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Abstract: The gut has been proposed as a potential alternative entry route for SARS-CoV-2. This was
mainly based on the high levels of SARS-CoV-2 receptor expressed in the gastrointestinal (GI) tract,
the observations of GI disorders (such as diarrhea) in some COVID-19 patients and the detection
of SARS-CoV-2 RNA in feces. However, the underlying mechanisms remain poorly understood. It
has been proposed that SARS-CoV-2 can productively infect enterocytes, damaging the intestinal
barrier and contributing to inflammatory response, which might lead to GI manifestations, including
diarrhea. Here, we report a methodological approach to assess the evidence supporting the sequence
of events driving SARS-CoV-2 enteric infection up to gut adverse outcomes. Exploring evidence
permits to highlight knowledge gaps and current inconsistencies in the literature and to guide
further research. Based on the current insights on SARS-CoV-2 intestinal infection and transmission,
we then discuss the potential implication on clinical practice, including on long COVID. A better
understanding of the GI implication in COVID-19 is still needed to improve disease management
and could help identify innovative therapies or preventive actions targeting the GI tract.

Keywords: SARS-CoV-2 infection; COVID-19; gut microbiota; gastrointestinal disorders; enteric infection

1. Introduction

While COVID-19 is mainly considered a respiratory disease, gastrointestinal (GI)
symptomatology in COVID-19 has been reported, though the proportion varies depending
on the studies, with patients reporting diarrhea, abdominal discomfort, nausea and/or
vomiting, with diarrhea being the predominant GI symptom [1–4]. GI disorders, and
particularly diarrhea, are proposed to be a direct consequence of SARS-CoV-2 intestinal
infection, as many patients have detectable SARS-CoV-2 RNA in feces [5]. In addition,
recent studies showed that non-human primates infected with SARS-CoV-2 had transient
diarrhea [6]. However, the mechanisms leading to diarrhea in COVID-19 are largely
unknown [7]. Studies from other viruses identified different mechanisms-inducing diarrhea
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such as malabsorption or inflammation secondary to enterocyte damage and death [8,9],
the release of virulent toxins [8] and gut microbiota dysbiosis [10,11]. While SARS-CoV-2
RNA has been found in the stools of many patients, the impact of its presence in the
GI tract remains to be clarified; in most cases, infectious particles are not recovered and
infection does not always lead to diarrhea. In one study, 50% of the examined COVID-19
patients had a detectable level of virus in their feces, with only half showing diarrhea [12].
In another study the level of fecal viral load was positively associated with diarrhea [5].
Elevated fecal and serum levels of the inflammatory marker calprotectin in COVID-19
were not consistent with GI symptoms [13]. In line, limited intestinal inflammation was
observed in patients with acute COVID-19 despite diarrhea, fecal viral RNA and SARS-
CoV-2-specific immunoglobulin A (IgA) [14]. Thus, summarizing the current lines of
evidence and uncertainties supporting intestinal infection and understanding the impact of
intestinal SARS-CoV-2 on the GI system (epithelium damage, inflammation) could improve
disease management, help to identify therapies or effective preventive actions targeting the
GI tract.

Here, we used a methodological approach well-established in toxicology to evaluate
key mechanisms driving SARS-CoV-2 mediated gut pathophysiology: the Adverse Out-
come Pathway (AOP) framework which has been developed and is currently used to assess
chemical risk for regulatory purposes. Based on existing data and available literature,
the AOP approach seeks to pragmatically focus on essential biological key events (KE)
at the different biological levels (molecular, cellular, tissue, organ, individual) up to an
adverse outcome via a domino effect [15–18]. A KE describes a measurable and essential
change in a biological system that can be quantified in experimental or clinical settings [19].
The strength of the relationship between the events is established by demonstrating bio-
logical plausibility and causality between pairs of events, called key event relationships
(KER) [18,19]. The confidence that each KER occurs within an AOP is postulated by the
evaluation of the weight of evidence [20]. Information contained in the KEs, KERs and
AOPs are stored in an open access platform (https://aopwiki.org/) where they are iden-
tified by assigned unique numbers. Numbers in the text refer to these AOP-wiki pages.
There, AOPs can be continuously updated as new information becomes available. This
AOP approach highlights important inconsistencies and gaps in the evidence. Interestingly,
based on a mechanistic understanding, AOPs help elucidate the pathophysiological mecha-
nisms notably by learning from other inflammatory bowel diseases and other respiratory
virus-related diseases (e.g., SARS, MERS, influenza) also presenting GI symptoms. This
study was realized under the CIAO project which aims to make sense of the overwhelm-
ing flow of publications and data related to COVID-19 pathogenesis by using the AOP
framework [21,22]. The project is based on the assumption that such mechanistic organi-
zation of the COVID-19 knowledge across the different biological levels will improve the
interpretation and efficient application of the scientific understanding of COVID-19 [23].
In addition, we applied this methodology for the first time to map a viral disease of high
societal relevance, expanding the AOP scope outside the toxicological field.

We aim to evaluate if the gut can be an alternative route for viral entry, meaning
that a productive intestinal infection by SARS-CoV-2 occurs and is responsible for the
associated GI disorders (inflammation, permeability, diarrhea). To do so, we explored
in the literature the evidence and uncertainties of each event starting with SARS-CoV-2
binding to its cellular receptor towards infection up to intestinal barrier disruption and
intestinal inflammation. For this review, we collected evidence reported in tissue cultured
cells, human samples and animal models of infection, including mice with human ACE2
(hACE2 mice), hamsters, minks, ferrets and non-human primates.

2. Current Evidence and Uncertainties of an Active SARS-CoV-2 Enteric Infection

Besides GI symptoms experienced by many COVID-19 patients and SARS-CoV-2 RNA
detected in feces, the rationale supporting intestinal infection was also based on the high
level of expression in the intestines of the main SARS-CoV-2 cellular gateways: angiotensin
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converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2). Enterocytes
in the small intestine express the highest levels of ACE2 in the human body [24] and are
one of the few human cell types that co-express TMPRSS2 [24], the main cofactor mediating
cellular entry [7,25,26]. To evaluate if SARS-CoV-2 can effectively infect enterocytes, we
assessed the evidence from the literature, starting with viable SARS-CoV-2 in the gut lumen
binding to ACE2 receptors at the apical surface of the enterocytes, cell entry via TMPRSS2
cleavage and replication while antagonizing the antiviral response in order to release new
viral particles (Figure 1).
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Figure 1. Pathway depicting the proposed sequence of events of a productive SARS-CoV-2 infection
in the gut. Virus binding to the ACE2 receptor expressed on enterocytes mediates viral entry inducing
an antiviral response that must be antagonized for new virions to be produced. This manuscript will
evaluate available published data on the likelihood of their occurrence.

2.1. S Proteins Bind to ACE2 in Enterocytes and Mediates Viral Entry

Biological plausibility. Upon binding of SARS-CoV-2 to ACE2 (KE1739), the spike (S)
proteins of the virus need to be activated through proteolytic cleavage to allow fusion be-
tween host and viral membranes, a key step in viral entry (KE1738), that releases viral RNA
and proteins into host cells. Many proteases were identified as aiding in cell surface entry,
such as TMPRSS2. Only three cell types showed co-expression of ACE2 and TMPRSS2,
including enterocytes [26,27]. In addition, neuropilin-1 (NRP-1) was proposed to act as
ACE2 co-receptor and promote, although to very low levels, SARS-CoV-2 entry even in
cells that lack ACE2 and TMPRSS2 [24]. Maximum infection was reported when NRP-1
and ACE2 are co-expressed on the same cell types [28]. NRP-1 is reported to be expressed
in the epithelia of the GI tract [29].

Evidence. Regarding ACE2 as the entry receptor for SARS-CoV-2, the level of ACE2
expression did not correlate with infectivity of cells in human intestinal organoids [30].
Both ACE2-positive and ACE2-negative SARS-CoV-2 infected cells in intestinal organoids
were observed [31], potentially suggesting the existence of alternative entry receptors,
ACE2 downregulation after infection, or reflecting expression levels under the detection
limit. However, ACE2-knock-out (KO) intestinal organoids were fully resistant to SARS-
CoV-2 infection [31], suggesting that ACE2 is the obligate entry receptor for SARS-CoV-2
in intestinal cells. Accordingly, in human gut-on-chip models composed of intestinal
epithelial Caco-2 co-cultured with mucin-secreting HT-29 intestinal cells, the highest levels
of ACE2 expression were found in the Caco-2 cells and after viral infection, Spike protein-
positive Caco-2 cells were detected [32]. Similarly, higher ACE2 levels correlated with
the maturity of enterocytes present in human differentiated enteroids and SARS-CoV-2
was able to infect ACE2+ mature enterocytes [33], therefore mature enterocytes are likely
highly susceptible to infection. Further, the entry process was facilitated by TMPRSS2
and TMPRSS4 proteases [33]. However, when using CRISPR-Cas9 to generate different
knock-out of key coronavirus host factors in human intestinal organoids, TMPRSS2, and
not TMPRSS4, was found to be essential for SARS-CoV-2 entry [31].

As mouse ACE2 has a low affinity for S protein of SARS-CoV-2, different strategies
were adopted to circumvent that mice are resistant to SARS-CoV-2 infection [34]. In a trans-
genic mouse expressing human ACE2 in the lungs, heart, kidneys and intestines (hACE2
mice), viral RNA was detected in the intestines of intranasally inoculated animals [35].
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In another stable mouse model generated by CRISPR-Cas9 knock-in technology, hACE2
expression was also detected in the small intestine [36]. Another transgenic mouse model
with hACE2 driven by the heterologous promoters (K18-hACE2) showed no viral RNA in
the GI tract following nasal inoculation [37], but importantly hACE2 expression was not
detected in the gut in these mice [37]. In Syrian golden hamsters, ACE2 protein is highly
expressed in surface epithelium of ileum [38] and SARS-CoV-2 nucleocapsid protein was
found in the intestine after intranasal infection [39]. In ferrets, ACE2 is expressed in the GI
tract [40] and viral RNA was detected in the gut (ileum and colon) of intranasally infected
male ferrets [39]. In rhesus monkeys, viral RNA was detectable in GI tissues after intranasal
inoculation [41,42].

Uncertainties, inconsistencies and gaps. As previously noted, study in ACE2-KO in-
testinal organoids indicated ACE2 as the entry receptor of SARS-CoV-2 in enterocytes
in vitro facilitated by TMPRSS2 [31]. The authors proposed that the discrepancy with the
study considering TMPRSS4 could be explained by the expression in the KO organoids
of physiological levels of the proteases rather than overexpression [31]. No studies have
specifically investigated the role of NRP-1 in SARS-CoV-2 entry in the gut. However, it is
interesting to note that different variants display different affinities for NRP-1, with omicron
displaying higher affinity than previous variants. Future studies should elucidate whether
this increase in affinity constitutes a functional evolutionary adaptation of SARS-CoV-2 to
humans [43], and confer an advantage for viral entry.

2.2. Viral Entry Leads to Antiviral Response

Biological plausibility. Following cellular entry, the primary translation of the SARS-
CoV-2 open reading frame (ORF) 1a and ORF1b genomic RNA produces non-structural
proteins (NSPs) [44]. The ORF1a produces polypeptide 1a (pp1a) that is cleaved into NSP-1
through NSP11. A -1 ribosomal frameshift occurs immediately upstream of the ORF1a stop
codon to allow translation through ORF1b, yielding pp1ab, which is cleaved into 15 NSPs
(duplications of NSP1-11 and five additional proteins, NSP12-16). Viral proteases NSP3
and NSP5 cleave the polypeptides through domains functioning as a papain-like protease
and a 3C-like protease, respectively [44]. The NSPs, structural proteins, and the accessory
proteins are encoded by 10 ORFs in the SARS-CoV-2 RNA genome. They have multiple
functions in evasion of the host innate immune response and in viral replication [45].

Evidence. The innate immunity activated by viral infections resulting in quick res-
olution of disease occurs in many instances of SARS-CoV-2 infection, such as in adults
with no or mild symptoms [46], the young [47], and bats that harbor the virus without
disease [48]. SARS-CoV-2 infection of human intestinal epithelial cells was associated with a
robust innate immune response mediated by type III interferon, which inhibits SARS-CoV-2
replication and de novo virus production [49]. Interestingly, the scRNAseq study by Triana
et al. found that SARS-CoV2 induced distinct proinflammatory and interferon-stimulated
gene (ISG) expression profiles in infected and bystander cells in organoids. ISG expression
was pronounced in bystander cells, while the infected cells showed strong NFkB/TNF-
mediated pro-inflammatory response but a limited ISG expression. In intranasally infected
hamsters, high levels of viral RNA were detected in the GI tract only in signal transducer
and activator of transcription 2 (STAT2) KO animals suggesting that STAT2, the main actor
of the interferon (IFN) response, is crucial for preventing intestinal virus replication and
production of infectious progeny [50,51].

Uncertainties, inconsistencies and gaps. For SARS-CoV-2 infection, initial transcriptional
analyses of infected cells have generated ambiguous results on the induction of type I/III
IFNs and the subsequent expression of ISG and many studies associate better prognosis
with increased innate immunity activation. However, the effectiveness of IFN treatment
is still uncertain due to some studies evaluating IFN and other drugs [52]. There are
uncertainties based on differing disease outcomes, mainly associated with the timing of
administering IFN; administering late, in the inflammatory stage, led to long-lasting harm
and worsened disease outcomes [52]. In the small intestine of infected hamsters, a mild
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antiviral gene signature was observed coinciding with a low-level inflammatory response
and low replication similar to some human cases [53], in contrast to the robust replication
seen in human small intestinal organoids [54] and severely ill patients [55].

2.3. Antagonized Antiviral Response Leads to Coronavirus Production

Biological plausibility. The SARS-CoV-2 virus has evolved a repertoire of proteins that
bind and block proteins in the IFN cascade so the host antiviral proteins are not expressed,
and the virus is free to replicate [56]. Interactions between SARS-CoV-2 proteins and human
RNAs have been demonstrated to thwart the IFN response: NSP1 binds to 40S riboso-
mal RNA in the mRNA entry channel of the ribosome to inhibit host mRNA translation.
NSP6 binds TANK binding kinase 1 (TBK1) to suppress interferon regulatory factor 3
(IRF3) phosphorylation, and NSP13 binds and blocks TBK1 phosphorylation [56]. NSP14
induces lysosomal degradation of type 1 IFN-alpha receptor (IFNAR) to prevent STAT
activation [57]. ORF6 blocks nuclear import of IRF3 and STAT proteins to silence IFN-I gene
expression [58]. ORF7a suppresses STAT2 phosphorylation and ORF7b suppresses STAT1
and STAT2 phosphorylation to block interferon-stimulated gene factor 3 (ISGF 3) complex
formation with IRF9 [58]. ORF9b antagonizes IFN-I by targeting multiple components of
RIG-I/MDA-5-MAVS, TOMM70, NEMO and cGAS-STING signaling [59–62]. The timely
production of type I IFN by host cells is critical for limiting viral replication and promoting
antiviral immunity [63]. If the antiviral response is antagonized (KE1901), the viral RNA
can be translated, replicated, transcribed and the genomic RNA packaged before the new
SARS-CoV-2 virions are assembled and released potentially into feces (KE1847).

Evidence. In human intestinal organoids, following entry, gene expression analysis
demonstrated that SARS-CoV-2 replicated with low induction of type I and III IFNs, though
increased expression of ISG was observed [27]. Infection of Caco-2 cells leads to a weaker
intrinsic immune response, associated with more de novo infectious virus production than
T84 cells [49]. In ex vivo human intestinal tissues, SARS-CoV-2 replicated less efficiently
(less viral genome copies produced, less infectious particles generated) but induced a more
robust innate immune response than SARS-Co-V, including both type I and III IFNs while
SARS-Co-V induced only IFNa expression [64]. These findings contrast with data obtained
in ex vivo human lung tissues (SARS-CoV-2 replicated more efficiently while triggering
an attenuated IFN response) [65]. Studies in human primary nasal epithelial cell cultures
have shown that if exogenous IFN-I/III were administered intranasally prior to infection
and at sufficient concentration, SARS-CoV-2 infection was inhibited [66]. Furthermore, in a
hamster model IFN treatment limited tropism to distal tissues, including the intestine [53].
Also, some people have developed autoimmunity in which they produce autoantibodies
that block IFN, resulting in more severe disease [67,68]. Loss of function variants in loci
that control TLR3- and IRF7-dependent type I IFN immunity have been identified in a
small number of severe adult patients with severe COVID-19 who had not been previously
hospitalized for severe illness due to infection with other viruses [69]).

In humans, SARS-CoV-2 could productively replicate in surgically removed intestinal
tissue but not in kidney or liver tissues [64]. SARS-CoV-2 RNA has been found in stools of
infected individuals consistently, although with different frequencies (ranging from 15.3% to
81.8% of infected people [7]. In a retrospective cohort in China, the median duration of viral
RNA in stool was 22 days [70]. In some patients, the viral load in feces reached 107 copies/g
suggesting an enteric infection not blunted by an interferon response [71]. In addition,
SARS-CoV-2 RNA was reported to be detected in untreated wastewater sludge [72]. Viral
RNA and intracellular staining of viral nucleocapsid protein were detected in GI epithelium
from one patient in China who tested positive for SARS-CoV-2 RNA in feces [73] and
duodenal biopsies of 2 out of 5 moderate COVID-19 patients; however, the staining was
weak and scattered [74]. In another study, within six patients with GI symptoms subjected to
endoscopy, SARS-CoV-2 RNA was detected in stomach, duodenum and rectum specimens
of the two patients with severe disease, but only duodenum was positive in one of the four
non-severe patients [75]. Another study that tested five COVID-19 patients, presenting
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with either upper abdominal pain or diarrhea. Early in infection, patients were subjected to
a total of four esophagogastroduodenoscopy, and 2 in 5 showed signs of viral replication in
the gut and increased numbers of antigen-experienced activated CD8+ T cells were detected
within the epithelium [74]. This is in line with another study that found viral nucleocapsid
in 5 out of 14 patients at an average of 4 months after initial COVID-19 diagnosis [76].

Uncertainties, inconsistencies and gaps. Contrasting results between ex vivo lung and
intestinal tissues prove a line of evidence that SARS-CoV-2 infectivity and antiviral re-
sponse is different in the gut than in lungs. Studies in lung cells and tissues showed that
IFN expression is delayed or reduced by SARS-CoV-2 compared to influenza [66,77–79].
However, one exception to this observation is the response to high multiplicity of infection
(MOI) response, where replication was robust with an observed IFN-I and -III signature.
At low MOI, the virus might not be a strong inducer of the IFN-I and -III system, as op-
posed to conditions where the MOI is high [77]. hACE2 mice pre-treated with neutralizing
antibodies against IFN-α/β receptors (mimicking pre-existing autoantibodies targeting
type I IFNs) were more susceptible to SARS-CoV-2 infection with reduced survival [80].
Autoantibodies against IFN-α have been identified in patients with severe disease and
have been shown to contribute to delayed viral clearance in lung cells [80].

While SARS-CoV-2 replication in human enterocytes in vitro is supported by strong
evidence, evidence of SARS-CoV-2 infection in the digestive tract of animals showed
mixed results. In the intranasally inoculated hACE2 transgenic mice, viral RNA was
detected, but no infectious virus was isolated and no viral antigens were detected in
the intestines [35]. In another stable mouse model generated by CRISPR-Cas9 knock-in
technology [36], robust virus replication were demonstrated in lungs. When infected via
the intragastric route, no data were reported on intestinal infection, but interestingly, these
mice did exhibit lung infection [36]. K18-hACE2 showed no viral replication in the intestine
following nasal inoculation [37]. This is coherent with the fact that hACE2 expression were
not observed in the gut of the mice used in that study [37]. No studies in the gut have
been reported so far for the HFH4-hACE2 mice developing severe/lethal disease. Thus,
multiple strategies for introducing hACE2 into mice have been developed, a comprehensive
characterization of the different models as well as of the doses and routes of inoculum
used in each case is needed to correctly interpret the results [81]. In golden hamsters,
expression of SARS-CoV-2 nucleocapsid protein was found in the intestine after intranasal
infection [82]. In ferrets, viral RNA and viral subgenomic mRNA, indicative of a previous
or current viral transcription, was detected in the gut but interestingly, in this case did
not produce detectable infectious viral particles [39]. Viral RNA but no infectious virus
was detected in the ileum of one over three minks inoculated intranasally [83]. In rhesus
monkeys, viral RNA was detectable in digestive tissues and in fecal samples after intranasal
inoculation and Tissue Culture Infective Dose (TCID50) assays suggested that the virus
was infectious [41]. While in rhesus macaques infected via a combination of intranasal,
intratracheal and ocular inoculation, viral RNA was and SARS-CoV-2 antigen were detected
in the GI tract but not viral mRNA [42]. Thus viral RNA was detected in the intestines after
virus inoculation (intranasal or intragastric) in almost all animal models [35,39,41,42,82]
providing evidence for SARS-CoV-2 entry into enterocytes. However, evidence that the
virus found in the GI tissues was infectious was observed only in rhesus monkeys in one
study [41]. As already mentioned, these data calls for precaution of which models are
suitable to study SARS-CoV-2 intestinal infection as well as for considering with care the
doses and routes of inoculum used in each case [81]. Assessing intestinal infection and
IFN response following infection with different dosages in the gut of all types of hACE2
infected mice and non-human infected primates [6] in parallel with ACE2 staining would
help provide clear evidence of whether increased coronavirus production occurs in the gut
in vivo.

In humans, according to the few endoscopic and histological examinations based
on one or two cases [73–76], the GI epithelium is potentially susceptible to infection by
SARS-CoV-2 but to date, it remains unclear whether SARS-CoV-2 replicates in the human
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gut, and for how long it could persist in the gut. Even if difficult to obtain, further staining
of COVID-19 patients GI epithelia, as well as omics analysis of intestinal biopsies notably
regarding IFN response, are needed to confirm and quantify the proportion of patients
with active replication in the gut.

3. Current Evidence and Uncertainties of SARS-CoV-2 Damaging Intestinal Barrier

SARS-CoV-2 infection was reported to be a cytopathic virus in lung cells triggering
cell apoptosis in lung epithelial cells and in lungs of infected mice while lung sections of
fatal COVID-19 patients revealed cell death markers [84]. Thus, SARS-CoV-2 has been
proposed to induce cell death resulting in disruption of the epithelial monolayer integrity
or alterations to tight junctions (TJ), the mucus layer and/or the cellular immune system.
Disruption of the intestinal barrier layers is associated with increased intestinal permeability,
also called “leaky gut”, which allows the transfer of commensal or pathogenic bacteria and
bacterial components into the lamina propria and later on into the systemic circulation [85]
(Figure 2).
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the occurrence.

SARS-CoV-2 Production Impairs Intestinal Barrier

Biological plausibility. Within the host cell, the new virions are assembled (KE1847)
and to release viral particles, the virus promotes host lysis, leading to cell death and
compromising the integrity of the epithelial monolayer. The intestinal barrier is ensured by
the integrity of the monolayer epithelium (via cell integrity and tight junctions/adherens
proteins), together with the chemical barrier, the mucosal layer and the cellular immune
system located in the lamina propria (KE1931). Alternatively, TJs might be altered following
SARS-CoV-2 infection enhancing paracellular permeability. In addition, the mucus layer
and/or the cellular immune system might be perturbed.

Evidence. No extensive cell death was observed after SARS-CoV-2 infection in intestinal
organoids, compared to MERS-CoV that killed most cells within 48 h of infection [31]. SARS-
CoV-2 also replicated less efficiently than SARS-CoV and induced less cytopathology in
ex vivo human intestinal epithelium [64]. In contrast, studies in vitro with gut derived
organoids report observable organoid disintegration [86] also associated with markers
of apoptosis, such as caspase 3 [54,86]. No substantial histopathological changes were
observed in the intestines of hACE2 intranasally inoculated mice in which no virus was
isolated, nor viral antigens detected [35]. In Syrian hamsters, the histological analysis did
not reveal intestinal damage or structural remodeling of the epithelium in hamsters but a
trend towards increased blood concentration of intestinal fatty-acid binding protein (FABP),
a systemic marker associated with disrupted gut integrity, has been detected [87]. This
agrees with other studies [82,88] but contrasts with another study [89] in which severe
epithelial cell necrosis and damaged intestinal villi were observed at 4dpi (but not at 2dpi).
The reason for this discrepancy is unclear according to the authors, but they proposed
differences in the virus preparations and the dose used to inoculate animals, which are
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well summarized in [81]. In rhesus monkeys, exfoliation of mucosal epithelium in the
GI tract was observed after intranasal inoculation of SARS-CoV-2 as well as a reduced
number of mucin-containing goblet cells at the earlier stage of infection [41]. In humans,
no relation was noted between fecal calprotectin (FC) levels and fecal SARS-CoV-2 RNA
in a cohort of 40 hospitalized patients with COVID-19 [1]. In another exploratory study,
COVID-19 patients had elevated plasma levels of LPS-binding protein (a gut leakage
marker) but not of intestinal FABP (a marker of enterocyte damage) [90]. These data
suggest impaired gut barrier function without excessive enterocyte damage and highlight
gaps to comprehensively understand under which experimental or clinical conditions,
SARS-CoV-2 productively infects and kills enterocytes. However, in a human gut-on-chip
model composed of intestinal epithelial Caco-2 co-cultured with intestinal mucin-secreting
HT-29 cells, after SARS-CoV-2 infection, S-positive epithelial cells were detected along with
damage to the intestinal villus-like structures, disturbance of the mucus layer and reduced
expression of TJ (E-cadherin) [32]. Severe COVID-19 was associated with high levels of
markers of tight junction permeability and microbial translocation [1,91,92], signaling a
loss of the intestinal barrier function.

Uncertainties, inconsistencies and gaps. While the biological plausibility was high, cur-
rently, there is not enough evidence to support that enterocyte massive cell death following
SARS-CoV-2 infection occurs systematically [93]. Number of cases showing histomorpho-
logic changes due intestinal infection by SARS-CoV-2 is still limited. While not easy to
obtain, more (post-mortem) intestinal biopsies of COVID-19 patients showing the presence
of replicating SARS-CoV-2 along with cell death markers in epithelial cells of the small
intestine would be needed to determine precisely if cell death occurs. A small body of
evidence points toward a potential alteration of TJs upon SARS-CoV-2 infection. However,
definitive evidence is still limited and warrants further research. The role of Ca/Zn/VitD
depletions in COVID-19 patients which weaken physical tissue barrier integrity by inter-
acting with TJ [94] is still unclear. Using biomimetic human intestinal gut-on-chip able
to partially mirror intestinal barrier injury and response to viral infection [32] or human
intestinal organoids could provide insight into the essentiality of these events in COVID-19.
In addition, it would informative to assess the tight junction permeability in infected mice,
hamsters or nonhuman primate models described above.

4. Current Evidence and Uncertainties of SARS-CoV-2 Enteric Infection Contributing
to the Inflammatory Response

While productive replication still needs further studies, strong evidence supports
SARS-CoV-2 entry in intestinal epithelial cells. There it might trigger a coordinated innate
immune response due to the recognition of SARS-CoV-2 associated molecular patterns,
similar to that reported in the lung cells [49,95], inducing an antiviral response as described
above but also releasing proinflammatory mediators which recruit immune cells to the gut,
which in turn secrete cytokines leading to gut inflammation (Figure 3).
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4.1. Viral Entry Induces Pro-Inflammatory Mediators Release

Biological plausibility. Viral infections induce a proinflammatory response including
expression of cytokines and chemokines via signal transduction pathways activation, such
as NF-kB [96], JAK-STAT [97] and NFAT [98].

Evidence. Infection of human intestinal organoids with SARS-CoV-2 elicited a broad
signature of cytokines [54] mediated by NFkB/TNF [30]. Lamers et al. [54] showed that
the infection of human intestinal organoids with SARS-CoV-2 can induce Il7 expression.
Intestinal viral infections cause IL22 expression in T cells via IFNβ1-mediated IL7 produc-
tion by epithelial cells and IL6 production in fibroblasts. In non-human primates infected
with SARS-CoV-2, increased serum concentrations of interleukin (IL)-8, IL-1RA, C-C motif
chemokine ligand (CCL)2, CCL11, and chemokine (C-X-C motif) ligand (CXCL)13 were
observed [6,42,99,100]. Higher levels of the pro-inflammatory cytokine IL-8 and lower
levels of the anti-inflammatory cytokine IL-10 were detected in the feces of COVID-19
patients when compared to uninfected controls [14]. However, the lack of increase of other
cytokines and of calprotectin in this study suggests that the immune response within the
gut to this viral infection is limited.

Inconsistencies, uncertainties and gaps. Several components of inflammation exist but we
have limited knowledge on the nature of inflammatory pathways triggered in the GI tract
by SARS-CoV-2. Additional investigations in COVID-19 patients are still needed, such as
analysis of in situ produced cytokines in gut biopsies from COVID-19 patients with distinct
disease severity profiles. Of key importance it would be to dissect, if similarly to other
enteric viral infections, to what extent does intestinal inflammatory response contribute to
the systemic cytokine profile and which are the parallels and differences between in the
epithelial response in the gut versus in the lung. In lung samples, a signature of low IFN-I
and -III and high pro-inflammatory mediators was consistently observed in vitro, ex vivo,
in vivo in longitudinal studies and in COVID-19 patients [77], performing similar analysis
in the gut would be informative.

4.2. Pro-Inflammatory Mediators Recruit Inflammatory Cells in the Gut

Biological plausibility. Pro-inflammatory signaling (KE1496) recruits’ pro-inflammatory
cells, such as neutrophils, macrophages, and T cells to the site of infection (KE1497).

Evidence. When cytokines are released, immune cells, such as neutrophils, macrophages,
and lymphocytes, are recruited to the gut environment and facilitates an adaptive immune
response [101]. In golden Syrian hamsters intranasally infected with SARS-CoV-2, the viral
N protein was detected in the intestine, IL-4, IL-6, TNF-α and IL-12 were upregulated
and the lamina propria exhibited mononuclear cell infiltration at 2dpi [102]. Histological
examination of human intestinal samples revealed that lymphocytes and inflammatory
cells infiltrate the lamina propria [103]. Neutrophils recruitment has been demonstrated by
gut calprotein (neutrophil-specific alarmin protein) presence in COVID-19 patients where
elevated fecal calprotectin and systemic IL-6 response were identified [1] and associated to
intestine inflammation, adding to the evidence that SARS-CoV-2 triggers an inflammatory
response in the intestine [104]. Recent studies also described that the cytokine storm may be
associated with the expression of calprotectin [105,106] but another preprint study showed
that the level of calprotectin was not linked to COVID-19 severity [14].

Uncertainties. Whether direct or indirect modulation in the gut immune activation
during SARS-CoV-2 infection is responsible for immune cell recruitment needs to be
examined more thoroughly. Direct cell death in intestinal epithelial and goblet cells can
cause apoptosis and recruit immune cells or, alternatively, an indirect loss of GI tract
integrity caused by viral infection can activate immune cell recruitment. A recent study
in ferrets infected with SARS-CoV-2 by gavage compared the immunomodulation of
probiotics in the duodenum, however a noninfected placebo group was missing, which
would be informative [40]. Recently, in a non-human primate (rhesus monkey) model
of SARS-CoV-2 infection, in vivo infection of GI tract increased apoptosis of intestinal
epithelial and goblet cells along with intestinal inflammation by macrophages has been
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reported [41]. However, these results could not explain whe, ther immune modulation in
the GI tract was due to direct infection of GI tract cells by the virus or due to changes in the
GI tract integrity and microbiota under the influence of systemic cytokines and hypoxic
conditions or a combination of all [104]. Certain patient subgroups such as the elderly and
patients with type 2 diabetes or obesity have been shown to be associated with more severe
disease [107]. Immune defense mechanisms at the digestive level are described as impaired
in these populations [108,109]. It is not currently known whether this impaired digestive
immunity is a risk factor for infection.

5. Current Insights, Research Needs and Potential Impact on Clinical Practices
5.1. Productive Enteric Infection

An important aspect is that to infect intestinal cells, viable SARS-CoV-2 must reach
the gut lumen as an infectious particle, meaning able to actively replicate in the GI tract.
In contrast to enteric viruses, enveloped respiratory viruses, such as influenza virus or
SARS-CoV-2, are thought to be cleared by the exposure to digestive juices (gastric acid, bile,
pancreatic juice) and mucus layer in the GI tract. SARS-CoV-2 was found to be extremely
stable over a wide range of pH values (pH 3–10) [110] but rapidly lost infectivity in vitro in
the low pH simulated gastric fluid (pH 1.5–3.5, fasting state) [33]. Furthermore, SARS-CoV-
2 was rapidly inactivated in the lumen of the colon by enteric fluid [33]. This suggests that,
predominantly, noninfectious particles reach the gut lumen [33]. However, while MERS-
CoV also rapidly lost infectivity in fasting-state simulated gastric fluid, the infectivity was
unaffected in fed-state-simulated gastric fluid (pH 5) [111,112]. Using human coronavirus
OC43 (causing mild symptoms and not requiring a biosafety level 3 lab) as a surrogate
for the pathogenic SARS-CoV-2, a very recent study showed that, except for fasting-state
gastric fluid (pH 1.6), the virus remained infectious in all other GI fluids for 1 h and the
presence of food improved viral survival in gastric fluids [112]. A similar strategy should
be done for SARS-CoV-2 and investigate infectivity in this fluid simulating stomach acidity
after meals. This would allow determining whether SARS-CoV-2 tolerates gastric acid and
survives passage to the gut in all settings and whether SARS-CoV-2 ingestion with food
could protect the virus against inactivation by the GI fluids [7]. Interestingly, in this regard,
it was described that the usage of H pump inhibitors was associated with worse clinical
outcomes for COVID-19 patients, despite not being associated with increased susceptibility
to SARS-CoV-2 infection. This observation raises the question of whether some medicines
permit SARS-CoV-2 replication in the gut [113]. In addition, if other conditions, including
for example highly viscous mucus, protect virus particles, allowing the virus to retain its
infectivity, as shown for influenza virions, should be evaluated to determine conditions in
which SARS-CoV-2 could actively replicate in the gut [114]. In infected hamsters, SARS-
CoV-2 intranasal infection was more efficient than oral infection. However, increasing
viral dose in the initial inoculum, both intranasal and oral, resulted in higher levels of
SARS-CoV-2 RNA in the lungs and in the intestines of these animals, suggesting that the
initial dose is an important factor when considering gut infection and mechanisms that
protect the virus from the harsh environment of the stomach [88]. Alternatively, other cell
types may be able to transport SARS-CoV-2 to the gut, as for example, a small number of
lymphocytes has been shown to be infected by SARS-CoV-2 [103] or even bacteria. A recent
study showed that SARS-CoV-2 replicates outside the human body in vitro in bacterial
growth medium, following bacterial growth and influenced by antibiotics administration,
suggesting a bacteriophage-like behavior for SARS-CoV-2 [115] or the activation of other
bacteriophages [116]. Electron and fluorescence microscopy images showed the presence of
SARS-CoV-2 both outside and inside bacteria [116,117]. Further research is needed as these
results could lead to a rethinking of SARS-CoV-2 biology and of effective management
of COVID-19 transmission [115]. In addition, it cannot be excluded that both the viscous
mucus and the gut microbiome could protect viral RNA and virus particles, allowing the
virus to retain its infectivity.
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Thus, while the human gut expresses high levels of ACE2, and SARS-CoV-2 infection
of human enterocytes in vitro is supported by strong evidence, human healthy gut may
not be systematically permeable to viral entry due to the GI fluids, antiviral response
and/or the protective multi-layers of the intestinal barrier. However, evidence of intestinal
infection of SARS-CoV-2 has been reported, suggesting that there are some conditions that
may render people susceptible to SARS-CoV-2 infection in the gut or that may protect
the virus from degradation. For example, individuals with altered intestinal barrier prior
to infection, or under certain medication or comorbidities, might be more vulnerable to
gastrointestinal SARS-CoV-2 infection [118]. An inflammatory environment, as seen in
many other conditions such as diabetes, obesity, or resulting from the cytokine storm in
severe COVID-19, disrupting the intestinal barrier, may render the GI entry of the SARS-
CoV-2 significant [33]. Different experimental models mimicking diseases known to be
associated with an altered intestinal barrier exist. Literature describing their use to unravel
the mechanisms behind SARS-CoV-2 GI infection is starting to emerge. A mouse preclinical
T2DM/obesity co-morbidity model of COVID-19 [119] and a mouse model mimicking
obesity-associated COVID-19 comorbidities were established [119]. Such models could
accelerate the development of therapeutics for this highly susceptible population. Sex and
diet-specific responses partially explaining the effects of obesity and diabetes on COVID-
19 disease were observed [119]. The detrimental impact of continuous Western diet on
COVID-19 outcome has been reported in Syrian hamsters [120]. The age dependent increase
in disease can be observed in Syrian hamsters and nonhuman primates [81]. Thus age,
medication, metabolic syndrome, via high fat diet for example, could be incorporated into
models to mimic human comorbidities in order to investigate this important question.

In addition, the colonic mucus barrier is shaped by the composition of the gut micro-
biota [121]. Alteration of the gut microbiota has been associated with severity in COVID-
19 [122,123] and might contribute to disrupting the mucus barrier, rendering the gut more
permissive to SARS-CoV-2. A body of evidence indicates that gut dysbiosis, prior to infec-
tion, represents a risk factor, meaning contributes to more severe outcomes in COVID-19
patients, potentially by modulating intestinal ACE2 expression, intestinal and systemic
inflammation and gut barrier integrity [124].

In conclusion, further research is needed to acquire a comprehensive understanding of
the conditions under which SARS-CoV-2 productively infects enterocytes in humans in vivo.
Notably, it is important to understand if specific conditions, including age, comorbidities
or medication are associated with release of infectious particles from feces by tracking and
surveillance of several groups in the population. These studies could be complemented by
in situ hybridization or staining of human tissues acquired from biopsies or post-mortem
samples of gut retried from COVID-19 positive people.

5.2. Infectious Virus in the Feces

If SARS-CoV-2 can establish an intestinal infection, then it remains unknown whether
infectious viral particles can tolerate GI fluids and be shed alive through feces with sufficient
concentration and infectivity for subsequent transmission. Despite SARS-CoV-2 RNA being
detected in stools, and the persistent viral shedding of SARS-CoV-2 in feces, current data
from different studies are conflicting regarding the detection of infectious particles in feces.
Infectious viral particles may be retrieved from anecdotal cases, although studies indicate
that the vast majority of individuals infected with SARS-CoV-2 do not release infectious
particles from stools [125]. While high viral RNA concentrations were observed in stools in
two different studies (9 and 10 patients, respectively), infectious virus was not recovered
in those samples [33,125,126]. In contrast, replicating SARS-CoV-2 virus was detected in
feces in [127] and viable SARS-CoV-2 particles in stool samples in [128]. Several aspects
could complicate SARS-CoV-2 isolation from fecal material, such as the stability of the
virus in the feces [129] and the potential presence of numerous other viruses. These aspects
could also make viral activity assays technically challenging. A procedure using filtered
diluted specimens without the addition of any potentially toxic antibacterial agents and
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cell culture medium changing after centrifugation was described as responsible for high
virus recovery [130]. Using a similar method Jeong et al. [128] failed to demonstrate the
presence of viable virus in stools, but they were able to isolate SARS-CoV-2 from ferrets
that were inoculated with stool samples from COVID-19 patients. Other SARS-like viruses
have been isolated from animal feces (see [131] as example), coronaviruses related to SARS-
CoV-2 were isolated from bat rectal swabs and guano and were tested as able to infect
in vitro human cells [132]. Understanding whether and when fecal-oral transmission of
SARS-CoV-2 might occur will be of critical importance for health workers since feces from
infected hosts could be a transmission source.

In addition, the potential risk of transmission via feces had implications on fecal mi-
crobiota transplantation (FMT) highly effective for recurrent Clostridium difficile infections.
It is speculated that COVID-19 might be transmitted via FMT particularly from asymp-
tomatic donors, specifically those who tested negative for the presence of the virus in their
respiratory tract but potentially positive in their fecal samples [133]. No cases of COVID-19
transmission through FMT treatment have been reported, but only FMT products generated
from stool donated before December 2019 or before November 2019 can be used according
to the FDA recommendations and Hong Kong guidelines, respectively.

Finally, fecal shedding may have important epidemiological implications for com-
munity surveillance tools such as wastewater monitoring, which inform public health
measures. Detection of SARS-CoV-2 RNA in untreated wastewater has been reported [134].
Detecting SARS-CoV-2 in wastewater might represent a way to better surveille the status of
the population and detect peaks of infection and admissions to hospital up to one week
ahead development of symptoms or detection in nasopharyngeal swabs [135]. In a recent
study [136] fecal viral RNA was observed up to 7 months post infection in patients with
mild to moderate COVID-19. Understanding the temporal dynamics of fecal shedding in
individuals with mild or even asymptomatic disease is essential for inferring population-
prevalence of COVID-19 from wastewater studies [137]. Currently the majority of the
longitudinal studies of fecal viral RNA shedding have been limited to hospitalized patients
with severe COVID-19 and/or with co-morbidities [138]. As stated by the authors, the
continued presence of fecal viral RNA in wastewater may be mistakenly interpreted as
evidence of the prevalence of infectious individuals in a community. Since wastewater viral
RNA levels are being considered for use in guiding community level policies, it is critical to
better understand how aerosol transmissibility of SARS-CoV-2 RNA are temporally related
to fecal viral RNA shedding [136].

More evidence is required to demonstrate whether and in which conditions SARS-CoV-
2 can establish a fecal–oral transmission route. This requires determining which people
are susceptible to GI infection, and from this pool, in what conditions may people shed
infectious virus particles in feces. Another important outstanding question to resolve is
determining the minimum infectious dose of SARS-CoV-2, which may vary for the different
SARS-CoV-2 variants.

5.3. Gut Implication in the Severity of the COVID-19 Outcomes

While a first Asian analysis at the beginning of the pandemic suggested that the
presence of GI symptoms in COVID-19 patients was associated with increased clinical
deterioration [139], other European or American studies have subsequently found the
opposite [140–142]. An initial study showed no significant correlation consistent with
GI tract symptomatology and disease severity [143]. Later on, a first meta-analysis did
not show a statistically significant difference in mortality between patients with or with-
out GI symptoms [144]. A second recently published (March 2022) large meta-analysis
including 53 studies with 55,245 patients also showed no association [144], but two stud-
ies including more groups and people associated GI symptoms with worse prognosis of
the disease [5,145]. Thus, it is still unclear whether GI symptoms could be predictive of
disease severity.
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An important body of evidence, however, supports the crucial implication of the gut
in the excessive inflammatory response in COVID-19. Under normal conditions, inflam-
mation is a protective process that combats infection. However, prolonged inflammatory
response has long been known to play a detrimental role in human diseases, and clinical
markers of excessive systemic inflammatory response were associated with severe and
fatal COVID-19 [146,147]. Hyperinflammation contributes to broad tissue damage, acute
respiratory distress syndrome, multiple-organ failure and ultimately death [148] and has
been described as central in inducing severe outcomes in COVID-19 patients [149,150].
Impaired intestinal barrier function enhances the translocation of gut bacteria and of bac-
terial toxins, such as peptidoglycans and lipopolysaccharides (LPS), from the gut lumen
into the blood. Increased levels of LPS in the blood (endotoxemia) activate Toll-Like Re-
ceptors, leading to the production of numerous pro-inflammatory cytokines and, hence,
low-grade systemic inflammation [151]. In severely ill patients, intestinal barrier disrup-
tion and associated bacterial translocation exacerbates systemic inflammation [152,153].
Three studies found higher gut permeability markers in (severe) COVID-19 patients with
abnormal presence of gut microbes in their bloodstream [7,91,92]. High levels of zonulin
(gut permeability marker) were associated with severe COVID-19 and bacterial products in
the blood correlated strongly with higher levels of markers of systemic inflammation and
immune activation (such as C-reactive peptide levels) [7,91,92,123]. This does not imply
that microbial translocation is the primary trigger of the inflammation, but supports the
hypothesis that disrupted intestinal barrier and associated bacterial translocation play an
additive or synergistic role in the cytokine storm underlying severe COVID-19 [92,154]. In
addition, bacteria translocation from the gut into the systemic circulation might result in
secondary infections and aggravate pulmonary symptoms in COVID-19 patients [155,156].

Disruption of the intestinal barrier also induces a local inflammatory response. It
remains unclear whether permeability changes are primary events or secondary effects
triggered by inflammation. Increased intestinal permeability and chronic intestinal in-
flammation are hallmarks of inflammatory bowel diseases (IBD), such as Crohn’s disease
(CD) [157]. Taking advantage of the genetic aspect in CD, several studies reported that
increased permeability might precede CD onset as abnormal lactulose-to-mannitol ratios
in asymptomatic first-degree relatives of CD patients was associated with a CD diagnosis
during the follow up time [158–160]. In line, in the IL-10 gene-deficient IBD mouse model,
increased intestinal permeability was observed early in life and then mice spontaneously
developed colitis at 12 weeks age [161]. In addition, IL-10 deficient animals treated with
AT-1001, a zonulin peptide inhibitor previously shown to reduce small intestinal perme-
ability, developed less colitis later in life. Results from IBD mouse models suggest that
investigation of intestinal permeability and inflammation in SARS-CoV-2 infected mice
or cells treated with AT-1001 could be informative of the sequential process. Recently, a
drug repurposing approach identified AT-1001, currently in phase 3 trials in celiac disease,
as a potential therapeutic approach for COVID-19, however still requiring optimization
steps [162]. In light of the central role of inflammation in COVID-19, concerns were raised
that IBD patients may have an increased risk of worse outcomes. Corticosteroids, com-
monly used medications for IBD, were associated with adverse outcomes in COVID-19, but
overall IBD patients did not have an increased risk of COVID-19 and had largely similar
outcomes as the general population [163].

Finally yet importantly, associations between levels of inflammatory markers and gut
microbiota composition in COVID-19 patients suggest that the gut microbiota might be
involved in the magnitude of COVID-19 severity [122]. Significant alterations in fecal mi-
crobiomes of COVID-19 patients were reported at all times of hospitalization [122,164–166].
Recently, animal studies in mice, hamsters and nonhuman primates provided evidence
that SARS-CoV-2 infection directly alters the gut microbiome [6,87,166]. However, the
underlying mechanisms are still poorly understood. A body of evidence supports that
intestinal and systemic inflammation, dysregulation of intestinal ACE2 or infection of
intestinal bacteria can be interconnected pathways leading to gut dysbiosis as an adverse
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outcome following SARS-CoV-2 in the gut, but further laboratory research and large-scale
population-based studies are needed to validate these pathways [167]. In addition, changes
in the lung microbiome with increase of bacteria normally found in the GI tract were re-
ported in COVID-19 patients [168]. Besides, gut dysbiosis during respiratory viral infection
has been shown to worsen lung pathology and to promote secondary infections [156].
Based on the current insights, modulating the gut microbiota with probiotics, prebiotics or
diet to improve disease prevention and management might represent easy to implement
strategies [169]. Clinical trials in COVID-19 of probiotics with expected anti-inflammatory
effects in the gut–lung axis are currently underway [170].

5.4. Gut Implication in Long COVID

Finally, GI disorders described in patients appeared to precede, accompany or fol-
low the respiratory symptoms [5,171,172]. Long-term sequelae of COVID-19, collectively
termed the post-acute COVID-19 syndrome (PACS) or long COVID, are rapidly emerging
across the globe and many studies following patients who have recovered from the res-
piratory effects of COVID-19 identified persistent GI sequelae [173–175]. In a study from
China, around half of the patients (41 of 74) had fecal samples positive for SARS-CoV-2
RNA, which remained positive for longer than the respiratory samples [173]. A recent
study detected fecal RNA in around half of participants (113 patients with mild to moderate
COVID-19) within the first week after diagnosis and around 4% of the patients shed up
viral RNA up to 7 months after diagnosis while respiratory samples were negative [136].
No association between symptomatology and fecal viral RNA shedding was found in this
study in participants with active respiratory infection, but when focusing on participants
with extended shedding of fecal viral RNA after respiratory shedding ceased, fecal viral
RNA was associated with GI symptoms [136]. Another recent study using a cohort of IBD
patients showed that SARS-CoV-2 antigens could persist in the gut up to 7 months after
infection. Importantly, only those IBD with detectable viral RNA in the gut were found
to display post-acute COVID-19 symptoms [176]. In non-human primates infected with
SARS-CoV-2, the viral RNA load decreased less rapidly over time in rectal samples than in
nasopharyngeal and tracheal swabs [6]. These studies support the possibility that a pro-
longed SARS-CoV-2 presence in the GI tract, after the respiratory infection is cleared, might
represent long-term viral reservoirs contributing to long COVID. A potential bacteriophage-
like behavior of SARS-CoV-2 might also offer a way to explain the intestinal/fecal long-term
presence of SARS-CoV-2. While the pathogenesis of long COVID is still under intense
investigation, on the four current leading hypotheses [63], it is interestingly to note that two
involve the gut: (i) gut dysbiosis [177,178] and (ii) viral reservoir with residual SARS-CoV-2
viral antigens [179] and persistent SARS-CoV-2 nucleic acids [76,177] reported in GI tissues
in patients months after diagnosis and proposed to drive chronic inflammation. However,
the concept that viral antigen persistence instigates immune perturbation and post-acute
COVID-19 still requires validation in controlled clinical trials [176]. Towards that end, the
RECOVER initiative (https://recovercovid.org/about) aims to bring together patients,
caregivers, clinicians and scientists to understand, prevent and treat Long COVID, notably
by collecting biopsies from the lower intestines of some participants [180]. Continuing
the unprecedented degree of scientific collaboration, such unified interdisciplinary actions
to collect and characterize sufficient PASC cases will enable to identify which factors af-
fects long COVID. In addition, animal models such as humanized mice [181] or Syrian
hamsters [182] will help to highlight molecular mechanism of long COVID and to explore
future therapeutics.

Finally, currently the definition of long COVID differs depending of the health or-
ganizations [183,184]. There is a need for either a universal definition or to stop treating
long COVID as a single entity as this umbrella term might represent multiple conditions
(203 symptoms reported in 10 organs systems) [185]. Defining long COVID (categories)
will help deciphering underlying mechanisms to ultimately improve disease prevention,
management and treatment.

https://recovercovid.org/about
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6. Conclusions

There are multiple outstanding questions regarding SARS-CoV-2 interaction with the
human gut. First, it is not firmly established whether SARS-CoV-2 can actively replicate
in human intestine. Evidence from multiple in vitro and in vivo animal studies points
towards a direct viral tropism of intestinal cells and a productive enteric infection by SARS-
CoV-2, however species, dose, virus preparations and route of inoculum are important
factors to consider that can influence the occurrence of productive intestinal infection in
animal studies. In addition, it is possible that specific conditions increase susceptibility
to SARS-CoV-2 replication in the gut. Further studies are clearly needed to determine the
experimental and clinical conditions under the gut represents an alternative entry route
for the virus into the body. Such conditions encompass comorbidities, age, medication,
inflammatory status, dysbiosis, fasted-fed status or ingestion with food. Secondly, based on
the current evidence, it remains unclear whether GI symptoms, and particularly diarrhea,
are caused by direct infection of the GI tract by SARS-CoV-2 or whether they are a conse-
quence of a local and systemic immune activation. The wide range in reported rates of
diarrhea in clinical studies of SARS-CoV-2 positive patients (from as low as 2% up to 50%)
calls for more clinical studies and meta-analysis to elucidate the percentage of COVID-19
patients who develop GI symptoms, and particularly diarrhea, and whether GI disorders
depend on active SARS-CoV-2 enteric infection and/or on factors such as those cited above.
Answering those questions will be important for deciding the course of medical treatment.
Thirdly, at this time, there is a moderate level of evidence to support the idea that the GI
tract serves as an alternative route of virus dissemination. Finally, the potential implication
of the gut on long COVID possibly by acting as viral reservoir or due to alteration of gut
microbiota requires and deserves significant further investment in research, treatment
and care of the PACS patients. In conclusion, in addition to calling for further research
and large-scale studies, the potential impacts of SARS-CoV-2 productive enteric infection
recommends applying appropriate precautions and potential preventive actions.
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