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Abstract: Background: Virtually all patients with heart failure with reduced ejection fraction have a
reduction of myocardial mechano-energetic efficiency (MEE). Cardiac contractility modulation (CCM)
is a novel therapy for the treatment of patients with HFrEF, in whom it improves the quality of life and
functional capacity, reduces hospitalizations, and induces biventricular reverse remodeling. However,
the effects of CCM on MEE and global longitudinal strain (GLS) are still unknown; therefore, this
study aims to evaluate whether CCM therapy can improve the MEE of patients with HFrEF. Methods:
We enrolled 25 patients with HFrEF who received an Optimizer Smart implant (the device that
develops CCM therapy) between January 2018 and January 2021. Clinical and echocardiographic
evaluations were performed in all patients 24 h before and six months after CCM therapy. Results: At
six months, follow-up patients who underwent CCM therapy showed an increase of left ventricular
ejection fraction (30.8 ± 7.1 vs. 36.1 ± 6.9%; p = 0.032) as well a rise of GLS 10.3 ± 2.7 vs. −12.9 ± 4.2;
p = 0.018), of MEE (32.2 ± 10.1 vs. 38.6 ± 7.6 mL/s; p = 0.013) and of MEE index (18.4 ± 6.3 vs.
24.3 ± 6.7 mL/s/g; p = 0.022). Conclusions: CCM therapy increased left ventricular performance,
improving left ventricular ejection fraction, GLS, as well as MEE and MEEi.

Keywords: cardiac contractility modulation; heart failure with reduced ejection fraction; global
longitudinal strain; myocardial mechano-energetics efficiency

1. Introduction

Myocardial mechano-energetic efficiency (MEE) expresses the heart’s ability to con-
vert adenosine triphosphate (ATP), obtained from aerobic metabolism, into mechanical
work [1]. Increased energy dissipation is a pathophysiologic hallmark of heart failure
(HF) with reduced ejection fraction (HFrEF), in which MEE is reduced [2]. Although
the gold standard for quantification of MEE is cardiac catheterization (bilateral and of
the coronary sinus) [3], recently, an echocardiographic approach has been proposed, en-
abling more extensive clinical applications [4,5]. Cardiac contractility modulation (CCM)
is an innovative therapy for the treatment of patients with HF [6] that through delivery,
via an implantable device (Optimizer Smart®, Impulse Dynamics, Marlton, NJ, USA), of
high-energy biphasic non-excitatory impulses during the absolute refractory period of the
cardiomyocytes results in improved calcium handling [7], reverses titin downregulation
and fetal gene expression [8,9] and reduces adrenergic tone and myocardial fibrosis [10,11].
These effects on failing myocardium biology result in an improvement of quality of life
and functional capacity [12], reduction of hospitalizations [13], and a biventricular reverse
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remodeling [14,15] in patients with HFrEF. However, the effects of CCM on the MEE of
patients with HFrEF are still unknown; therefore, in this study, we evaluate whether CCM
therapy can improve the MEE of patients with HFrEF.

2. Materials and Methods
2.1. Study Design

We evaluated for inclusion in the study all patients who underwent an Optimizer
Smart implant between January 2018 and January 2021 at the Heart Failure Unit of
Monaldi Hospital.

The following inclusion criteria were used:

(1) left ventricular ejection fraction ≤ 40%,
(2) New York Heart Association Class (NYHA) II-IV,
(3) Persistence of HF-related symptoms and/or >2 unplanned HF-related visits or hospi-

talization in the last 12 months despite optimal medical therapy (OMT),
(4) QRS duration < 120 ms.

The following exclusion criteria were used:

(1) acute coronary syndrome in the previous three months,
(2) cardiac resynchronization therapy device implantation in the previous 12 months,
(3) absence of aortic stenosis or left ventricular outflow tract (LVOT) obstruction,
(4) non-target dose of OMT for HFrEF,
(5) end-stage kidney disease required renal replacement therapy.

During the study period, 27 patients underwent an Optimizer Smart®implant, how-
ever, 2 patients died before the six-months follow-up, so the final enrolled population
consisted of 25 patients.

Study data were obtained from all patients 24 h before and six months after CCM
therapy. In addition, all patients signed informed consent, the recommendations of the
Helsinki Declaration were followed, and the ethics committee of the AORN dei Colli-
Monaldi Hospital approved the study (resolution No. 903/2020).

2.2. Echocardiography

Standard transthoracic echocardiography and Doppler assessment were performed
with Vivid E9 (GE Healthcare, Chicago, IL, USA) as recommended elsewhere [16–18].
Three cardiologists with expertise in echocardiography, blinded to this study, acquired and
analyzed all echocardiographic images.

An average of 3 cardiac cycles in patients with sinus rhythm and 5 cardiac cycles in
patients with atrial fibrillation was used for the individual measures. According to common
practice [19], stroke volume (SV) was calculated as:

SV = Left ventricular outflow tract (LVOT) radius2 × time velocity integral (TVI) of LVOT.

The global longitudinal strain (GLS) of the left ventricle was measured using the
Q-Analysis software package (EchoPAC BT2.02; GE Vingmed, Horten, Norway).

After manually identifying the end-systolic endocardial boundary of the left ventricle
by locating three points, a region of interest (ROI) was automatically generated. Next,
the ROI was adjusted by the operator in order to include the entire left ventricular walls.
Finally, according to international recommendations, we calculated the GLS value as the
average of the values obtained from the four chambers, two chambers, and three chambers’
views. The echocardiographic evaluations were performed 24 h before and six months after
CCM therapy.

2.3. MEE Evaluation

The MEE of a system is the ratio of the work produced to the amount of energy
required to produce that work [20]. The MEE of the left ventricle is determined by the ratio
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of systolic work (SW) to myocardial volume oxygen (MVO2), which expresses the amount
of oxygen used by the cardiomyocytes [21].

The following formula were used for calculations:

SW = systolic blood pressure (SBP) × stroke volume (SV),

MVO2 = SBP × heart rate (HR),

MEE = SV/HR (where HR is expressed in second, HR/60),

MEEi = MEE/body surface area (BSA).

2.4. Statistical Analysis

Prism 9 statistical software (GraphPad Software, San Diego, CA, USA) was used to do
all statistical analyses. Clinical and population variables are shown as mean ± standard
deviation, and categorical variables are expressed as numbers and percentages. Variations
between variables at baseline and follow-up were compared using the Wilcoxon test for
variables with nonnormal distribution and the t-test for variables with normal distribution.
All p values were two-sided; statistical significance was considered for p values < 0.05.

3. Results

The final study population consisted of 25 patients, whose clinical and echocardio-
graphic characteristics are shown in Table 1.

Table 1. Clinical and echocardiographic patients’ characteristics at baseline.

Variable Overall Population (25)

Age (mean ± SD) 62.8 ± 9.7 years

Female sex (n,%) 3 (12%)

Ischemic etiology (n%) 13 (52%)

Hypertension (n, %) 12 (48%)

Diabetes (n,%) 9 (36%)

COPD (n,%) 7 (28%)

NYHA class II (n,%) 4 (16%)

NYHA class III (n,%) 13 (52%)

NYHA class IV (n, %) 8 (32%)

ICD-DR (n,%) 16 (64%)

S-ICD 2 (8%)

CRT-D 7 (28%)

SBP (mean ± SD) 101 ± 11 mmHg

DBP (mean ± SD) 72 ± 6 mmHg

NT-pro BNP (mean ± SD) 2185 ± 1738 pg/mL

e-GFR (CKD-EPI) 62.3 ± 12 ml/min/1.73 m2

BUN/Creatinine 18.4 ± 9.7 mg/dL

Atrial fibrillation 9 (36%)

LVEDV (mean ± SD) 208.2 ± 73.2 mL

LVESV (mean ± SD) 125.3 ± 43.5 mL

LVEF (mean ± SD) 32.8 ± 7.1%
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Table 1. Cont.

Variable Overall Population (25)

LAVi 41.9 ± 4.3 mL/m2

E/e’ ratio 16.3 ± 7.5 cm/sec

Loop diuretic (n,%) 16 (64%)

Beta-Blockers (n,%) 25 (100%)

ARNI (n%) 25 (100%)

MRA (n,%) 18 (72%)
COPD: chronic obstructive pulmonary disease; NYHA: New York Heart Association; ICD-DR: dual chamber
implantable cardioverter defibrillator; S-ICD: subcutaneous implantable cardioverter defibrillator; CRT-D: cardiac
resynchronization therapy with defibrillator back-up SBP: systolic blood pressure; DBP: diastolic blood pressure;
NT-pro BNP: N terminal-pro brain natriuretic peptide; e-GFR: estimated glomerular filtration rate; CKD-EPI:
chronic kidney disease epidemiology collaboration; BUN: blood urea nitrogen; LVEDV: left ventricular end-
diastolic volume; LVESV: left ventricular end-systolic volume; LVEF: left ventricular ejection fraction; LAVi: left
atrium volume index; E/e’ ratio: Ratio of mitral peak velocity of early filling to early diastolic mitral annular
velocity ARNI: angiotensin receptor-neprilysin inhibitor; MRA: mineral receptor antagonist.

Most of the patients were male (22; 88%), 13 patients (52%) had an ischemic etiology,
and 9 patients (36%) had atrial fibrillation. Additionally, all patients have a previous
implantable cardioverter defibrillator, and 7 patients (28%) have a device for cardiac
resynchronization therapy.

3.1. Effects of CCM Therapy on Left Ventricular Function

The echocardiographic index of left ventricular systolic function improved at the
six-months follow-up (Table 2).

Table 2. Echocardiographic index of left ventricular systolic function of the study population.

Variable Baseline 6 Months Follow-Up p-Value

LVEDV (mL) 211.8 ± 45.8 188.3 ± 38.5 0.041

LVESV (mL) 141.8 ± 51.5 119.6 ± 49.7 0.024

LVEF (%) 32.8 ± 7.1 36.1 ± 6.9 0.032

GLS (%) −10.3 ± −2.7 −12.9 ± −4.2 0.018
LVEDV: left ventricular end-diastolic volume; LVESV: left ventricular end-systolic volume; LVEF: left ventricular
ejection fraction; GLS: global longitudinal strain.

There was a significant left ventricular reverse remodeling with a reduction of end-
diastolic (211.8 ± 45.8 vs. 88.3 ± 38.5 mL; p = 0.041) and end-systolic volumes (141.8 ± 51.5
vs. 119.6 ± 49.7 mL; p = 0.024), with a consequent improvement of left ventricular ejection
fraction (30.8 ± 71 vs. 36.1 ± 6.9%; p = 0.032). In addition, there was a significant increase in
the most specific and reproducible echocardiographic index of left ventricular function, the
GLS (−10.3 ± −2.7 vs. −12.9 ± −4.2%; p = 0.018; Figure 1). In addition, diastolic function
indices also improved, particularly the E/e’ ratio was significantly reduced at six-month
follow-up (16.3 ± 7.5 vs. 10.8 ± 4.2; p = 0.041).

3.2. Effects of CCM Therapy on Natriuretic Peptides, NYHA Class, and Quality of Life

As shown in Figure 2 (panel A) at the six months follow-up, a significant reduction of
plasma levels of N-terminal Brian Natriuretic Peptide (NT-proBNP) was observed in the
enrolled patients (2975 ± 1988 vs. 1911 ± 1268 pg/mL; p = 0.029).
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Figure 2. Effects of CCM therapy on NT-proBNP plasma levels (panel (A)), NYHA class (panel (B)),
and MLHFQ score (panel (C)). NT-proBNP: N terminal-pro brain natriuretic peptide; NYHA: New
York Heart Association; MLHFQ: Minnesota Living with Heart Failure Questionnaire.

Simultaneously with the reduction of natriuretic peptides plasma levels, an improve-
ment in the symptom reported by the patients occurred; in fact, at follow-up, a statistical
reduction in both NYHA class (3.1 ± 0.62 vs. 2.3 ± 0.56; p = 0.0001; Figure 2B) and of
the Minnesota Living with Heart Failure score occurred (40.08 ± 12.31 vs. 26.9 ± 10.8;
p = 0.0001—Figure 2C).

3.3. Effects of CCM on MEE

As showed in Figure 3, both MEE (32.2 ± 10.1 vs. 38.6 ± 7.6; mL/s p = 0.013) and MEEi
(18.4 ± 6.3 vs. 24.3 ± 6.7 mL/s/g; p = 0.022) increased after six months of CCM therapy.
The improvement of these indexes was due essentially due to the increase of SV without
a concomitant increase in HR (Figure 4). From a pathophysiological point of view, this



J. Clin. Med. 2022, 11, 5866 6 of 10

indicates an increase in cardiac contractility in the absence of a corresponding increase in
myocardial oxygen consumption, thus leading to an improved mechano-energetic coupling
of the heart.

Figure 3. Improvements of Myocardial Mechano-Energetic Efficiency (MEE; Panel (A)) and Mechano-
Energetic Efficiency index (MEEi; Panel (B)) after six months of CCM therapy. * = p < 0.05;
** = p < 0.001.
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Figure 4. Effects of CCM therapy on MME. Note the increase in stroke volume without an increase in
heart rate.
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4. Discussion

In this study, for the first time, we demonstrate that left ventricular GLS and MEE
increased after 6 months of CCM therapy in patients with HFrEF. Longitudinal deforma-
tion of the left ventricle is due to the contraction of subendocardial fibers, which are the
most susceptible to altered calcium handling [22], increased myocardial stiffness [23], and
myocardial fibrosis [24], typical features of the failing heart.

Therefore, longitudinal left ventricular dysfunction and consequentially reduced GLS
values develop early in patients with HFrEF [25]. In ex vivo intact hearts, CCM therapy
improves calcium handling through several mechanisms, such as rapid normalization
of phospholamban phosphorylation [26], upregulation of L-type calcium channels, and
increased calcium uptake into the sarcoplasmic reticulum [27]. The latter mechanism
results in a rise of extracellular calcium flux during the subsequent cardiac cycle and in-
creased calcium release from the SR itself (the so-called “calcium-induced calcium release”)
mechanism [28].

Animal models have demonstrated benefits of CCM therapy. In a canine HFrEF
model, CCM therapy reduced left ventricular filling pressure due to the improvement of
ventricular compliance and relaxation and improved diastolic Ca++ physiology [29]. In a
rabbit HFrEF model, CCM therapy reduced cardiac expression of connective tissue growth
factor and galectin-3 (a pro-fibrotic marker involved in myocardial structural remodeling)
with a reduction of myocardial fibrosis [11]. These effects of CCM therapy observed in
animal models may explain the improvement in diastolic function and GLS observed in
this study, as well as a reduction of the E/e’ ratio and of the NT-proBNP plasma levels both
expression of left ventricular filling pressure.

The improvement in diastolic function justifies the improvement in NYHA class and
quality of life observed in patients enrolled in the study. In fact, diastolic function is the
main determinant of functional capacity and quality of life in patients with HF [30–32], and
therefore its improvement is associated with an improvement in these parameters [33].CCM
has also been shown to increase stroke volume in a canine HFrEF model [34]; in our study,
we documented for the first time that CCM therapy results in an increase in SV at 6 months,
even in a population of patients with HFrEF in optimal medical treatment.

Notably, the improvement in MME observed in our study was caused by an increase
in SV without a rise in HR and, consequently, of MVO2. This confirms the findings of a
prior study in which CCM increased dP/dt (an index of myocardial contractility) without
an increase of MVO2 in nine patients with HFrEF [35].

In conclusion, CCM induces an increase of SV and consequently of cardiac out-
put without a concomitant increase in myocardial oxygen demand acting as a smart
inotropic therapy.

5. Study Limitations

The relatively small number of patients as well as the single-center, observational
design of the study with the lack of a control group may influence our results. In addi-
tion, although the echocardiographic evaluations were performed in stable patients, the
assessments of SV and GLS may be influenced by loading conditions. Seven patients have
a CRT-D implanted 12 months before the inclusion in the study; for these patients, late
response to this therapy cannot be excluded.

6. Conclusions

At six months of follow-up, CCM therapy increased left ventricular performance,
improving left ventricular ejection fraction, E/e’ ratio, GLS, as well as MEE and MEEi in
patients with HFrEF on optimal medical therapy.

These echocardiographic improvements are associated with a clear clinical benefit
documented by reduction of NT-pro BNP plasma levels NYHA class and MLHFQ score.
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Additional larger studies are needed to provide a greater understanding of the long-
term impact of CCM on left ventricular function, as well as the prognostic significance of
these observations.
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