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Abstract: Pulmonary hypertension (PH) is a serious hemodynamic condition, characterized by
increased pulmonary vascular resistance (PVR), leading to right heart failure (HF) and death when
not properly treated. The prognosis of PH depends on etiology, hemodynamic and biochemical
parameters, as well as on response to specific treatment. Biomarkers appear to be useful noninvasive
tools, providing information about the disease severity, treatment response, and prognosis. However,
given the complexity of PH, it is impossible for a single biomarker to be adequate for the broad
assessment of patients with different types of PH. The search for novel emerging biomarkers is still
ongoing, resulting in a few potential biomarkers mirroring numerous pathophysiological courses.
In this review, markers related to HF, myocardial remodeling, inflammation, hypoxia and tissue
damage, and endothelial and pulmonary smooth muscle cell dysfunction are discussed in terms
of diagnosis and prognosis. Extracellular vesicles and other markers with complex backgrounds
are also reviewed. In conclusion, although many promising biomarkers have been identified and
studied in recent years, there are still insufficient data on the application of multimarker strategies for
monitoring and risk stratification in PH patients.

Keywords: pulmonary hypertension; chronic thromboembolic pulmonary hypertension; pulmonary
arterial hypertension; biomarkers; right heart failure

1. Introduction

Pulmonary hypertension (PH) is a progressive, heterogenous disease, characterized
by increased pulmonary vascular resistance (PVR), subsequently leading to elevated pul-
monary arterial pressure (PAP) and increased workload of the right ventricle (RV). The RV
adapts to the pathological afterload by increasing wall thickness and contractility. However,
the compensatory mechanisms may fail, resulting in right heart failure (HF) and death, if
not properly treated.

Consistent with the European Society of Cardiology (ESC)/European Respiratory
Society (ERS) Guidelines, there are five groups of PH, according to clinical and pathophys-
iological criteria. Group 1 contains idiopathic pulmonary arterial hypertension (iPAH),
as well as drug-induced PAH and all heritable forms of PAH. Group 2 is PH secondary
to left-sided heart failure. PH in group 3 is caused by lung disease and/or hypoxia, and
group 4 is chronic thromboembolic pulmonary hypertension (CTEPH). Group 5 consists of
PH due to uncertain multifactorial mechanisms. Targeted pharmacological or interventional
treatment can be offered to patients diagnosed with PAH and CTEPH, respectively [1,2].
The prognosis of PH varies broadly and depends mostly on etiology of PH, but is also based
on hemodynamic and biochemical parameters, which indicate the severity of right ventric-
ular failure, as well as on response to specific treatment. Early recognition of the disease
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and risk stratification seem to be crucial to identifying patients at high risk and optimizing
therapeutic management. Thus, biomarkers may specifically indicate the disease and
provide information about the disease stage and treatment response in a relatively easily
accessible and noninvasive way. The search for novel emerging biomarkers is still ongoing,
resulting in a few potential biomarkers mirroring numerous pathophysiological courses.
The main focus is on detecting and quantifying abnormal adaptations and remodeling of
the right heart in response to chronic pulmonary circulation impairment. However, in the
natural course of PH and right ventricular HF, tissue damage, fibrosis, inflammation, and
endothelial dysfunction seem to be also crucial underlying mechanisms, which may be
included in noninvasive biomarker assessment (Figure 1). In the present article, we review
circulating biomarkers related to different mechanisms underlying the precapillary PH and
describe the potential application for them, highlighting their limitations and necessity for
further investigation.

Figure 1. A summary of circulating biomarkers in precapillary pulmonary hypertension.

2. Biomarkers Related to Heart Failure, Myocardial Injury, and Remodeling

In PH, elevated PVR and PAP lead to hemodynamic stress, myocardial strain, and
stretching of the heart. Consequently, this condition results in the release of the molecular
mediators, indicative for numerous cardiovascular diseases with additional prognostic
value. Several markers associated with HF, myocardial injury, and myocardial remodeling,
such as natriuretic peptides, cardiac troponins, soluble ST2, and heart-type fatty acid-
binding protein, have been investigated in a cohort of patients with precapillary PH.

2.1. Natriuretic Peptides

Brain-type natriuretic peptide (BNP) is produced as an inactive precursor (proBNP),
then converted into the active form N-terminal-pro brain-type natriuretic peptide (NT-
proBNP) and released from cardiomyocytes. Due to the longer half-life of NT-proBNP
compared to BNP, NT-proBNP is preferred in clinical practice as a marker of heart overload
and myocardial dysfunction [3,4]. NT-proBNP remains a well-established and widely used
biomarker in numerous cardiovascular diseases. It is released in response to ventricular
wall stress and myocardial hypoxia or ischemia. NT-proBNP is mostly used in the diagnos-
tic process of patients with acute or chronic HF as well as in predicting prognosis of those
patients [5]. In PH patients, serum NT-proBNP levels correlate with right heart dysfunction
and provide prognostic information at diagnosis and during follow-up assessment [6–8].
However, due to the high variability of NT-proBNP levels and its possible inadequate cor-
relation with hemodynamic parameters and exercise capacity, it should only be interpreted
in the clinical context [6]. At present, NT-proBNP is a crucial element of risk stratification in
PAH patients and is addressed in both the risk score developed from the REVEAL registry
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(Registry to Evaluate Early and Long-Term PAH Disease Management) [9,10] and in the
risk stratification method proposed by ESC/ERS guidelines [2]. Consistent with REVEAL
registry data, a baseline NT-proBNP level of ≤340 ng/L is a strong predictor of improved
survival up to 5 years in PAH patients [10]. In slightly different terms, the ESC/ERS
guidelines classify NT-proBNP concentrations as low (<5%), intermediate (5–10%), or high
(>10%) risk of 1-year mortality, by using specific thresholds of 300 and 1400 ng/L [2].
A significant decrease in NT-proBNP levels among patients with PAH is associated with
the response to targeted medical therapy [11,12]. In CTEPH patients, BNP may not only
reflect the degree of RV dysfunction and hemodynamic severity of the disease, but also
facilitate to assess the effect of pulmonary endarterectomy (PEA) [13], with estimated BNP
baseline cut-off values predictive of worse postoperative survival [14]. Furthermore, both
balloon pulmonary angioplasty (BPA) as well as pharmacological treatment result in a
decrease of NT-proBNP concentration [15–17]. In patients treated with BPA, a reduction in
NT-proBNP concentration is associated with a significant decrease in mean PAP and PVR,
thereby indicating the procedural success of BPA [15]. Tables 1 and 2 presents changes
in BNP and NT-proBNP concentrations before and after BPA treatment in the hitherto
published case series.

Table 1. Changes in BNP levels in CTEPH patients before and after BPA treatment in the hitherto
published case series.

Studies No. of
Patients (n)

No. of BPA
Sessions (n)

BNP before
BPA (pg/mL)

BNP after BPA
(pg/mL) p

Sugimura et al. [18] 12 NR 335 ± 105 16 ± 11 S

Kimura et al. [19] 66 446 237.7 ± 475.7 45.2 ± 47.6 S

Ogo et al. [20] 80 385 227 ± 282 48 ± 57 S

Yamasaki et al. [21] 20 2.7 per pt 66.5 ± 61.3 33.8 ± 30.0 S

Aoki et al. [22] 24 113 112 (49–199) 27.5 (14.6–58.4) S

Inami et al. [23] 103 350 94 (42–232) 61 (39–150) S
Data are presented as mean ± SD or median and (IQR), S—p < 0.05; BPA—balloon pulmonary angioplasty;
BNP—brain natriuretic peptide.

Table 2. Changes in NT-proBNP levels in CTEPH patients before and after BPA treatment in the
hitherto published case series.

Studies No. of Patients (n) No. of BPA
Sessions (n)

NT-proBNP before
BPA (pg/mL)

NT-proBNP after BPA
(pg/mL) p

Kurzyna et al. [24] 31 117 2571 ± 2719 634 ± 697 S

Olsson et al. [25] 66 446 504 (233–1676) 242 (109–555) S

Araszkiewicz et al. [26] 15 71 1554.8 ± 1541.3 537 ± 642.6 S

Darocha et al. [27] 70 377 1307 (510–3294) 206 (83–531) S

Gerges et al. [28] 45 6 (4–10) per pt 579 (182–1385) 198 (70–429) S

Data are presented as mean ± SD or median and (IQR), S—p < 0.05; BPA—balloon pulmonary angioplasty;
NT-proBNP—N-terminal-pro brain-type natriuretic peptide.

2.2. Cardiac Troponins

So far, both cardiac troponin I (cTnI) and T (cTnT) are the principal biomarkers for
the detection of myocardial damage and key factors in the diagnosis of acute myocardial
infarction [29]. In addition, the development of high-sensitivity assays has made it possible
to detect troponin concentrations and their association with morbidity and mortality in
many chronic diseases, such as heart failure, coronary artery disease, or chronic kidney dis-
ease [30–33]. Although the underlying mechanisms for troponin release in some conditions
remain not completely elucidated, in most cases troponins levels correlate with markers
of left heart structural abnormalities and other markers related to left HF. In contrast, the
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mechanism of troponin release in PH patients seems to be associated with RV pathology,
seemingly caused by demand–perfusion mismatch or microcirculation impairment. These
theories are supported by the results from several research studies, in which significant
correlations between troponins concentration and hemodynamic parameters, including
mean PAP (mPAP), mixed venous oxygen saturation (mvSatO2), and RV ejection fraction,
were identified [34,35]. Moreover, both cTnT and cTnI concentrations were associated with
worse outcomes in mixed cohorts of PH patients [34,36]. Thereby, ESC guidelines indi-
cate that for comprehensive prognostic assessment and risk stratification, troponin levels
should be measured at the diagnosis of PAH, then at least once a year or whenever the
patient presents with clinical worsening [2]. In CTEPH patients undergoing interventional
treatment with BPA, high-sensitivity cTnT concentration decreases stepwise under therapy,
signifying a reduction of ongoing myocardial damage due to decreased right ventricular
afterload after BPA therapy [37]. Thus, also in the CTEPH patient population, troponins
can be a useful marker to monitor the progress of treatment.

2.3. Soluble ST2

Soluble ST2 (sST2) protein is another promising biomarker in PH patients. Protein
ST2 belongs to the Toll interleukin 1 receptor superfamily and exists in two isoforms:
transmembrane ST2 ligand (ST2L) and soluble ST2 (sST2), which circulates in the blood.
The transmembrane form is expressed mainly on inflammatory cells and takes part in
strengthening of the immune response of Th2 lymphocytes. However, it is also exposed in
cardiomyocytes and endothelium [38]. The ligand for ST2 is interleukin 33 (IL-33), whose
expression increases due to mechanical overload and ischemia of cardiomyocytes [38]. The
paracrine IL-33/ST2L system plays a protective role, counteracting fibrosis and myocardial
hypertrophy. The sST2 protein, which prevents IL-33 binding to the ST2L, is responsible
for interrupting this protective action. The balance between both isoforms of ST2 protein
ensures the correct biological effect [38,39]. The increase of sST2 concentration in plasma is
associated with cardiac remodeling and hemodynamic stress [38–40]. Besides natriuretic
peptide family and cardiac troponins, sST2 protein may be an additional biomarker for
adverse outcomes in cohorts of patients with acute and chronic heart failure [41–43]. The
sST2 level above 35 ng/mL in patients with HF is associated with higher risk of adverse
events, defined as hospitalization or death in one year, in comparison to subjects with sST2
level below this value [44–46]. At present, there is increasing evidence of the use of the
sST2 protein for risk stratification in patients with RV failure due to PH. In different types
of PH, higher sST2 levels are linked to the remodeling of the RV [47]. In a study involving
100 patients diagnosed with PAH or CTEPH, significant correlations between sST2 and
cardiac index (CI), mean right atrial pressure (mRAP), PVR, mvSatO2, NT-proBNP con-
centration, and 6 min walking distance (6MWD) were noticed [48]. These observations
are consistent with those from other studies conducted in smaller populations of patients
with precapillary PH [49,50]. Moreover, sST2 has been assessed as a marker of therapy
response in 57 CTEPH patients, treated with BPA. In detail, the median sST2 concentration
decreased to the range of control group after interventional treatment, but it was not related
to the individual grade of response to BPA therapy [51]. In another study, sST2 concen-
tration changed significantly in 37 CTEPH patients treated with BPA in the immediate
postprocedural period. Interestingly, in patients who experienced complications in the
postprocedural period, the baseline sST2 levels were significantly higher in comparison
to those without complications. Thereby, sST2 could be beneficial for preoperative risk
assessment in these patients. Furthermore, sST2 concentration significantly increased early
after BPA procedure, irrespective of complications. In contrast, no analogous changes in
NT-proBNP levels were noticed, which may be suggestive of an additional noncardiac
source of sST2 in CTEPH patients. Therefore, in PH, sST2 as a complex biomarker may
reflect not only the heart condition but also pulmonary vascular system and lung tissue [52].
Table 3 summarizes the main differences between sST2 and NT-proBNP in management
of PH.
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Table 3. Main differences between NT-proBNP and soluble ST2 as biomarkers in PH.

Feature Soluble ST2 Protein BNP/NT-proBNP

Origin The Toll-like receptor superfamily
binding IL-1; Il33–ST2 pathway Oligopeptide nuerohormones

Source of secretion Cardiomyocytes, endothelial cells,
inflammatory cells Cardiomyocytes

Form Two isoforms: transmembrane
ST2-ligand (ST2L) and soluble ST2 (sST2) N-terminal fragment of prohormone

Physiological function Cardioprotective role, enhancement of
Th2-dependent immune response

Cardiovascular homeostasis,
vasodilatation

Pathophysiological basis Cardiac remodeling and fibrosis Hemodynamic condition

Secretion factor Hemodynamic stress and myocardial
remodeling; inflammation Pressure and volume overload

Age- and renal function-dependence NO YES

Role in diagnosis of PH NO YES

Role in prognosis of PH YES YES

Correlation with disease severity YES YES

Correlation with treatment effect YES YES

BNP—brain natriuretic peptide; NT-proBNP—N-terminal-pro brain-type natriuretic peptide.

2.4. Heart-Type Fatty Acid-Binding Protein

Heart-type fatty acid-binding protein (H-FABP) is a low-molecular-weight protein,
which is expressed in the cytosol of cardiomyocytes. H-FABP appears to be a marker of
injury of cardiomyocytes and is also considered as additional biomarker for early diagnosis
of acute coronary syndrome [53]. Of note, Puls et al. described H-FABP as a suitable marker
for risk assessment in patients with acute pulmonary embolism [54]. However, there are
only limited data about the application of H-FABP in PH patients. Lankeit et al. examined
the role of H-FABP in risk stratification in CTEPH patients. The results of the study revealed
H-FABP as an independent marker of adverse outcomes, defined as persistent PH after
PEA, CTEPH-related death, or lung transplantation [55]. In contrast, Mirna et al. identified
H-FABP as an indicator of postcapillary, but not precapillary PH [56]. Although these initial
reports appear promising, further studies enrolling a larger population are needed in order
to evaluate existing discrepancies.

3. Markers of Inflammation

There is increasing evidence that inflammation processes have great significance in
the pathophysiology of PH, being involved in pulmonary arterial remodeling. However,
the inflammatory component could also mirror organs distress caused by a certain degree
of ischemia and elevated sympathetic drive as a consequence of limited cardiac output.
A variety of both anti- and proinflammatory molecules have been investigated as potential
biomarkers in cohorts of PH patients.

3.1. C-Reactive Protein

C-reactive protein (CRP), a widely used marker of inflammation, is broadly estab-
lished as a predictor of numerous cardiovascular diseases, including different types of PH.
In PAH, significant correlations between CRP and RAP, 6MWD as well as NYHA class
were revealed [57]. Scognamiglio et al. observed that in patients with congenital heart
disease-associated PAH (CHD-PAH), CRP concentration was commonly increased and
the CRP elevation above 10 mg/mL was associated with around four times greater risk of
death [58]. Wynants et al. examined CRP effects on pulmonary vascular cells in CTEPH
patients. They revealed that CRP could play a role in chronic obstruction of pulmonary
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arteries by stimulating endothelial dysfunction, vascular remodeling, and in situ thrombo-
sis [59]. In CTEPH patients, plasma CRP concentrations were related to tissue factor (TF)
antigen, suggesting the connection between thrombosis and inflammatory processes in
the pathogenesis of CTEPH [60]. Moreover, Quarck et al. observed that CRP levels were
elevated among CTEPH patients and significantly decreased 12 months after PEA [57].
However, due to the reported elevated CRP levels in many clinical conditions, including
various cardiovascular diseases, its potential use in the diagnosis and monitoring of PH
patients remains limited.

3.2. Red Blood Cell Distribution Width

Red blood cell distribution width (RDW) is a laboratory biomarker of heterogeneity,
regularly measured in standard blood analyses. Elevated RDW levels are the sign of
anisocytosis, which is linked with underlying inflammatory processes [61]. So far it is
known that RDW may be a predictor of survival in various cardiovascular diseases, such as
coronary artery disease [62], chronic heart failure [63], or acute pulmonary embolism [64].
Moreover, RDW is a prognostic marker of PH of different etiologies, and an association with
mortality in a cohort of PH patients was noticed [65,66]. In study involving 77 inoperable
CTEPH and PAH patients, the decrease in RDW level after initiation or escalation of
specific treatment was linked with good treatment response and improved prognosis [67].
Similar results were previously obtained by Wang et al. in 56 CTEPH patients [68]. However,
there is a need for prospective studies to better assess the prognostic value of RDW in
cohorts of patients with precapillary PH.

3.3. Growth Differentiation Factor-15

Growth differentiation factor-15 (GDF-15) is a member of the TGFβ superfamily. GDF-
15 is exposed in various types of cells in response to tissue damage, ischemia, or shear
stress [69,70]. So far, GDF-15 has been indicated as a nonspecific marker of systemic stress
in several cardiovascular diseases [71]. In PH, GDF-15 is present in the plexiform lesions
in the pulmonary vascular bed and may thus affect both apoptosis and proliferation of
endothelial cells [69]. Nickel et al. revealed that in 22 patients with iPAH, GDF-15 levels
were associated with hemodynamic parameters such as RAP and pulmonary capillary
wedge pressure (PCWP), as well as with biochemical parameters, such as NT-proBNP
concentration. However, there were no significant changes in median GDF-15 levels
measured prior to beginning of specific therapy and at three- or six-month follow-up [72].
Furthermore, in a study by Meadows et al. in patients with scleroderma and associated
PAH, GDF-15 was a marker of reduced survival and correlated with NT-proBNP levels and
right ventricular systolic pressure assessed by transthoracic echocardiography [73]. The
observations mentioned above brightly propose that GDF-15 could be a prognostic factor
in PAH. GDF-15 was also assessed as a marker in therapy response in CTEPH patients
treated with BPA. Kriechbaum et al. revealed no significant changes before and after BPA
treatment, but there was a correlation between delta change in GDF-15 levels and the
change in CI and RAP. In addition, a low concentration of GDF-15 measured at baseline
indicated responders to the BPA therapy at the follow-up [51].

3.4. Cytokines

Various cytokines are considered crucial inflammatory mediators in numerous condi-
tions, including PH. In a study conducted by Soon et al., serum levels of several interleukins
(IL), such as IL-1, IL-2, IL-4, IL-6, IL-8, Il-10, and IL-12p70, and tumor necrosis factor-α
(TNFα) were higher in patients with PAH in comparison to a group of healthy controls.
From the ILs mentioned above, IL-6, IL-8, IL-10, and IL-12p70 were prognostic factors
of poor survival in iPAH and familial PAH [74]. These data are consistent with results
obtained by Selimovic et al., which revealed significantly higher levels of IL-6, transforming
growth factor β1 (TGFβ1), platelet-derived growth factor (PDGF), and vascular endothelial
growth factor (VEGF) in PAH patients compared to controls. Moreover, in this study, a sig-
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nificant association between IL-6 and mortality was observed [75]. Similar observations
were previously revealed by Langer et al. in a cohort of CTEPH patients [76]. Elevated
levels of IL-6, IL-8, and TNFα were observed in CTEPH patients before PEA. Hence, both
IL-6 and Il-8 presented a noticeable peak immediately after PEA, whereas TNFα levels
significantly decreased within 24 h after the procedure [76]. What is more, in a study
conducted by Zabini et al., significant correlations of IL-6 and hemodynamic parameters
and exercise capacity were observed [77]. As mentioned above, numerous cytokines have
been investigated as potential biomarkers in PH patients, but their applicability remains
still in the research phase.

3.5. Neopterin

Neopterin (NP), belonging to the class of pteridines, is a marker of cellular immune re-
sponse. NP is predominantly released by dendritic cells and macrophages after stimulation
with interferonγ (IFNγ) via guanosine triphosphate (GTP) cyclohydrolase I [78]. The cru-
cial pathophysiological role of NP is presumably the interaction with reactive oxygen or
nitrogen intermediates, in that way stimulating oxidative stress [79]. Elevated levels of NP
have been observed in various clinical conditions, including cardiovascular diseases, such
as heart failure and coronary artery disease [80,81]. Moreover, in the above-mentioned con-
ditions, NP has been documented as a biomarker associated with death and adverse-event
prognosis. NP could participate in the progression of various types of PH by intensifying
effects of reactive oxygen species. However, there are only limited data about NP used as
a biomarker in patients with PH. In the study including 50 PAH and inoperable CTEPH
patients, NP levels were significantly higher in comparison to healthy controls. Moreover,
positive correlations of NP with NT-proBNP, right atrium area, and negative correlations
with 6MWD and peak-VO2 assessed in cardiopulmonary exercise test (CPX) were reported.
Additionally, elevated NP levels were associated with poor clinical outcomes in a cohort of
PH patients [82].

3.6. Galectin 3

Galectin-3 (Gal-3) is a beta-galactoside-binding lectin, expressed in the inflammatory
cells (macrophages, neutrophils, eosinophils, and mast cells) and endothelial cells in re-
sponse to tissue damage. Gal-3 is considered to be mediator of inflammatory processes and
fibrosis, and its activity results in increased adverse cardiac remodeling [83,84]. Healthy
cardiomyocytes are characterized by low Gal-3 expression, whereas in patients diagnosed
with heart diseases, Gal-3 levels increase with disease severity [85]. In recent years, many
studies have aimed to demonstrate the role of Gal-3 in diagnosis and prognosis of left-sided
HF. Multiple measurements of Gal-3 levels in two large cohorts of patients with chronic and
acute HF provided important information on the prognostic value of Gal-3 in identifying
high risk of morbidity and mortality [86–88]. However, Gal-3 may be suitable also for
monitoring right ventricular remodeling [89]. There are only limited data about the role
of Gal-3 measurements among PH patients, focusing mainly on patients with PAH and
consisting of small cohorts. Calvier et al. demonstrated high levels of Gal-3 in PAH patients
and revealed correlations between Gal-3 and functional parameters [90]. Mazurek et al.
observed that elevated levels of Gal-3 were associated with mortality in PH patients, but
the study involved both PAH and PH due to left-sided HF patients [91]. In the study con-
ducted by Geenen et al., including 164 patients with PAH, CTEPH, or PH caused by lung
disease, there were no significant differences in the Gal-3 levels between subgroups [92].
However, higher levels of Gal-3 were associated with adverse outcomes, defined as death,
hospitalization, or lung transplantation. In another study, Gal-3 was evaluated in relation
to disease severity and treatment response in patients with CTEPH treated with BPA. In the
context of risk assessment and evaluation of therapy response, no diagnostic benefits were
revealed [51].
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4. Biomarkers Related to Pulmonary Arterial Smooth Muscle Cell and
Endothelial Dysfunction

Although the pathogenesis of PAH is fundamentally different from that of CTEPH,
it has been shown that changes in pulmonary arterial microcirculation can be similar in both
types, including excessive pulmonary arterial smooth muscle cell (PASMC) proliferation
and endothelial dysfunction. There are several biomarkers linked to endothelial cells and
PASMC studied in the PH patient population.

4.1. Asymmetric Dimethylarginine

Asymmetric dimethylarginine (ADMA), produced by endothelial cells, is a competi-
tive nitric oxide synthase inhibitor [93]. As we know from several reports, ADMA levels
are higher and are associated with adverse outcomes in patients with different types of
PH, including idiopathic PAH and CTEPH, but also with other diseases, including acute
myocardial infarction [94]. In study conducted by Kilestein et al., ADMA correlated with
CI, RAP, and mvSatO2 and was an independent predictive factor of mortality in PAH [95].
Similar correlations were achieved by Skoro-Sajer et al. in a cohort of CTEPH patients [96].
Furthermore, Sanli et al. revealed higher ADMA concentrations in pediatric patients
diagnosed with congenital heart disease [97].

4.2. Endothelin-I and COOH-Terminal Pro Endothelin 1

Endothelin-I (ET-I), involved in cardiovascular hemostasis and respiratory devel-
opment, promotes PASMC proliferation and migration and is considered an effective
vasoconstrictor [98–100]. In patients with different types of PH, high levels of ET-1 and
significant correlations of ET-1 with hemodynamic parameters are observed. At present, in
the treatment of PAH, endothelin receptor antagonists are well established and commonly
used with favorable effects [98,101]. In CTEPH, preoperative high ET-1 levels correlate
positively with clinical severity of the disease, being potential predictors of hemodynamic
effects after PEA [102]. These observations were also confirmed by Reesink et al., whose
study showed ET-1 levels in CTEPH patients were useful for identifying patients at risk for
residual or persistent PH after surgical treatment [103]. However, there are some specific
obstacles that make ET-1 not an attractive biomarker. These obstacles can be overcome by
COOH-terminal pro endothelin 1 (CT-proET-1). Firstly, there is no correlation between
ET-1 levels in lung and plasma, which may be explained by its paracrine functions [104].
Secondly, direct measurement of ET-1 levels can be affected by cross-reactivity. On the
contrary, CT-pro-ET-1 is present in plasma and remains stable at room temperature for a
few hours [105]. In the study performed by Marques et al., including 28 patients with PAH,
plasma CT-pro-ET-1 levels were associated with functional parameters and were predictors
of hospitalization, death, or lung transplantation within 12-month follow-up [106].

4.3. MicroRNAs as Biomarkers in PAH

MicroRNAs(miRNAs) are small, endogenously expressed noncoding RNAs, circu-
lating in the blood. MiRNAs regulate gene expression at the posttranscriptional level by
degrading or stopping target RNAs [107]. MiRNAs measurements may play a role as
biomarkers for several pathologies, including HF or acute myocardial infarction [108,109].
Finally, miRNAs are engaged in the progression of iPAH, including plexiform lesion cre-
ation, endothelial dysfunction, smooth muscle cell proliferation, and both activation and
proliferation of fibroblasts [110]. There is evidence for miRNAs as markers of PAH progres-
sion. Rothman et al. revealed reduced levels of miR-140-5p in PAH patients in comparison
to control group. Further, inhibition of miR-140-5p promotes PASMC proliferation and
migration in vitro, which may be relevant in the progression of the disease [111]. Sarrion
et al. assessed circulating miRNAs in 12 patients with idiopathic PAH. As a result, they
found significant changes in 61 miRNAs. Additionally, correlations between the expression
of miR23a and hemodynamic parameters, such as mean PAP, CI, and PVR, were observed.
Additionally, the expression profile of circulating messenger RNA (mRNAs) was stud-
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ied, and results revealed that miR23a controlled 17% of the significantly changed mRNA,
including PGC1α, which is related to the progression of iPAH [112].

5. Markers of Hypoxia and Tissue Damage

The natural course of PH leads to low cardiac output and respiratory mismatch, which
in sequence turn to peripheral hypoperfusion. Thereby, biomarkers mirroring peripheral
damage and hypoperfusion, such as partial pressure of carbon dioxide (pCO2) and copeptin,
could be tools in monitoring disease progression and ascertaining prognosis.

5.1. pCO2

As is well known, pCO2 levels are constantly decreased in patients with different types
of PH. In accordance to a retrospective study conducted by Hoeper et al., decreased pCO2
levels in PAH patients were associated with poor prognosis, whereas decreased pO2 levels
had no prognostic significance. Interestingly, in the same study, the improvement of pCO2
after 3 months of PAH targeted therapy was noted, and that was associated with higher
survival rate [113]. However, a recent study conducted by Valentin et al. revealed that in
PAH patients, a ≥3% decrease in arterial oxyhemoglobin saturation (SaO2), noticed after
3 months of treatment with PAH-specific drugs, was associated with worse outcomes [114].

End-tidal partial pressure of CO2 (PETCO2) is a measurement made at the airway
during CPX. In normal individuals, PETCO2 increases from rest to the anaerobic threshold
(AT), then stabilizes during the isocapnic buffering period and finally decreases later during
exercise [115]. In both PAH and CTEPH, PETCO2 is frequently low at rest and declines
further during early exercise. In detail, PETCO2 at AT less than 30 mmHg may be suggestive
for pulmonary vascular disease in patients with unexplained dyspnea, whereas values
greater than 38 mmHg make PH diagnosis unlikely. Low values of PETCO2 are associated
with altered chemosensitivity, ventilatory inefficiency, and high dead space ventilation,
due to reduced perfusion of highly ventilated alveoli. The magnitude of PETCO2 reduction
inversely correlated with the degree of mPAP elevation in a cohort of PH patients [116].

5.2. Uric Acid

Uric acid (UA) is the end product of purine metabolism and a marker of impaired
oxidative metabolism. UA can be produced due to various conditions, such as cardiac
overproduction, renal impairment, or use of diuretics in right-sided HF. Serum UA levels
have been presented to be elevated in patients with both left- and right-sided HF [117]. Thus,
the use of UA as a marker in PH remains debatable. Nagaya et al. revealed significantly
increased serum levels of UA in PH patients. Further, serum UA levels were independently
related to mortality [118]. In another study by Voelkel et al., patients with severe PH had
higher levels of UA and UA levels were positively correlated with RAP [119]. Wang et al.
assessed UA levels in a cohort of 50 patients diagnosed with PAH related to connective
tissue disease (CTD-PAH). They observed that patients with increased levels of UA at
baseline had a lower survival rate in comparison to those with normouricemia. It is suggestive
for UA levels as a prognostic factor in CTD-PAH patients [120]. Interestingly, in pediatric
PAH patients, treatment with prostacyclin was able to reduce UA levels [121]. However,
it remains unclear whether treatment of increased UA concentrations has an influence on
prognosis. Finally, the main limitation of UA as a marker is lack of specificity for PH.

5.3. Copeptin

Copeptin, the C-terminal fragment of the vasopressin’s precursor, is an emerging
surrogate target for assessment of vasopressin levels. Copeptin has arisen as a valuable
tool in monitoring cardiovascular pathologies. As known from previous reports, copeptin
can deliver additional information to troponin in the initial assessment process of patients
with chest pain [122–124]. In patients diagnosed with chronic HF, copeptin increases the
diagnostic value of NT-proBNP as a predictor of all-cause mortality [122,125]. In PAH pa-
tients, copeptin significantly correlates with 6MWD and NYHA class as well as with kidney
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function [126–128]. Moreover, in a study performed by Nickel et al., elevated copeptin
concentration was related to a higher risk of death and was an independent predictive
factor of adverse outcomes in PAH patients. Noteworthy, copeptin levels were independent
of hemodynamic parameters, but correlated well with NT-proBNP concentration, both at
baseline and after initiation of treatment targeting pulmonary arterioles. Consequently,
copeptin might mirror neurohumoral activation due to altered function of the RV. Thus,
elevated copeptin levels could add significant prognostic information that is not captured
by RHC or NT-proBNP concentration assessed alone [129]. Summarizing, copeptin could
be an additional biomarker in multimarker testing strategies for better risk stratification in
PH patients.

6. Extracellular Vesicles

There is increasing evidence suggesting an active role for extracellular vesicles (EVs) in
the pathophysiology of PH. Extracellular vesicles have different origins, such as endothelial
cells, leukocytes, and platelets [130,131]. The concentration of EVs increases differently
and specifically in various pathological conditions, including cardiovascular diseases [132].
In detail, in studies conducted by Amabile et al., circulating EVs of leukocyte (CD11b+),
platelet (CD31+CD61+), as well as endothelial (CD62e+) origin, measured by flow cytome-
try, were higher in patients with PH in comparison to controls. In addition, endothelial EVs
levels correlated with the hemodynamic severity of PAH and were associated with adverse
clinical events [131,133]. Moreover, PAH patients had higher endothelial EV concentrations
compared to patients with chronic pulmonary disease-related PH [131]. These observations
indicate the potential role of EVs in the disease onset and progression of PAH. In detail,
both leukocyte and platelet EVs promote destruction of the pulmonary endothelium and
remodeling of the PASMC. On the other hand, Diehl et al. reported higher levels of endothe-
lial EVs bearing E-selectin in thromboembolic PH in comparison to non-thromboembolic
PH patients [130]. Gąsecka et al. investigated EVs levels in 42 PAH patients treated with
prostacyclin analogues. Patients during treatment with prostacyclin analogues had similar
concentrations of EVs from platelets, but lower concentrations of EVs from leukocytes
and activated platelets in comparison to patients treated with phosphodiesterase type 5
inhibitor and/or endothelin receptors antagonists. Moreover, the authors noticed a trend
toward a lower concentration of EVs from endothelial cells in patients treated with prosta-
cyclin analogues [134]. These results may suggest that the decrease of EVs levels might
be one of the mechanisms underlying the favorable effects of prostacyclin analogues in
PAH patients.

7. Other Biomarkers
7.1. High-Density Lipoprotein Cholesterol

High-density lipoprotein cholesterol (HDL-C) is a well-known biomarker of various
cardiovascular diseases. In two studies among PAH patients, decreased levels of HDL-C
were measured. Moreover, levels of HDL-C were strongly associated with survival in
patients with PAH [135,136]. In a retrospective study involving 90 patients suffering from
CTEPH, high levels of HDL-C significantly correlated with a decrease in right ventricular
dilatation and a considerable reduction in PVR after surgical treatment [137].

7.2. Adiponectin

Adiponectin (APN) is an adipokine, completely produced and secreted in the adipose
tissue. However, in addition to adipocytes, APN is exposed also in various other cell types,
such as cardiomyocytes and endothelial cells [138,139]. In PH, APN is considered to exert a
cardioprotective effect, by reducing inflammatory processes and inhibiting vascular smooth
muscle cells proliferation [119]. In a study of 30 CTEPH patients, APN levels were elevated
and positively correlated with hemodynamic parameters, such as PVR, and with BNP
concentration. Moreover, levels of APN decreased significantly after improvement of RV
function due to BPA or PEA. Thus, changes in APN levels in association with hemodynamic
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severity and clinical outcome are suggestive for the role of APN as a prognostic biomarker
in PH [140]. However, given that the exact role of adiponectin in PH has not yet been fully
understood, further studies are needed to better evaluate this biomarker.

7.3. F(2)-Isoprostane

F(2)-isoprostane is a marker of lipid peroxidation, measured both in urine and in
plasma samples. It is regarded as an oxidative stress marker; however, its source has not
been identified yet. Data assessing F(2)-isoprostane among PH patients are limited. Cra-
cowski et al. prospectively assessed urine F(2)-isoprostane levels in 110 PAH patients. They
revealed that F(2)-isoprostane was an independent predictive factor of mortality in this
cohort. Moreover, they also observed that F(2)-isoprostane measurement in children with
family history of PAH can help in early detection of the disease [123,141]. In another study,
Zhang et al. determined F(2)-isoprostane plasma levels in 80 patients diagnosed with iPAH
at the time of their first RHC and monitored them for 30 ± 12 months. F(2)-isoprostane
were elevated in the study population and significant correlations with WHO functional
class, 6MWD, mvSatO2, mRAP, and BNP were noticed. Moreover, F(2)-isoprostane con-
centration increased further in nonsurviving patients despite similar targeted treatment
being administered in both survivors and nonsurvivors. Histological studies presented
that the expression of F(2)-isoprostane was upregulated in remodeled pulmonary vessels
in autopsy lung samples [142].

8. Conclusions

The present article reviews several promising biomarkers that have been identified
and assessed in PH patients over the past few years. Although a wide range of biomarkers
have been explored, none of them are specific enough to be used alone in the diagnostic
process and prognosis assessment. Moreover, the majority of biomarkers mentioned in
this review have been evaluated in retrospective studies with a small number of patients
and/or controls, divergent studied population, and with potential selection bias. Therefore,
part of the available data should be taken with caution. Larger, prospective clinical trials
are needed to validate potential biomarkers for both diagnosis and prognosis. Furthermore,
given the complexity of the disease, it remains unlikely that a single biomarker can be used
successfully in patients with precapillary PH. Multimarker strategies for risk assessment,
as applied in patients with left HF, should be investigated and validated in PH.
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