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Abstract: The Real-WECAN study evaluated the real-life effectiveness and safety of canagliflozin
100 mg daily (initiated in SGLT-2 inhibitors naïve patients) and canagliflozin 300 mg daily (switching
from canagliflozin 100 mg or other SGLT-2 inhibitors) in individuals with type 2 diabetes. The
objectives of this sub-analysis were to estimate the eGFR slope over the follow-up period and to
identify predictive factors of eGFR decline in a multiple linear regression analysis. A total of 583
patients (279 on canagliflozin 100 mg and 304 on canagliflozin 300 mg) were included, with median
follow-up at 13 months. The patients had a mean age of 60.4 years, HbA1c of 7.76%, BMI of 34.7
kg/m2, eGFR below 60 mL/min/1.73 m2 8.6%, and urine albumin-to-creatinine ratio (UACR) above
30 mg/g 22.8%. eGFR decreased by −1.9 mL/min/1.73 m2 (p < 0.0001) by the end of the study. The
mean eGFR slope during the maintenance phase was −0.16 mL/min/1.73 m2 per year. There were no
significant differences between both doses of canagliflozin in the eGFR reduction or in the eGFR slope.
The best predictive multivariate model of eGFR decline after canagliflozin therapy included age,
hypertension, combined hyperlipidemia, heart failure, eGFR and severely increased albuminuria. All
these variables except hypertension were independently associated with the outcome. In conclusion,
in this real-world study, individuals with older age, combined hyperlipidemia, heart failure, higher
eGFR and UACR > 300 mg/g showed a greater decline in their eGFR after canagliflozin treatment.
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1. Introduction

Chronic kidney disease (CKD) in patients with type 2 diabetes (T2DM) not only in-
creases the risk of developing end-stage kidney disease, but also the risk of cardiovascular
morbidity and mortality in comparison to people with T2DM but without CKD [1]. Several
large cardiovascular and renal outcome trials with sodium–glucose co-transporter type
2 inhibitors (SGLT-2is) in patients with T2DM have shown a significant improvement in
composite kidney outcomes and a smaller decline of estimated glomerular filtration rate
(eGFR) in comparison to placebo [2]. Proposed mechanisms responsible for renal protec-
tion with SGLT-2is are probably multifactorial and include reductions in blood pressure
(BP), body weight and HbA1c, as well as a decrease in intraglomerular pressure due to
tubuleglomerular feedback activation, a reduction in albuminuria, improved cardiac func-
tion with maintenance of renal perfusion, activation of anti-inflammatory and antifibrotic
pathways and better oxygenation of tubular cells in the proximal tubule [3].
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SGLT-2is induce a reversible acute drop in eGFR, as a result of a reduction in intra-
glomerular pressure, followed by an attenuation in eGFR decline on long-term treatment.
Nevertheless, a high number of patients on SGLT-2is maintain a substantial renal residual
risk and their eGFR continues to drop at a rapid rate. Recently, a sub-analysis of the
CREDENCE study showed that participants with an acute drop in eGFR after canagliflozin
100 mg were older, had a longer duration of T2DM, had a higher body mass index, systolic
BP and eGFR, were more likely to take diuretics and were less likely to have heart failure [4].
However, baseline predictors of long-term eGFR trajectories in patients on SGLT-2is are
largely unknown.

In the multicentric observational study Real-WECAN, canagliflozin 100 mg/d (as
add-on therapy) and canagliflozin 300 mg/d (switching from canagliflozin 100 mg or other
SGLT-2is) were associated with significant improvements in glycemic control, body weight,
BP, lipid profile and hepatic biomarkers in patients with T2DM. A significant decrease in
the urinary albumin/creatinine ratio (UACR) was found with canagliflozin 100 mg and
300 mg in the subgroup of patients with UACR higher than 30 mg/g Cr, even though there
were no meaningful changes in antihypertensive medications during the study [5].

We conducted a post hoc analysis of the Real-WECAN study in order to determine
baseline predictors of renal function decline over the follow-up period in patients with
T2DM treated with canagliflozin.

2. Material and Methods
2.1. Study Design and Patient Population

The study design has previously been described [5]. We carried out a retrospective
study of two groups of adult patients with T2DM from 5 tertiary hospitals in Madrid,
Spain. A first cohort of patients who started canagliflozin 100 mg and a second cohort
of individuals with prior SGLT-2i treatment who switched to canagliflozin 300 mg were
identified in medical records from the Departments of Endocrinology between May 2015
and July 2019. The second cohort also included those patients from the first cohort who
switched to canagliflozin 300 mg, in order to study the subgroup of individuals with
the sequential therapy canagliflozin 100 mg–canagliflozin 300 mg [5]. Both cohorts were
merged for the present renal sub-analysis, although a separate statistical study for each
individual cohort was also performed.

2.2. Outcomes and Study Measures

Three data capture visits were defined over the follow-up period: V1, baseline
(canagliflozin 100 mg) or switch (canagliflozin 300 mg); V2, 6 ± 2 months after the start of
canagliflozin 100 mg or after switching to canagliflozin 300 mg; and V3, last visit. Baseline
clinical parameters included gender, age, duration of the disease, weight, BP, chronic dia-
betic complications, other cardiovascular risk factors, heart failure, sleep apnea, background
glucose lowering drugs (GLDs), anti-hypertensive drugs and lipid-lowering medications.
Baseline laboratory data included HbA1c, fasting plasma glucose (FPG), heart rate (HR),
lipids, uric acid, liver enzymes, hematocrit, eGFR (calculated with the Chronic Kidney
Disease Epidemiology Collaboration equation) and UACR.

The main outcome measures of this sub-analysis were: (1) to estimate the eGFR slope,
in order to compare our results with those from other published studies with SGLT-2is, and
(2) to determine the best predictive model of eGFR decline at the end of the study, aiming
to identify those individuals with high renal residual risk despite canagliflozin therapy.

2.3. Statistical Methods

The total eGFR slope was calculated as the annual rate of change in eGFR based on
all on-treatment eGFR measurements from baseline to the last available measurement. In
order to exclude the acute eGFR drop caused by the hemodynamic effect of canagliflozin,
we also calculated the eGFR slope during the maintenance phase as the annual ratio of
change in eGFR from visit V2 (6 months) to the end of the study (V3).



J. Clin. Med. 2022, 11, 5622 3 of 9

A multiple linear regression analysis was used to estimate the best predictive model
of eGFR drop over the follow-up period. Forty-seven potential baseline predictors were
evaluated. The selection of the best regression equation from all possible sub-models was
performed using the Mallows criterion.

3. Results

Baseline characteristics are shown in Table 1. A total of 583 patients were included,
279 with canagliflozin 100 mg and 304 with canagliflozin 300 mg; 8.6% of patients had
eGFR lower than 60 mL/min/1.73 m2 and 22.8% showed UACR higher than 30 mg/g.
Median follow-up periods in the canagliflozin 100 mg and canagliflozin 300 mg cohorts
were 9.1 and 15.4 months, respectively. Patients switching to canagliflozin 300 mg had been
previously treated with other SGLT-2is for a median period of 17.1 months.

Table 1. Baseline characteristics. Data: percentage or mean (SD), except * median (IQR). BMI: body
mass index. eGFR: estimated glomerular filtration rate. UACR: urine albumin-to-creatinine ratio.
ACEis: angiotensin-converting enzyme inhibitors. ARBs: angiotensin II receptor blockers.

Baseline Characteristics Value
Number of patients 583

Follow-up time (months) * 13.0 (6.4–24.8)
Gender (male/female) 55.4/44.6

Age (years) 60.4 (11.3)
Duration of T2DM (years) * 11.2 (6.4–16.5)

HbA1c (%) 7.76 (1.36)
Weight (kg) 93.4 (21.1)

BMI (kg/m2) 34.7 (7.3)
eGFR (ml/min/1.73 m2) 85.6 (16.7)

UACR (mg/g Cr) * 7.6 (2.4–26.9)
Chronic kidney disease (%)

• Stage G0/G1 49.5
• Stage G2 42.0
• Stage G3a 8.0
• Stage G3b 0.4
• Stage G4 0.2
• Stage G5 0
• Stage A1 77.2
• Stage A2 18.8
• Stage A3 4.0

Hypertension 78.7
Hypercholesterolemia 85.6
Hypertriglyceridemia 46.0

Combined hyperlipidemia 42.5
Current smoker 13.8

Diabetic retinopathy 16.0
Diabetic neuropathy 9.8

Coronary artery disease 9.6
Stroke 3.8

Peripheral artery disease 6.3
Arrhythmias 4.6
Heart failure 2.4

ACEis (%) 31.9
ARBs (%) 37.6

Thiazides (%) 31.4
Loop diuretics (%) 6.2

There was a modest mean decrease in eGFR (−1.89 mL/min/1.73 m2, p < 0.0001) at
the end of the follow-up period in the entire cohort, which represents a percentage change
of −1.67% (Figure 1). This significant reduction in eGFR was observed with both doses of
canagliflozin (Figure 2). The mean total eGFR slope was −1.50 mL/min/1.73 m2 per year
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(−1.82 mL/min/1.73 m2 per year with canagliflozin 100 mg and −1.27 mL/min/1.73 m2

per year after switching to canagliflozin 300 mg). The mean eGFR slope during the mainte-
nance phase was −0.16 mL/min/1.73 m2 per year. There were no significant differences be-
tween the two doses of canagliflozin in the eGFR reduction or in the eGFR slope. In patients
with a follow-up time longer than 2 years (n 139, median time 33.4 months) the percentage
change of eGFR was −2.38% and the mean total eGFR slope was −1.0 mL/min/1.73 m2

per year. Fifty percent of patients showed no change or increased their eGFR over the
follow-up. In the subgroup of patients with baseline eGFR ≥60 mL/min/1.73 m2 there
was a significant drop in eGFR at the end of the study, whereas a significant rise in renal
function was observed in those patients with baseline eGFR below 60 mL/min/1.73 m2

(Figure 3).
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Figure 3. Changes in eGFR after therapy with canagliflozin in patients with baseline eGFR equal
to or above 60 mL/min/1.73 m2 (91.4%, mean baseline eGFR 88 mL/min/1.73 m2, panel (A))
and in patients with baseline eGFR below 60 mL/min/1.73 m2 (8.6%, mean baseline eGFR
53.5 mL/min/1.73 m2, panel (B)). Bars: mean change ± SEM. * p < 0.0001 vs. baseline, ** p non-
significant vs. baseline, *** p = 0.02 vs. baseline.

Fourteen (2.4%) patients (five treated with the 100 mg dose and nine with the 300 mg
dose) showed an eGFR decrease greater than 30% at the end of the follow-up period.
Baseline characteristics of these patients were similar to those of the entire cohort, except
they had a lower baseline eGFR (65.2 vs. 86.5 mL/min/1.73 m2, p < 0.0001). SGLT-i therapy
was identified as the most likely cause of rapid decline of eGFR in this group. Doubling of
serum creatinine was found in three patients. Only one patient on canagliflozin 100 mg
and one patient on canagliflozin 300 mg stopped the drug due to worsening of renal
function. No meaningful changes in any anti-hypertensive medications were reported
during the study.

The best predictive model of eGFR decline after canagliflozin therapy included age,
hypertension, combined hyperlipidemia, heart failure, eGFR and severely increased albu-
minuria (Table 2). All these variables except hypertension were independently associated
with the outcome. Canagliflozin dose, diuretic therapy or advanced stages of CKD were
not associated with a larger decrease in eGFR.

Table 2. Predictive factors of eGFR decline after canagliflozin therapy. Data: mean difference (95%
CI). UACR: urine albumin-to-creatinine ratio. ARBs: angiotensin II receptor blockers. * p < 0.05.

Baseline Variable Mean Change (95% CI)
(Unadjusted)

Mean Change (95% CI)
(Adjusted)

Mean Change (95% CI)
(Best Model)

Age
(per year) −0.08 (−0.16; −0.003) * −0.14 (−0.24; −0.04) * −0.15 (−0.24; −0.05) *

Hypertension
(yes vs. no) −3.34 (−5.44; −1.24) * −1.91 (−4.74; 0.92) −2.00 (−4.48; 0.40)

Combined hyperlipidemia
(yes vs. no) −2.52 (−4.27; −0.76) * −2.59 (−4.66; −0.51) * −3.09 (−5.00; −1.17) *

Heart failure
(yes vs. no) −6.11 (−11.55; −0.68) * −5.85 (−11.04; −0.66) * −5.40 (−10.42; −0.37) *

eGFR
(per mL/min) −0.14 (−0.20; −0.09) * −0.20 (−0.27; −0.13) * −0.20 (−0.26; −0.13) *

Proteinuria
(vs. UACR < 30 mg/g) −10.70 (−16.28; −5.13) * −11.12 (−17.00; −5.25) * −11.04 (−16.22; −5.85) *

Hematocrit
(per 1%) 0.22 (0.03; 0.40) * 0.02 (−0.21; 0.24)

ARBs
(yes vs. no) −2.36 (−4.17; −0.56) * −0.94 (−3.15; 1.28)
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4. Discussion

In the present analysis of the Real-WECAN study, renal function slightly lowered over
the follow-up period in the entire cohort, but the eGFR slope leveled off over the mainte-
nance phase. These findings are similar to the renal effects reported with different SGLT-2is
in several cardiovascular outcome trials, in which most patients, as in our study, had
well-preserved kidney function [6–8]. For example, in the CANVAS trial, [7] mean change
in eGFR in patients who were treated with canagliflozin was −1.8 mL/min/1.73 m2 (mean
difference 2.0 mL/min/1.73 m2 vs. placebo). From baseline to week 13, the canagliflozin-
treated group had a mean eGFR decrease of −3.1 mL/min/1·73 m2; from week 13 to last
available measurement (median 20.9 months), participants allocated to the canagliflozin
group had a stabilization of kidney function, with a mean annual long-term change of
+0.3 mL/min/1.73 m2. In the EMPA-REG OUTCOME trial, [6] there was a short-term drop
in the eGFR in the empagliflozin groups (weekly reductions of −0.62 mL/min/1.73 m2

in the 10 mg cohort and −0.82 mL/min/1.73 m2 in the 25 mg cohort). Thereafter, during
long-term administration (median follow-up time 3.1 years), the eGFR remained stable in
the empagliflozin groups, with annual decreases of −0.19 mL/min/1.73 m2 in the 10 mg
and 25 mg empagliflozin groups, as compared to a reduction of −1.67 mL/min/1.73 m2 in
the placebo group.

The long-term protective effects of SGLT-2is on renal function have also been found
in some, but not all, large real-world studies (RWS) [9–11]. In the CVD-REAL3, [9] a
multinational observational study in which new users of SGLT2is and other GLDs were
compared after a propensity score matching, annual rates of eGFR change during a
14.9-month follow-up were +0.46 mL/min/1.73 m2 per year in the group of SGLT-2is
and −1.21 mL/min/1.73 m2 per year in the group of other GLDs. However, in the
DARWIN-T2D, [10] a multicenter retrospective study conducted in Italy which com-
pared patients treated with dapagliflozin versus other GLDs in real life, eGFR decreased
−1.1 mL/min/1.73 m2 in the dapagliflozin cohort vs. −0.6 mL/min/1.73 m2 in the other
GLDs cohort after an average follow-up of 6 months. The change in eGFR from baseline be-
tween both groups was not significantly different. Likewise, an RWS conducted by the Scot-
tish Diabetes Research Network Epidemiology Group [11] showed that, in patients exposed
to dapagliflozin (median follow-up 210 days), eGFR dropped by −1.81 mL/min/1.73 m2

at 3 months but by 12 months the effect was not higher than the expected reduction in
eGFR in the absence of the SGLT-2i. These discrepancies in renal findings among the afore-
mentioned RWS could be explained by differences in the follow-up periods, which were
shorter in the DARWIN-T2D and the Scottish study in comparison to the CVD-REAL3 or
the REAL-WECAN. A longer observational time is needed to distinguish between the acute
versus chronic effects of SGLT-2i on eGFR; most patients in RWS do not have impaired
renal function and therefore the rate of deterioration is slow, meaning that it would take a
long time to observe the renal benefits of SGLT-2is.

In the REAL-WECAN study, older age, combined hyperlipidemia, heart failure, higher
baseline eGFR and severely increased albuminuria were independently associated with a
greater long-term decrease in eGFR after canagliflozin therapy. Interestingly, the subgroup
of patients with baseline eGFR below 60 mL/min/1.73 m2 showed a significant increase in
eGFR over the follow-up period. In dedicated renal outcome trials enrolling patients with
CKD, such as CREDENCE [12] or DAPA-CKD [13], the change in the estimated GFR slope
was less in individuals on SGLT-2i than in those on placebo, but a sustained decline in eGFR
over the follow-up period was still observed despite SGLT-2i therapy. Such decline was also
present in those patients on SGLT-2is with eGFR below 60 mL/min/1.73 m2 [14]. However,
some RWS including patients with CKD have shown a long-term improvement in renal
function on SGLT-2i therapy. For example, in the SAPPHIRE study, [15] a long-term, post-
marketing surveillance conducted in Japan, patients with CKD and G3-G4 stages treated
with canagliflozin experienced a slight increase (+0.5–1.1 mL/min/1.73 m2) in eGFR after
36 months of treatment, as opposed to patients with G1 stages, who experienced a decrease
in eGFR (−6.9 mL/min/1.73 m2). In the CVD-REAL3 study, [9] patients with baseline
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eGFR lower than 60 mL/min/1.73 m2 had an eGFR slope of +0.22 mL/min/1.73 m2 per
year; in contrast, those patients with eGFR > 90 mL/min/1.73 m2 showed an eGFR slope
of −0.18 mL/min/1.73 m2 per year. The mechanisms responsible for this recovery of eGFR
in some RWS are unknown. It could be hypothesized that compensatory upregulation
of tubular SGLT-1 in advanced stages of CKD may result in increased sodium–glucose
co-transport, causing afferent arteriolar re-dilatation and an increase in renal perfusion and
eGFR. Alternatively, anti-inflammatory and antifibrotic pathways might be involved in the
long-term renal function recovery in this subgroup of patients.

It is well known that the risk of developing end-stage kidney disease is further in-
creased at higher levels of albuminuria [1]. In several clinical trials, the absolute effect of
SGLT-2is on eGFR slope was greater in people with severely increased albuminuria and
this was due to the much more rapid decline in kidney function in these patients [16,17].
In our study, individuals with UACR >300 mg/g at baseline showed a higher decline in
the eGFR in comparison to patients with albuminuria below 30 mg/g, confirming that this
group maintains a high renal residual risk despite SGLT-2is therapy.

Heart failure and CKD frequently co-exist because both diseases share common risk
factors and pathophysiological mechanisms which affect one another. Heart failure has
been associated, after adjustment for other well-known CKD risk factors, with a more
pronounced drop in eGFR over time [18]. Although in the CREDENCE trial participants
in the canagliflozin group with an acute drop in eGFR were less likely to have heart
failure, [4]) our results suggest that, in the long term, these patients remain at a very high
risk of developing or worsening CKD.

Metabolic syndrome and its components are associated with CKD [19]. In our cohort,
patients with combined hyperlipidemia showed a significant faster decline in their renal
function. Hypertension was a significant predictor of greater renal decline in the univariate
but not in the multivariate analysis.

As we pointed out in the introduction, several mechanisms may contribute to the
nephroprotective effects seen with canagliflozin [3,20]. Well-known metabolic effects
include reduction in glucotoxicity and perivisceral fat. Moreover, an increase in beta-
hydroxybutyrate levels, a substrate with high energy efficiency for the distal nephron,
may protect the renal medulla from hypoxia. Canagliflozin has systemic hemodynamic
effects, as it lowers the systolic BP transmitted to the kidney, improves heart function
and reduces the need for loop diuretics, which avoids intravascular volume depletion.
Intrarenal hemodynamic effects are probably the most important renoprotective mechanism
of canagliflozin. Restoration of tubuleglomerular balance, providing more sodium to
the macula densa, normalizes the tone of the afferent arteriole and is followed by long-
term eGFR stabilization and reduction in albuminuria. Finally, reduction in glucotoxicity
and proteinuria and the activation of anti-inflammatory and antifibrotic pathways by
canagliflozin may play a joint role in reducing tubulointerstitial damage in the diabetic
kidney [20].

We acknowledge the limitations of our analysis. A pre-post design was selected and a
control group was not included. However, our main goal was not to compare the effect of
canagliflozin with other GLDs, but to identify those patients with high renal residual risk
on canagliflozin. Renal function was not available at 3–4 weeks after initiating canagliflozin
in most patients, therefore an analysis of the acute eGFR drop could not be performed. Our
study focused on patients who started canagliflozin 100 mg and patients with prior SGLT-2i
treatment who switched to canagliflozin 300 mg. Unfortunately, eGFR trajectories with
other SGLT-2is prior to switching to canagliflozin 300 mg were not collected, so renal data
with empagliflozin or dapagliflozin cannot be shown in this analysis. Finally, we cannot
rule out the possibility of residual unmeasured confounding factors, despite multivariate
adjustments. These limitations may affect the external validity of the results so confirmatory
studies including a higher number of patients are needed.

In summary, in the Real-WECAN study, patients with older age, combined hyperlipi-
demia, heart failure, higher baseline eGFR and severely increased albuminuria showed
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greater reductions in eGFR after canagliflozin therapy. Our study may help to identify the
profile of patients with a higher risk of decline in their renal function after initiating an
SGLT-2i. These individuals will need more aggressive control of classic renal risk factors
and the combination of SGLT2-is with new nephroprotective drugs.
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