg/mL
compared with 2.9 (2.6) µg/mL in the intravenous arm. When comparing geometric least
squares mean (LSM), a more accurate estimate of true population mean, and adjusting
for immunomodulator use, disease type, response status at week 6, and weight class,
patients receiving subcutaneous CT-P13 had a trough drug level of 21.0 µg/mL compared
to 1.8 µg/mL in the intravenous arm. As the lower bound of the 90% confidence interval
for ratio of the geometric LSMs exceeded 80%, the primary outcome of pharmacokinetic
non-inferiority of subcutaneous compared with intravenous CT-P13 was met. In addition,
following switch to subcutaneous administration at week 30 in the original intravenous
arm, the trough drug concentrations increased to comparable levels to those in the original
subcutaneous arm. Similarly, when compared with pre-switch intravenous trough levels,
both prospective and retrospective observational data confirm higher median trough drug
levels following subcutaneous CT-P13 across time points ranging from 4 weeks to 6 months,
except in patients requiring 10 mg/kg 4 weekly intravenous infliximab at the time of
switching (Table 1).

Pharmacokinetic parameters that best predict optimal efficacy for infliximab are un-
certain. As presented in Figure 2, possible predictors might be total drug exposure, mainte-
nance of drug level stability, peak concentrations and trough concentrations, all of which
differ between the two modes of administration. For intravenous infliximab therapy, TDM
is performed at trough with a number of established concentration thresholds associated
with varying depths of remission [46,47]. However, TDM performed earlier in the treatment
cycle has also shown promising predictive potential, and the magnitude of these earlier
drug levels may be important for severely active IBD [64,65]. Comparing only trough
drug levels between subcutaneous and intravenous formulations does not accurately re-
flect differing peak concentrations. The most informative data regarding complementary
pharmacokinetic parameters arise from Supplementary Materials of Part 2 of the pivotal
RCT [43]. During the 8-week intensive TDM at steady state, the mean concentrations of
subcutaneous CT-P13 are relatively stable when compared to the immediate peak and
predictable decline of intravenous administration (Figure 3). Data generated by population
pharmacokinetic modelling provide further detail. Whilst higher trough drug levels with
subcutaneous infliximab are observed, the maximum peak drug level with subcutaneous
infliximab is lower than with intravenous administration (mean 29.8 µg/mL vs. 105.6
µg/mL, respectively).
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Comparable total drug exposure between subcutaneous and intravenous infliximab
using the area under the curve (AUC) over an 8-week treatment period reflects the trade-off
between trough and peak drug levels in the two formulations—graphically depicted in
Figure 2. Using the same non-linear mixed-effect model, the mean AUC was slightly higher
in the subcutaneous as compared with intravenous CT-P13 arms (35,467 µg·h/mL versus
28,284 µg·h/mL). Prospective, uncontrolled TDM data from 20 CD patients and a total of
120 drug levels taken across two fortnightly treatment cycles supports subcutaneous drug
level stability both within and across cycles [61]. Similar to prior adalimumab data [66,
67], a more stable steady state concentration-time profile offered by subcutaneous CT-
P13 may allow greater flexibility with timing of TDM across the 14-day treatment cycle.
However, more intensive pharmacokinetic analysis of adalimumab has demonstrated
marked interpatient variability in subcutaneous absorption [68]. More data, ideally arising
from a population pharmacokinetic analysis incorporating variables known to affect drug
levels are required to translate these observations into clinical practice for subcutaneous CT-
P13 [69]. Until these data emerge, we advise continuing to perform TDM of subcutaneous
infliximab at trough where practicable.
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Table 1. Summary of original research reporting drug levels and disease outcomes in patients with inflammatory bowel disease (IBD) receiving subcutaneous
infliximab (IFX; CT-P13) including full text and published abstracts.

Study Design Objectives n Characteristics
Drug Levels (µg/mL) and Anti-Drug Antibodies (µg/mL)

Disease Outcomes
Intravenous (IV) Subcutaneous (SC)

Schreiber (2021)
[43]

Multicentre (n = 50)
randomised,
open-label,
non-inferiority trial.

Primary: to compare
week 22 trough drug
levels in patients
exposed to IV or SC
infliximab following
IV induction.
Secondary: to
compare clinical
outcomes between IV
and SC infliximab.

131

41% CD, 60% UC
0% in remission
Anti-TNF naïve
Immunomodulator
use: 44%

Drug levels:
Mean (SD) W22 level:
2.9 (2.6)
Adjusted geometric
LSM W22 level: 1.8
Anti-drug antibodies:
W22 ADA: 32 (49%)
W22 nADA: 12 (19%)

Drug levels:
Mean (SD) W22 level: 21.5 (9.9)
Adjusted geometric LSM W22
level: 21
Anti-drug antibodies:
W22 ADA: 21 (32%)
W22 nADA: 4 (6%)
Laboratory assays:
Infliximab: ECLIA
ADA: Drug-tolerant ECLIA
with ACE

Comparable W30 and
W54 clinical,
biochemical, endoscopic
response rates between
IV and SC arms.

Smith (2022)
[59]

Retrospective,
multicentre (n = 3)
cohort study.

Primary: to evaluate
treatment persistence
post-switch from IV
to SC infliximab.
Secondary: to
compare clinical
outcomes and drug
levels between IV
and SC infliximab.

181

64% CD, 33% UC, 3%
IBD-U
87% in remission
Prior IV infliximab:
– 131 5 mg/kg q8W
– 50 5 mg/kg q4 or
q6W
Immunomodulator
use: 59%

Drug levels:
Median (range) level:
8.9 (0.4–16)

Drug levels:
Median level: 16 at 3, 6 and
12 months
Anti-drug antibodies:
Throughout study: 14 (8%)
Laboratory assays:
Drug-tolerant ELISA for infliximab
levels plus free and bound ADA OR
Drug-sensitive in-house ELISA for
infliximab levels and ADA,
dependent on centre.

Treatment persistence
92%
No significant difference
in clinical or biochemical
activity between baseline
and at 3, 6, or 12 months
post-switch to
SC infliximab.
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Table 1. Cont.

Study Design Objectives n Characteristics
Drug Levels (µg/mL) and Anti-Drug Antibodies (µg/mL)

Disease Outcomes
Intravenous (IV) Subcutaneous (SC)

Buisson (2022)
[57]

Prospective,
multicentre (n = 3)
cohort study.

Primary: to assess
clinical and
pharmacological
outcomes
post-switch from IV
to SC infliximab in
IBD patients
according to different
IV infliximab
regimens.

133

72% CD, 28% UC
Perianal lesions (42%)
100% in remission
Prior IV infliximab:
– 44% 5 mg/kg q8W
– 31% 10 mg/kg q8W
– 14% 10 mg/kg q6W
– 11% 10 mg/kg q4W
Immunomodulator
use: 26%

Drug levels:
Median (IQR)
baseline level:
– 5 mg/kg q8W 4.7
(2.4–6.8)
– 10 mg/kg q8W 7.2
(4.4–11.9)
– 10 mg/kg q6W 8.1
(6.2–15.1)
– 10 mg/kg q4W 18.5
(11.9–20)
Anti-drug antibodies:
2 (2%) positive ADAs

Drug levels:
Median (IQR) level at W16–24:
– Prior 5 mg/kg q8W 15.1 (11.2–18.2)
– Prior 10 mg/kg q8W 18.7 (8–20)
– Prior 10 mg/kg q6W 14.3
(11.9–17.6)
– Prior 10 mg/kg q4W 20 (17.7–20)
Anti-drug antibodies:
No positive ADAs
Laboratory assays:
Infliximab: ELISA
ADA: drug-sensitive ELISA

By W16–24 a clinical or
faecal calprotectin
recurrence occurred in:
– 10.2% 5 mg/kg q8W
– 7.3% 10mg/kg q8W
– 16.7% 10mg/kg q6W
– 66.7% 10mg/kg q4W
Intensification to 240 mg
q2W, recaptured clinical
remission in 93%
(14/15).

Roblin (2022)
[61]

Prospective, single
centre cohort study.

Primary: to
investigate the
intra-individual
variations of
infliximab drug
levels across and
between 2 cycles of
SC infliximab.

20

100% CD
100% in remission
Immunomodulator
use: 40%

Drug levels:
Median (IQR) level:
3.9 (1.2–7.9)
Anti-drug antibodies:
No ADAs

Drug levels:
Median (IQR) W8 level 11 (7.5–15.1)
Similar level independent of
sampling period (day 3–6, day 7–9,
day 14).
Anti-drug antibodies:
No ADAs.
Laboratory assays:
Infliximab: ELISA
ADA: drug-sensitive ELISA

No clinical relapse.
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Table 1. Cont.

Study Design Objectives n Characteristics
Drug Levels (µg/mL) and Anti-Drug Antibodies (µg/mL)

Disease Outcomes
Intravenous (IV) Subcutaneous (SC)

Abstracts and Letters:

Schreiber (2018)
[40]

Randomised,
open-label controlled
trial

Primary: find the
optimal dose of SC
infliximab in patients
with active CD
following IV
induction at W0, W2
and randomisation
1:1:1:1 to:
– IV 5 mg/kg q8W
– 120 mg SC q2W
– 180 mg SC q2W
– 240 mg SC q2W
Secondary: evaluate
clinical outcomes and
pharmacokinetics.

44

100% CD
0% in remission
Immunomodulator
use: not reported

Drug levels:
Median W30 level
(predicted interval
5th–95th percentile):
2.3 (0.1–8.6)
Anti-drug antibodies:
7 (58%) positive
ADAs

Drug levels:
Median W30 TL (predicted interval
5th–95th percentile):
– 120 mg SC: 13.3 (5.6–26.8)
– 180 mg SC: 19.9 (8.4–40)
– 240 mg SC: 26.5 (11.2–53.2)
Anti-drug antibodies:
3 (10%) positive ADAs
Laboratory assays:
Not specified

Similar rates of clinical
remission and response
between SC and IV
infliximab arms.

Chivato Martín-
Falquina (2022)

[62]

Retrospective,
single-centre cohort
study.

Primary: to report
rates of remission
and treatment
persistence in IBD
patients post-switch
from IV to SC
infliximab.

14

29% CD, 71% UC
100% in remission
79% prior intensified
IV infliximab. Doses
not specified
Immunomodulator
use: 64%

Drug levels:
Median (IQR) level: 7
(2.4–10.5)
Anti-drug antibodies:
Not reported

Drug levels:
W8 (IQR) level: 14.1 (IQR 12.2–22.7)
Anti-drug antibodies:
Not reported
Laboratory assays:
Not specified

Treatment
persistence 93%
93% remained in clinical
remission at 8 weeks.

Argüelles-
Arias (2022)

[63]

Retrospective, single
centre, cohort study.

To assess efficacy and
safety post-switch
from IV to SC
infliximab.

17

71% CD, 29% UC
100% in remission
Immunomodulator
use: 53%

Drug levels:
Median (IQR) level:
6.1 (3.5–8.9)
Anti-drug antibodies:
Not reported

Drug levels:
Median (IQR) W24 level: 19.9
(12.3–21.6)
Anti-drug antibodies:
Not reported
Laboratory assays:
Not specified

No clinical relapse but a
reduced faecal
calprotectin at W24
following switch to SC
infliximab.

Abbreviations: UC (ulcerative colitis), CD (Crohn’s disease), IFX or CT-P13 (infliximab), SC (subcutaneous), IV (intravenous), ADA (antidrug antibody), nADA (neutralising ADA), SD
(standard deviation), IQR (interquartile range), ELISA (enzyme-linked immunosorbent assay), ECLIA (electrochemiluminescence), ACE (affinity capture elution), W (week), q_W
(_-weekly dosing).
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Further studies are also required to determine target concentration thresholds for
subcutaneous infliximab. In a post hoc analysis of 55 patients receiving subcutaneous CT-
P13 in the Part 2 RCT, Ye et al. report preliminary data supporting an exposure-response
relationship [70]. In this analysis, a higher proportion of patients with drug levels in the 4th
quartile (≥26.7 µg/mL) achieved clinical remission and a faecal calprotectin ≤250 µg/g at
week 54, as compared to patients with drug levels in the 1st quartile (<16.4 µg/mL) (79%
vs. 46% and 91% vs. 62%, respectively). More data are needed to determine optimal drug
level targets associated with depth of remission across a broader range of IBD phenotypes.

6. Predictors of Infliximab Drug Levels

Increasing body weight, presence of anti-drug antibodies, hypoalbuminaemia, ab-
sence of concomitant immunomodulation and increased disease activity are covariates
that are associated with increase clearance of intravenous IFX, adalimumab and
golimumab [49–52,56,68]. Similar data are accruing for subcutaneous CT-P13.

6.1. Body Weight

Evaluation of the effect of body weight on drug levels in the pivotal part 2 trial is
limited by both exclusion of patients with obesity and the weight-based dosing regimen [43].
However, in their population pharmacokinetic model, Hanzel et al. reported body weight
as a covariate affecting drug clearance by up to 43% between weights of 70 to 120 kg. In
contrast, bioavailability of subcutaneous infliximab did not appear to be affected by body
weight. Using Monte Carlo weight-based exposure simulations, receiving subcutaneous
CT-P13 led to higher drug exposure in patients weighing 50 kg, comparable exposure in
patients weighing 70 kg and lower exposure in patients weighing 120 kg in comparison
to intravenous administration [53]. However, in the largest published real-world cohort
of 181 patients post-switch from intravenous to subcutaneous IFX, trough drug levels
were not affected by BMI, despite utilising non-weight-based dosing of subcutaneous
CT-P13. Similarly, in a prospective drug sampling study evaluating TDM stability across
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the 14-day treatment cycle, Roblin et al. demonstrated that BMI had no association with
low subcutaneous IFX drug levels (HR 0.83 95% CI 0.46–4.21; p = 0.69), although the
number of patients who were overweight was small. Buisson et al. found that neither body
weight nor BMI were associated with disease relapse amongst real-world switch data in
133 patients [57]. These findings may again be limited by low median BMI in the cohort.
Clarification of the effect of body weight and body composition on pharmacokinetics and
clinical outcomes is paramount given that obesity may modestly increase the odds of
non-response to both fixed-dose and weight-based anti-TNF therapy [71], however, results
are conflicting [72–74].

6.2. Serum Albumin

Hanzel et al. found that subcutaneous CT-P13 clearance was 30% greater when the
serum albumin concentration was 32 g/L compared with that at 44 g/L [53]. Despite
the limited pharmacokinetic understanding, hypoalbuminaemia is associated with lower
intravenous infliximab drug levels [51]. Commonly proposed hypotheses include a cor-
relation with increased inflammatory disease activity, protein catabolism and increased
mucosal losses [75]. In healthy states, individuals with low albumin have lower neonatal Fc
receptor (FcRn) activity and therefore accelerated clearance of IgG, including monoclonal
antibodies [76,77]. How this relationship is altered in active IBD and the subsequent effect
on monoclonal antibody clearance is unclear. In their comprehensive modelling study,
Hanzel et al. found that no other biochemical parameters of disease activity (CRP, faecal
calprotectin, platelet count) had a clinically relevant effect on drug clearance beyond the
effect of hypoalbuminaemia [53]. In contrast, uncontrolled data from Roblin et al. showed
no association between albumin and subcutaneous CT-P13 drug levels. However, numbers
were small and all patients were in clinical and biochemical remission with a consequent
homogenous and normal mean (SD) albumin of 39.6 (2.5) g/L at recruitment [61].

6.3. Immunomodulator Use

In IBD patients receiving intravenous infliximab, combination therapy with im-
munomodulators is associated with higher drug levels, less immunogenicity and sub-
sequent greater disease control compared with those treated with anti-TNF monother-
apy [66,78–82]. The benefit of concomitant immunomodulator use in patients receiving
subcutaneous CT-P13 is less clear. In a post hoc analysis of 66 patients in the subcuta-
neous arm of the pivotal Part 2 CT-P13 trial, D’Haens et al. found comparable median
(IQR) trough week 54 drug levels between those who received combination therapy with
immunomodulators and those that received infliximab monotherapy (21.7 [19–25.3] vs.
20.8 [16.1–29.1] µg/mL, respectively) [83]. Similarly, there were no differences in clin-
ical response rates (85% in combination therapy vs. 74% monotherapy; p = 0.3582) or
development of neutralising anti-drug antibodies between the two groups (16% combi-
nation therapy vs. 7% monotherapy; p = 0.40) [83]. On a multivariate model evaluating
a cohort of 181 patients switched to subcutaneous CT-P13 (58% on combination therapy),
immunomodulator use was not associated with higher infliximab trough levels [59]. There
was also no association between risk of disease relapse and immunomodulator use from
the REMSWITCH cohort of 133 patients, of which 57% were receiving dose-intensified
intravenous infliximab and 26% were on combination therapy at baseline. Further data,
over a longer period of follow up are required to clarify the role of immunomodulators in
subcutaneous CT-P13 therapy.

6.4. Immunogenicity

Immunogenicity to anti-TNFs is common, particularly in the first 12 months of ther-
apy [66,80,81,84,85]. Detection of anti-drug antibodies is dependent on the type of labora-
tory assay, the dilution accuracy and the positivity thresholds. Drug-sensitive ELISA, elec-
trochemiluminescence immunoassay (ECLIA) or radioimmunoassays can detect anti-drug
antibodies only in the absence of drug, whereas drug-tolerant assays, such as homogenous
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mobility-shift assays (HMSAs) and newer ELISAs, can detect anti-drug antibodies in the
presence of detectable drug [86–88]. Unsurprisingly, lowering the anti-drug antibody-
positivity threshold increases the rate of detection of both transient anti-drug antibody and
low-titre persistent, non-neutralising anti-drug antibodies [89]. The natural history and
clinical relevance of these phenomena in comparison to the pharmacodynamic inactivation
induced by neutralising anti-drug antibodies remain unclear [84,86,89,90]. Attention to
laboratory methods must be made when interpreting immunogenicity data in IBD. In Part
2 of the pivotal subcutaneous CT-P13 RCT, total anti-drug antibodies and neutralising
anti-drug antibodies were analysed using a drug-tolerant ECLIA platform with an affinity
capture elution able to detect titres ≥25 and ≥1000 ng/mL, respectively. As Part 1 was only
published in abstract form, there are no details on the assay used. In this study, 7/12 (58%)
CD patients in the intravenous arm compared to just 3/30 (10%) in the subcutaneous arms
developed anti-drug antibodies by week 30 [40]. In contrast, in the much larger Part 2 study,
a similar proportion of patients in each arm converted to anti-drug antibody positive status
over the 54 weeks (70% in subcutaneous vs. 64% in intravenous) but a smaller proportion of
patients in the subcutaneous arm had positive neutralising anti-drug antibodies compared
to the intravenous arm (18% vs. 37%, respectively; p = 0.019) [43]. No anti-drug antibody
titres were presented in either study and there was no apparent impact of differing binary
neutralising anti-drug antibody positivity rates on disease control and drug levels between
the two groups. In four pharmacokinetic models examining intravenous infliximab in IBD
patients, anti-drug antibodies have been observed to affect drug clearance by between 29%
and 72% [49,50,52,91]. In their evaluation of drug levels from the pivotal Part 1 and Part 2
subcutaneous CT-P13 trials, Hanzel et al. estimated a congruent increase in clearance of
39% in patients with anti-drug antibodies. In the largest published real-world post-switch
cohort of 181 patients, only 14 patients (8%) developed anti-drug antibodies [59]. Consistent
with the prior modelling, anti-drug antibodies in these patients were strongly inversely
associated with subcutaneous infliximab levels on multivariate analysis (OR −13.34, 95%
CI −15.41x−11.33; p < 0.001) [59]. Interpretation of immunogenicity data from the available
uncontrolled cohorts is limited by varying assay use (including across centres within the
same study [59]) and the lack of comparator groups (Table 1).

Whilst the above results are preliminary, the potential for lower rates of immunogenic-
ity reflects a promising theoretical advantage of subcutaneous infliximab. Traditionally,
subcutaneously administered biologics were considered to be more immunogenic than
intravenous therapy due to theoretical exposure to antigen-presenting cells within the
epidermis and dermis [92], although objective evidence supporting higher antibody for-
mation are conflicting [93–95]. There are several unproven hypotheses for subcutaneous
infliximab being less immunogenic than intravenous administration. Low drug levels
seen at the more pronounced concentration troughs with both maintenance [80,86] and
episodic [96,97] intravenous therapy are associated with antibody formation. Comparing
representative concentration-time curves, the drug level stability of subcutaneous dosing
may avoid exposure to the more immunogenic concentration thresholds of intravenous
therapy as depicted graphically in Figure 2. In addition, it has been suggested [43,59,98]
that the higher circulating drug levels seen with subcutaneous CT-P13 may both reduce
formation of immunogenic drug-antigen immune complexes and induce ’high-zone tol-
erance’. Whilst infliximab-TNF complexes have been demonstrated to drive anti-drug
antibody formation [99], how this relates to the varying drug level exposure pattern of
subcutaneous relative to intravenous infliximab is not clear. In ‘high-zone tolerance,’ ex-
posure to high concentrations of an antigen may induce tolerance via blunting of the
immune response [93,100–102]. Once again, it is not clear why this mechanism would be
preferentially activated by the stable moderate drug levels of subcutaneous therapy and
not the high peak concentrations of intravenous infliximab therapy. Further prospective,
controlled trials with a longer duration of follow up are required to confirm a difference
in anti-drug antibody formation, the antibody subtype and whether there are meaningful
clinical consequences.
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7. Conclusions and Future Directions

The available evidence suggests comparable efficacy and safety of subcutaneous in-
fliximab for adult patients with UC or luminal CD, despite differences in pharmacokinetics
such as bioavailability and the concentration-time profile. The economic advantages of
biosimilar molecules are complemented by practical benefits such as patient convenience,
reduced risk of in-hospital exposure to nosocomial infection, and alleviation of hospital
resources and staffing pressures. However, potential disadvantages regarding adherence
or inadequacy of drug storage require consideration. The most promising biological ad-
vantage of subcutaneous infliximab may be the stability of drug levels, as compared with
the marked differences between peak and trough concentrations with intravenous therapy.
Maintaining drug level stability may avoid the prolonged low trough levels associated
with intravenous infliximab with a subsequent reduction in immunogenicity and a greater
treatment persistence. On the other hand, the immediacy and magnitude of peak concen-
trations after intravenous infliximab may be the most relevant pharmacokinetic parameters
to induce remission in highly active disease such as acute severe UC or severe, complex CD
including perianal CD. Two ongoing large superiority RCTs in moderate-severe CD and
moderate-severe UC have been powered to compare disease and safety outcomes (Clinical-
Trials.gov Identifiers: NCT04205643 and NCT03945019, respectively) and may reveal the
clinical significance of these differing pharmacokinetic profiles. Of importance, trough drug
levels between the two modes of administration are not directly comparable and should
not be considered in isolation. Future work should aim to clarify whether TDM has a role
with subcutaneously administered infliximab and, if so, to define therapeutic concentration
targets. Additional future directions include clarifying the role of immunomodulators,
establishment of efficacy in paediatric IBD, examining adequacy of drug exposure for acute
severe colitis and perianal disease and the optimal dosing regimen in patients previously
requiring dose-intensified intravenous infliximab. More complete post-marketing data
and real-world experience across the range of IBD phenotypes, distributions and severities
will allow more precise positioning and optimisation of subcutaneous infliximab in the
management of IBD.
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