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The last two decades have brought ground-breaking advances in genetics, culminating
in deep profiling of the human genome and high resolution detection of genetic variants.
These developments have rewired preclinical and clinical efforts in understanding cancer,
paving the way for precision therapies [1]. Lymphomas are among the most frequent
tumours worldwide, with B cell lymphomas accounting for approximately 85% of newly
diagnosed cases [2]. They arise from the germinal centre (GC), a specialised structure
within the B cell follicle that forms upon encounter of B cells with an external antigen.
Similarly to other cancers, the ability of lymphoma cells to bypass physiological signalling
pathways controlling proliferation, differentiation and cell death is primarily governed by
genetic and epigenetic defects. In line with this, the most recent classifications of lymphoma
subtypes largely rely on the presence or absence of specific mutated genes and concordant
aberrant molecular signatures [3,4]. As we gain more insights into the genetic evolution
of lymphomas, either as they progress towards a more aggressive disease or because of
resistance mechanisms arising in response to treatment, it is becoming increasingly evident
that therapies targeting lymphoma-specific proteins represent important components of
the therapeutic arsenal [5,6]. Personalised treatments, also known as targeted or preci-
sion medicines, utilise the molecular fingerprint of a patient’s tumour to inform drug
development and treatment choices [7]. Due to the increased antitumour specificity of
targeted agents compared to their non-targeted counterparts, precision medicine is cur-
rently the focus of most efforts to develop anti-lymphoma drugs. The turning point in
the development of effective targeted therapies for lymphoma came with our increased
understanding of the molecular drivers of this disease. The massive amounts of data
gleaned from high-throughput sequencing of samples from multiple patient cohorts have
provided a molecular basis for the observed clinical differences in lymphoma progression,
response to therapy, and survival in individual lymphoma patients, and have provided a
rationale for the development of therapies targeting specific lymphoma drivers [3,4].

The first targeted agent approved for treating B cell lymphoma was the monoclonal
antibody rituximab (R), which has significantly improved patient survival in combination
with chemotherapy (R-CHOP), compared to chemotherapy alone [8]. Following on from
rituximab, multiple monoclonal CD20 antibodies have been developed and approved for
lymphoma treatment including ofatumumab and obinutuzumab, but none have shown
superiority to R-CHOP [9–12]. More recently, bispecific T cell engager (BiTE) antibodies
that bind a B-cell-specific antigen on tumour cells (usually CD19) and CD3 on T cells have
shown promise. The first-in-class BiTE, blinatumomab, was first approved for B cell acute
lymphoblastic leukaemia [13], but its use is now expanding to other B cell lymphomas in
both relapsed and frontline settings [14,15]. By bringing tumour cells in proximity to T cells,
BiTEs enhance tumour cell killing by direct cell-to-cell contact. BiTEs offer an off-the-shelf
and more immediate alternative to cellular therapy with chimeric antigen receptor T-cells
(CAR-T). The latter require weeks to engineer autologous T cells expressing a chimeric T
cell receptor that targets a cell surface antigen such as CD19. Additionally, BiTEs show
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lower grade, albeit similar treatment-related toxicities, to CAR-T cells. The mechanism of
action of a BiTE can also be its Achille’s heel—the reliance on the patient’s T cells to kill
tumour cells makes BiTEs unsuitable when T cell activity is poor. While it might appear
that BiTEs and CAR-T cells compete for the same clinical field, recent data suggest the two
can improve patient outcome when used sequentially, with CD20 BiTEs showing efficacy
after failure of CD19 CAR-T cell therapy [16]. Resistance mechanisms to both platforms are
T cell exhaustion secondary to repeated and/or prolonged antigen exposure and increased
expression of checkpoint inhibitor molecules such as PD-L1 [17,18].

Monoclonal antibodies conjugated to cytotoxic payloads via a chemical linker, so-
called antibody-drug conjugates (ADCs), represent a promising advancement on mon-
oclonal antibodies, since they combine the tumour-homing function of a monoclonal
antibody with a highly cytotoxic payload [19]. As ADCs are internalized after antibody
recognition of a tumour-specific antigen followed by payload release inside the cell, the
toxins conjugated to the antibody moiety of ADCs typically target intracellular macro-
molecules including tubulin, DNA and RNA polymerase II. The CD79 ADC polatuzumab-
vedotin combined with rituximab alone or with both rituximab and bendamustine has
shown efficacy in relapsed/refractory (R/R) diffuse large B cell lymphoma (DLBCL). No-
tably, polatuzumab-vedotin confers a survival advantage when used as a replacement for
vincristine within the frontline R-CHOP regimen [20–22].

The development of novel therapeutic agents aimed at disrupting well-defined onco-
genic signalling pathways has also been extensively explored in the last decade. Small
molecules targeting kinases have shown robust pre-clinical and clinical activity in lym-
phomas, leading to the approval of three Bruton’s tyrosine kinase (BTK) inhibitors and three
phosphatidylinositol 3-kinase (PI3K) inhibitors [23–28]. The efficacy of these molecules in
lymphoma treatment highlights the major role of aberrant signalling cascades in driving
and/or sustaining lymphomagenesis. The dynamic nature of these pathways and their
convergence on each other might explain the development of resistance mechanisms when
one of these components is targeted [29]. This equally suggests the potential for novel
combinations or sequential approaches that block putative feedback mechanisms and
treatment escape routes. However, while these rational combinations enhance tumour
cytotoxicity, they also increase treatment associated toxicities and adverse events. In line
with this notion, a plethora of clinical trials have tried adding targeted therapies to frontline
R-CHOP regimen in an attempt to enhance efficacy but none have succeeded in improving
survival [7]. This was partly due to the additional toxicities associated with these novel
agents that impaired the achievement of the target dose, thus limiting overall efficacy.

Another recently developed treatment strategy involves targeting adaptive immune
escape mechanisms to unmask cancer cells and in turn reactivate immune surveillance.
Monoclonal antibodies targeting PD-L1, PD-1 and CTLA-4 are the big players in this
approach, but while they have been game changers in many solid tumours, lymphomas
have failed to show robust responses. The factors governing the lack of response, as
well as early progression in lymphoma patients treated with immune checkpoint therapy,
remain obscure, but might be related to an unfavourable tumour microenvironment (TME)
and/or genetic alterations that favour immune escape. Notorious exceptions to this are
Hodgkin’s lymphoma and primary mediastinal B cell lymphoma [30,31], likely due to the
robust expression of PD-L1 in these diseases. Among lymphomas unresponsive to immune
checkpoint therapy, DLBCL and follicular lymphoma frequently present genetic alterations
conducive to immune escape that target transcription factors and epigenetic modifiers
with roles in shaping the lymphoma TME [32]. These include mutations in CREBBP
and EZH2 that lead to loss of MHC-I and MHC-II, while selective inhibition of their
counterbalance proteins, e.g., HDAC3, or of the mutated proteins themselves, e.g., EZH2,
restores antigen presentation and, in turn, an anti-lymphoma immune response [33–35].
The correct functioning of epigenetic proteins can also be influenced by the availability of
metabolic products such as S-adenosyl methionine and acetyl-CoA, which are essential
donors for epigenetic methylation and acetylation reactions, respectively, thereby intricately
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linking epigenetic regulation and metabolism with the lymphoma TME. Since metabolic
subtypes of DLBCL show differential responses to epigenetic agents [36], the combination of
specific metabolic inhibitors with other targeted agents such as selective histone deacetylase
inhibitors could be therapeutically beneficial.

The classes of targeted agents presented here, and their mechanisms of action, demon-
strate that we are on the cusp of a new molecular era, whose success will require a deeper
understanding of the processes underlying lymphomagenesis. Much more work needs to
be done to identify predictive biomarkers and develop simpler platforms for the routine
identification of molecular subgroups. Our improved understanding of these mecha-
nisms will inform the design of more effective therapeutics with less toxicity, which target
synthetic vulnerabilities while promoting antitumour immunity.

We have just begun to decipher the molecular fingerprints of B cell lymphomas and, as
such, routine personalised medicine is still a long way off. However, the strides made thus
far are encouraging and fuel an expectation for the future implementation of personalised
treatments in standard clinical practice.
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