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Abstract: Background: The ability to accurately detect ischemic stroke and predict its neurological 

recovery is of great clinical value. This study intended to evaluate the performance of whole-brain 

dynamic radiomics features (DRF) for ischemic stroke detection, neurological impairment assess-

ment, and outcome prediction. Methods: The supervised feature selection (Lasso) and unsupervised 

feature-selection methods (five-feature dimension-reduction algorithms) were used to generate four 

experimental groups with DRF in different combinations. Ten machine learning models were used 

to evaluate their performance by ten-fold cross-validation. Results: In experimental group_A, the 

best AUCs (0.873 for stroke detection, 0.795 for NIHSS assessment, and 0.818 for outcome predic-

tion) were obtained by outstanding DRF selected by Lasso, and the performance of significant DRF 

was better than the five-feature dimension-reduction algorithms. The selected outstanding dimen-

sion-reduction DRF in experimental group_C obtained a better AUC than dimension-reduction 

DRF in experimental group_A but were inferior to the outstanding DRF in experimental group_A. 

When combining the outstanding DRF with each dimension-reduction DRF (experimental 

group_B), the performance can be improved in ischemic stroke detection (best AUC = 0.899) and 

NIHSS assessment (best AUC = 0.835) but failed in outcome prediction (best AUC = 0.806). The 

performance can be further improved when combining outstanding DRF with outstanding dimen-

sion-reduction DRF (experimental group_D), achieving the highest AUC scores in all three evalua-

tion items (0.925 for stroke detection, 0.853 for NIHSS assessment, and 0.828 for outcome predic-

tion). By the method in this study, comparing the best AUC of Ft-test in experimental group_A and 

the best_AUC in experimental group_D, the AUC in stroke detection increased by 19.4% (from 0.731 

to 0.925), the AUC in NIHSS assessment increased by 20.1% (from 0.652 to 0.853), and the AUC in 

prognosis prediction increased by 14.9% (from 0.679 to 0.828). This study provided a potential clin-

ical tool for detailed clinical diagnosis and outcome prediction before treatment. 

Keywords: DSC-PWI; dynamic radiomics features; Lasso; dimension reduction; stroke detection; 

NIHSS assessment; outcome prediction 
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1. Introduction 

Ischemic stroke is the primary reason for disability and the second-leading cause of 

death worldwide [1]. The surviving patients are usually accompanied by varying neuro-

logical deficits, resulting in impaired living quality and burdened families and society. 

Good clinical outcomes were proven to be correlated with early vessel recanalization [2,3]. 

Early warning of stroke and accurate assessment of neurological recovery after treatment 

will facilitate the early prevention of stroke [4], the selection of individualized treatment 

plans [5], and the recovery of patients [6], thereby reducing the risk of stroke. Therefore, 

abnormal brain tissue detection and accurate prognostic status prediction are critical fac-

tors in stroke treatment. 

Cerebral blood flow (CBF) is an essential physiological parameter to evaluate the 

state of brain tissue in the clinic. Normal blood flow transmission can provide blood oxy-

gen for brain tissue and maintain a stable brain [7,8]. However, once a cerebral vascular 

occlusion results in ischemia in a region of brain tissue, the blood flow parameters in that 

ischemic region differ from those in normal tissue [9,10]. Therefore, CBF parameters have 

been widely used in the diagnosis and treatment of brain tumors [11,12], stroke [13–15], 

and Alzheimer’s disease [16,17]. Clinically, the clinical images to observe blood flow 

mainly include ultrasonic doppler (UD), digital subtraction angiography (DSA), com-

puted tomography angiography (CTA), computed tomography perfusion (CTP), perfu-

sion-weighted imaging (PWI), and arterial spin labeling (ASL). Among them, due to the 

influence of the skull, images from UD are rarely used directly for studying brain diseases. 

Instead, they are primarily used for blood flow velocity detection in the carotid artery, 

heart, and other organs. The other images are widely used in stroke diagnosis and the 

prediction of functional recovery. In perfusion imaging, since the contrast agent is difficult 

to propagate effectively in the damaged tissue, the signal intensity in this area hardly 

changes. Therefore, the maximum tissue residual function (Tmax) extracted from PWI or 

CTA images can be used to detect ischemic stroke lesions (Tmax > 6 s) [18], and the region 

with a reduction of the relative CBF (rCBF) by 30% compared to that of the symmetric side 

defined as the core infarct area. In addition, the mismatch between ASL or PWI and dif-

fusion-weighted imaging (DWI) can be used to detect the ischemic penumbra [19,20]. It 

has been proved that hemodynamic parameters (such as Tmax, CBF, etc.) obtained from 

medical images have been widely used to detect ischemic stroke lesions. With dozens of 

consecutively scanned three-dimensional (3D) images, there is more information in per-

fusion images than in other images. However, due to the difficulty in data processing 

brought by the vast data amount, the existing algorithms usually used the intermediate 

parameters calculated from the dynamic susceptibility contrast PWI (DSC-PWI) for clini-

cal analysis rather than directly processing them. 

In addition, two factors affecting the rehabilitation of stroke patients are the neuro-

logical impairment degree of the patients and the used treatment strategy, and the degree 

of neurological impairment is one of the influencing factors in deciding the treatment 

strategy. Therefore, the accurate assessment of neurological impairment in stroke patients 

is significant for treating and rehabilitating stroke. The main parameter for evaluating the 

degree of neurological impairment in stroke patients is the National Institutes of Health 

Stroke Scale (NIHSS) [21]. The NIHSS is obtained through questionnaires and usually in-

cludes the following domains: level of consciousness, eye movements, the integrity of vis-

ual fields, facial movements, arm and leg muscle strength, sensation, coordination, lan-

guage, speech, and neglect. Each impairment is scored on an ordinal scale ranging from 0 

to 2, 0 to 3, or 0 to 4. Item scores are summed to a total score ranging from 0 to 42 (the 

higher the score, the more severe the stroke) [22]. Previous studies have explored the as-

sociation between medical images and NIHSS scores. Generally, stroke patients without 

vascular occlusion or peripheral occlusion in medical imaging have lower NIHSS and bet-

ter prognoses. However, Ref. [23] reported that one patient with zero NIHSS might have 
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a stroke. Therefore, NIHSS assessment alone or stroke detection alone may be misdiag-

nosed. If NIHSS-related information can be obtained based on images and combined with 

the results of stroke detection, it will be beneficial to assess the severity of patients. 

Accurate outcome prediction will assist in customizing personalized treatment plans, 

reducing the situation of poor recovery, and objectively and accurately evaluating the 

treatment effect [24]. Several studies have shown that stroke outcomes correlate with clin-

ical text information (CTI) and the parameters computed from medical images. For exam-

ple, lea-Pereira et al. [25] predicted mortality risk scores during admission for ischemic 

stroke with CTI, such as age, sex, readmission, and neurological symptoms. Xie et al. [26] 

used patient information, clinical scores, and volumes of lesion tissue to predict the mod-

ified Rankin scale (mRS) in three months. Moreover, Brugnara et al. [27] combined loca-

tion information for lesions, hypertension, diabetes, dizziness, and physical symptoms to 

perform the prediction. In addition, Ref. [28] used the neutrophil-lymphocyte ratio to pre-

dict the mRS. Although diverse clinical information has consistently been associated with 

outcomes after ischemic stroke, the usefulness of neuroimaging in predicting outcomes 

has not been definitively established [29]. In previous studies, the characteristics of the 

lesion tissue were usually used to predict the outcome of patients, while the overall char-

acteristics of the brain tissue were missing. However, the recovery of neurological func-

tion is a reflection of the brain’s overall function, so it is necessary to explore the relation-

ship between the overall characteristics of the brain and prognosis. 

The information in medical images is crucial for the prevention, detection, treatment, 

and outcome prediction of ischemic stroke. Thus, extracting valuable information from 

medical images is an effective technique in clinical practice. Nowadays, radiomics, an in-

novative method to quantify high-dimensional features from medical images, is widely 

used in medical image processing. For example, it is used to investigate tumor heteroge-

neity [30,31] and in clinical decision support systems to improve treatment decision-mak-

ing and accelerate advancements of clinical decision support systems in cancer medicine 

[32–37]. However, in the field of stroke, only a few studies have explored the role of radi-

omics in diagnosing ischemic stroke [38], penumbra-based prognosis assessment [39,40], 

and functional prediction [41]. Prior studies compared prognostic predictions between 

different diseases based on lesion characteristics. Few studies have used whole-brain fea-

tures for clinical analysis. However, the appearance of local lesions will inevitably affect 

the whole-brain features. Therefore, the role of whole-brain features in diagnosing and 

treating stroke is of great value. 

This study aims to explore the role of the whole-brain dynamic radiomics features 

(DRF) of DSC-PWI in the diagnosis of ischemic stroke, the assessment of neurological im-

pairments, and outcome prediction. The main contributions lie in the following three as-

pects. 

(1) This study explored the role of DRF in ischemic stroke. First, the radiomics features 

of 3D images in the time series of DSC-PWI were used to obtain the DRF of the whole 

brain. Then feature selection and dimensionality reduction methods were used to 

generate various combinations. Finally, by comparing the effects of multiple features 

in stroke diagnosis, NIHSS evaluation, and outcome prediction, the clinical value of 

DRF in stroke treatment and outcome prediction can be proved, providing a potential 

tool for clinical application. 

(2) In this study, the DRF of the whole brain were extracted instead of lesion features, 

which reduced the process of lesion segmentation and saved time for clinical treat-

ment. 

(3) This study can extract useful features related to the target using feature analysis, re-

ducing the problem of enormous computation costs caused by the direct analysis of 

a four-dimensional (4D) DSC-PWI image. 
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2. Materials and Methods 

Detailed materials and methods are introduced in the following subsections. The ma-

terials are described in Section 2.1, and the methods are shown in Section 2.2. 

2.1. Materials 

The Institutional Review Boards approved this retrospective study of Shanghai 

Fourth People’s Hospital, affiliated with the Tongji University School of Medicine and 

exempted from informed consent. The datasets in our study were collected by the neurol-

ogy department of the Shanghai Fourth People’s Hospital, affiliated with the Tongji Uni-

versity School of Medicine, China, from 2013 to 2016. A total of 156 DSC-PWI images from 

88 patients were retrospectively reviewed and included. All patients were imaged within 

24 h of symptom onset, and 22 patients were screened at least twice during pretreatment 

and post-treatment. After clinical examination, 78 (50%) DSC-PWI images were diagnosed 

as ischemic stroke. The primary clinical information includes income NHISS, outcome 

NHISS, and 90-day mRS. The DSC-PWI image for each patient was scanned on a 1.5T MR 

scanner (Siemens, Munich, Germany), and Table 1 shows the details. 

Table 1. Patient information and scanning parameters of DSC-PWI datasets. 

Patient Information Scanning Parameters of DSC-PWI Images 

Numbers of patients 88 TE/TR 32/1590 ms 

Datasets (sets) 156 Matrix 256 × 256 

Image with ischemic stroke (%) 78 (50%) FOV 230 × 230 mm2 

image of outcome patient (%) 73 (46.8%) Thickness 5 mm 

Female (%) 39 (25%) Number of measurements 50 

Age (Mean ± Std) 9.919 ± 6.747 Spacing between slices 6.5 mm 

NIHSS (Mean ± Std) 6.275 ± 6.875 Pixel bandwidth 1347 Hz/pixel 

90-day mRS 38 (47.5%) Number of slices 20 

2.2. Methods 

The proposed method in this study includes four steps: preprocessing DSC-PWI da-

tasets and computing DRF, feature selection and combination strategy, and evaluating the 

performance of the four combinations of DRF. 

2.2.1. Preprocessing DSC-PWI Datasets and Computing Dynamic Radiomics Features 

(A) Registration and smoothing of DSC-PWI datasets 

The preprocessing is intended to reduce noise and position deviation impacts. First, 

it includes registering all of the volumes in the time series, smoothing the voxel in the time 

series, and splitting the skull and brain tissue. This study corrected the DSC-PWI datasets 

for potential patient motion by registering all of the volumes in the time series. Then, a 

triple moving average filter was selected to smooth the data voxel-by-voxel with a 1 × 3 

filtering kernel. The registration method was introduced in Ref. [42,43], and the filtering 

method was used in Ref. [40]. Next, the average 3D image was computed from the first 

ten 3D images and the last ten 3D images in the registered and smoothed DSC-PWI image. 

Finally, this study used neuroimaging software package FSL [44] to segment the skull 

from the average 3D image, and then the mask of brain tissue was obtained for each DSC-

PWI image (seen in Figure 1a). 
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Figure 1. Flowchart of this study. (a) preprocessing of dynamic susceptibility contrast perfusion-

weighted imaging (DSC-PWI) datasets; (b) computing whole-brain dynamic radiomics features 

(DRF); (c) feature selection and combination strategy; (d) evaluating performance with ten learning 

models. The DRF in (b) are combined with the radiomics features of 3D images in the time series of 

DSC-PWI image; the five unsupervised feature selection are principal component analysis (PCA), 

independent component correlation algorithm (ICA), t-distributed stochastic neighbor embedding 

(TSNE), uniform manifold approximation and projection (UMAP), and isometric feature mapping 

(ISOMAP); the ten models are support vector machine (SVM), decision tree (DT), Adaboost classi-

fier (Ada), neural network (NN), random forest (RF), k-nearest neighbors (KNN), logistic regression 

(LR), linear discriminant analysis (DA), gradient boosting classifier (GBDT), and GaussianNB (NB). 
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(B) Making ground truth for three evaluation items 

This study carried out three evaluation items to evaluate the role of DRF in the diag-

nosis and outcome prediction of ischemic stroke patients. The three evaluation items were 

ischemic stroke detection, NIHSS assessment, and outcome prediction. Ischemic stroke 

detection is used to recognize the presence of ischemic stroke lesions. The NIHSS can re-

flect the degree of neurological impairment, and the 90-day mRS can assess the recovery 

of neurological function in patients. In this study, we used the fully automated Rapid Pro-

cessing of Perfusion and Diffusion (RAPID) software (iSchemaView, Menlo Park, CA, 

USA) [45] to detect ischemic stroke lesions in the brain tissue. According to the detection 

results, the ground truth (1—ischemic stroke, 0—normal) for the ischemic stroke of each 

DSC-PWI image can be obtained. For NIHSS assessment, depending on the NIHSS eval-

uated by two experienced neurologists, we redefined a score of zero as a normal state 

without neurological impairment and a score greater than zero as a patient with neuro-

logical impairment (neurological impairment: NIHSS > 0, normal: NIHSS = 0). For out-

come prediction, we set a poor outcome as that with a 90-day mRS greater than 2 and a 

good outcome as that with a 90-day mRS less than 2 (good outcome: 90-day mRS ≤ 2, poor 

outcome: 90-day mRS > 2). 

(C) Computing DRF 

The DSC-PWI datasets are 4D images composed of N 3D images with a size of S × H 

× W, wherein N is the total number of 3D images in each DSC-PWI image and S, H, and 

W represent the slice, height, and width of the 3D images, respectively. This study used 

radiomics technology to compute the DRF of the brain tissue in the DSC-PWI image by 

splitting the DSC-PWI image into N 3D images. First, by decomposing the 4D images into 

N (50 in this study) single 3D images, the radiomics features of the brain tissue in each 3D 

image could be computed separately. Then, the DRF can be obtained by combining the 

radiomics features of all of the 3D images at the time order in the DSC-PWI image (seen 

in Figure 1b). This study calculated six original feature groups and used six filters to pro-

cess the original feature groups. The original feature groups were the first-order statistics 

(First_order), gray-level co-occurrence matrix (GLCM), gray-level run-length matrix 

(GLRLM), gray-level size-zone matrix (GLSZM), gray-level dependency matrix (GLDM), 

and neighboring gray-tone difference matrix (NGTDM). The six filters included log sigma 

with scale {1.0, 2.0, 3.0, 4.0, 5.0}, wavelet, square, square root, logarithm, and exponential. 

To categorize the features, we summarized the filtering results into the original feature 

group. For example, the filtered GLCM features can be summarized into the group of 

GLCM. Thus, the final six feature sets were obtained, including First_order, GLCM, 

GLRLM, GLSZM, GLDM, and NGTDM. In this study, radiomics feature calculation was 

automatically performed using the PyRadiomics package implemented in Python [46,47]. 

Each 3D image in the DSC-PWI data was defined as S(n), wherein n was from zero to 49, 

and the DSC-PWI image was represented as set {S(0), S(1), …, S(49)}. Moreover, the calcu-

lated DRF were renamed by connecting their original name and the n-value of the 3D 

image S(n). For example, “log-sigma-1-0-mm-3D_firstorder_Skewness_17” represents the 

radiomics feature “log-sigma-1-0-mm-3D_firstorder_Skewness” of S(17), which is the 

17th 3D image in DSC-PWI data, and this feature belongs to the First_order group. 

2.2.2. Feature Selection and Combination Strategy 

This study combined the feature selection method (least absolute shrinkage and se-

lection operator, Lasso) and various feature dimension-reduction algorithms to explore 

the role of different combinations of DRF in ischemic stroke. The details are introduced in 

the following and shown in Figure 1c. 
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(A) Extracting significant DRF 

Before feature selection, feature normalization is necessary to eliminate the influence 

of dimension and value-range differences between features. This study used each fea-

ture’s mean and standard deviation to normalize the feature vector. The transformation 

is given in Equation (1). 

( )* ( ) /i i i imax iminF F F F F= − −
 

(1) 

where 
*

iF  is the normalized feature of the ith feature 
iF , and the variables iF , 

imaxF , 

and 
iminF  are the mean, maximum, and minimum of 

iF , respectively. 

Then, this study used the t-test algorithm to extract the significant DRF from all DRF 

obtained in Section 2.2.1 (C). First, the homogeneity of variance test was performed to 

detect whether the feature has the homogeneity of variance. When the feature had homo-

geneity of variance, the t-test was performed directly. However, if the feature did not have 

homogeneity of variance, the parameter equal_val = False needed to be added during the 

t-test analysis. This study used the Levene test to realize the homogeneity of the variance 

test. Finally, the significant DRF with values of p < 0.05 in the t-test analysis remained to 

complete subsequent feature-selection processing. Therefore, according to the three eval-

uation items, three sets of significant DRF were obtained, and the significant DRF were 

defined as Ft-test in this study. 

(B) Supervised feature selection 

Feature selection aims to find the most compelling feature representing the target 

variable and compress the feature space. Lasso has been recognized as one of the most 

effective feature selection methods for selecting relevant features to the target variable 

[40,48,49]. This study used Lasso to select outstanding DRF depending on the three sets 

of ground truth, and the DRF with a non-zero coefficient were selected as the outstanding 

DRF. The Lasso was implemented by the LassoCV function imported from the sklearn.lin-

ear_model package in Python 3.6, and the cv was set as 10 in the function (seen in Table 2). 

The mathematical principle of Lasso is shown in Equation (2). By the supervised feature 

selection, three groups of outstanding DRF can be obtained according to three sets of 

ground truth. For each evaluation item, the selected outstanding features were defined as 

Lasso(Ft-test, item) in this study. 

q qM
2

t-test i 0 j ij j

i=1 j=1 j=0

Lasso(F ,item)= argmin{ (y - - x ) +l | |}      (2) 

wherein Lasso (Ft-test, item) represents the selected outstanding DRF for the evaluation 

item from the significant DRF Ft-test; 
ijx  is the independent DRF in Ft-test; iy  is the ground 

truth of the ith case; λ is the penalty parameter greater than zero; 
j  is the regression 

coefficient; M is the number of cases; q is the number of selected outstanding DRF; and 

i∈[1, M], and j∈[0, q]. 

(C) Unsupervised feature selection 

This study adopted unsupervised feature selection methods to extract various addi-

tional DRF. As one of the unsupervised feature selection methods, the feature dimension-

reduction algorithm (DRA) has been applied. In detail, the DRAs used in this study in-

clude principal component analysis (PCA), independent component correlation algorithm 

(ICA), t-distributed stochastic neighbor embedding (TSNE), uniform manifold approxi-

mation and projection (UMAP), and isometric feature mapping (ISOMAP). All of the fea-

ture dimension-reduction methods were implemented by importing the corresponding 

package in python 3.6 (seen in Table 2). By setting the parameter n_components to 10, each 

dimensionality-reduction method reduced the significant DRF to 10 features. The ob-

tained dimension-reduction DRF were defined as the name of the dimension-reduction 
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method. For example, the dimension-reduction features obtained from PCA can be de-

fined as PCA, and the dimension-reduction DRF in PCA were defined as {PCA0, PCA1, 

…, PCA9}. 

Table 2. The implementation of feature selection and feature dimension reduction. 

Method Implementation in Python 3.6 

Lasso LassoCV (alphas = alphas, cv = 10, max_iter = 100,000, normalize = False). fit (features, targets) 

PCA sklearn.decomposition.PCA (svd_solver = ‘auto’, n_components = num_fea) 

ICA sklearn.decomposition.FastICA (n_components = num_fea, random_state = 12,max_iter = 1,000,000) 

tSNE sklearn.manifold.TSNE (n_components = num_fea, init = ‘pca’, random_state = 12, method = ‘exact’) 

UMAP umap.UMAP (n_neighbors = 5, min_dist = 0.3, n_components = num_fea). fit_transform(features) 

ISOMAP 
sklearn.manifold.Isomap (n_neighbors = 5, n_components = num_fea, n_jobs = −1).fit_transform(fea-

tures) 

(D) Feature combination strategy 

The feature combination strategy in this study was used to generate four experi-

mental groups for each evaluation item (seen in Figure 2). First, experimental group_A 

{Ft-test, Lasso(Ft-test, item) and DRA (Ft-test, item)} included significant DRF Ft-test, outstanding 

DRF Lasso(Ft-test, item), and dimension-reduction feature DRA (Ft-test, item). Second, exper-

imental group_B was the combination of Lasso(Ft-test, item) and each DRA (Ft-test, item), 

which can be defined as group_B {Lasso(Ft-test, item) + DRA (Ft-test, item)}. The signal ‘+’ 

means combination. Third, the experimental group_ C was the collection of the selected 

outstanding DRF from DRA (Ft-test, item) by Lasso, which was defined as group_C 

{Lasso(DRA(Ft-test, item), item)}. Finally, experimental group D was the combination of 

Lasso(Ft-test, item) and each group_C, and the set was group D {Lasso(Ft-test, item) + 

Lasso(DRA(Ft-test, item), item)}. Based on the above, four experimental groups can be ob-

tained for each evaluation item in this study. 

 

Figure 2. The flowchart of the feature combination strategy in our study. 
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2.2.3. Performance Evaluation 

This study used ten supervised machine learning models to fully evaluate the effec-

tiveness of the feature sets in the four experimental groups described above (seen in  

Figure 1d). The area under the curve score (AUC) was applied to evaluate the classifica-

tion ability of each feature set in the four experimental groups. In detail, ten-fold cross-

validation was performed to compute the AUC, and the ten machine learning models in-

clude support vector machine (SVM), decision tree (DT), Adaboost classifier (Ada), neural 

network (NN), random forest (RF), k-nearest neighbors (KNN), logistic regression (LR), 

linear discriminant analysis (DA), gradient boosting classifier (GBDT), and GaussianNB 

(NB) (seen in Table 3). 

Table 3. Descriptions of the 10 models in this study. 

Model Definition in Python 3.6 

SVM sklearn.svm.SVC (kernel = ‘rbf’, probability = True) 

DT sklearn.tree. DecisionTreeClassifier () 

Ada sklearn.ensemble.AdaBoostClassifier () 

NN sklearn.neural_network. MLPClassifier (hidden_layer_sizes = (400, 100), alpha = 0.01, max_iter = 10,000) 

RF sklearn.ensemble.RandomForestClassifier (n_estimators = 200) 

KNN sklearn.neighbors. sklearn.neighbors () 

LR sklearn.linear_model.logisticRegressionCV(max_iter = 100,000, solver = “liblinear”) 

DA sklearn.discriminant_analysis () 

GBDT sklearn.ensemble.GradientBoostingClassifier () 

NB sklearn.naive_bayes. GaussianNB () 

3. Results 

The results are divided into four sections, including preprocessing results, generated 

four experimental groups, and the performance of four experimental groups. The details 

are shown in the following. 

3.1. Preprocessing Results 

3.1.1. Ground Truth Distribution for Three Evaluation Items 

According to the ischemic stroke detection by RAPID, this study detected 78 (50%) 

ischemic stroke cases in 156 DSC-PWI images. The number of NIHSS equal to zero was 95 

(60.9%), and the 90-day mRS less than 2 (good outcome) was 101 (66%) (seen in Table 4). 

The ground truth equal to 1 means patients with ischemic stroke lesions, neurological im-

pairment, or poor outcome, and the ground truth equal to zero means no ischemic stroke 

lesions, normal neurological function, or good outcome. 

Table 4. Ground truth distribution for three evaluation items. 

Ground Truth Ischemic Stroke NIHSS 90-Day mRS 

1 78 61 55 

0 78 95 101 

3.1.2. Computed DRF 

For each 4D DSC-PWI image, 83700 DRF (50 3D images × 1674 features) could be 

calculated (seen in Figure 3a and Table 5). These DRF were divided into six groups: (1) 

First-order (324 features × 50 = 16,200 features), (2) GLCM (432 features × 50 = 21,600 fea-

tures), (3) GLRLM (288 features × 50 = 14,400 features), (4) GLSZM (288 features × 50 = 

14,400 features), (5) NGTDM (90 features × 50 = 4500 features), and (6) GLDM (252 features 

× 50 = 12,600 features). 
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Figure 3. Statistics of all DRF and box plots of DRF for three evaluation items. (a) shows the distri-

bution of DRF; (b–d) are the box plots of the p-values of significant DRF in each feature group for 

stroke detection, NIHSS evaluation, and outcome prediction, wherein item 1, item 2, and item 3 are 

stroke detection, NIHSS evaluation, and outcome prediction, respectively. 

Table 5. Significant DRF statistics for the three evaluated items. 

Item Feature Group Significant DRF Mean Std Min Medium Max 

Stroke de-

tection 

First_order 5118 0.0109 0.0139 <0.0001 0.0041 0.0500 

GLCM 7698 0.0114 0.0143 <0.0001 0.0040 0.0500 

GLDM 3800 0.0118 0.0142 <0.0001 0.0050 0.0500 

GLRLM 4117 0.0133 0.0149 <0.0001 0.0063 0.0500 

GLSZM 3737 0.0153 0.0148 <0.0001 0.0107 0.0500 

NGTDM 1352 0.0121 0.0145 <0.0001 0.0050 0.0499 

NIHSS 

evaluation 

First_order 2061 0.0227 0.0146 0.0001 0.0217 0.0500 

GLCM 2655 0.0183 0.0166 <0.0001 0.0138 0.0500 

GLDM 866 0.0243 0.0154 <0.0001 0.0255 0.0500 

GLRLM 1016 0.0256 0.0144 <0.0001 0.0272 0.0499 

GLSZM 1289 0.0300 0.0135 0.0001 0.0325 0.0500 

NGTDM 437 0.0269 0.0136 0.0009 0.0274 0.0498 

Outcome 

prediction 

First_order 2089 0.0255 0.0137 0.0001 0.0254 0.0499 

GLCM 2650 0.0220 0.0147 <0.0001 0.0208 0.0500 

GLDM 1304 0.0232 0.0148 <0.0001 0.0224 0.0500 

GLRLM 1254 0.0244 0.0147 <0.0001 0.0244 0.0500 

GLSZM 1439 0.0239 0.0143 0.0002 0.0231 0.0500 

NGTDM 467 0.0264 0.0127 0.0011 0.0253 0.0500 
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3.2. Selected Outstanding DRF and Dimension-Reduction DRF 

3.2.1. Significant DRF for Three Evaluation Items 

By the t-test analysis, this study extracted 25,822 significant DRF for ischemic stroke 

detection, and there were 5118 DRF in First_order, 7698 in GLCM, 3800 in GLDM, 4117 in 

GLRLM, 3737 in GLSZM, and 1352 in NGTDM. Their p-values ranged from 0.0123 ± 

0.0144. Furthermore, 8324 significant DRF with p-values 0.0232 ± 0.0156 were extracted 

for NIHSS assessment. Among them, 2061 DRF were in First_order, 2655 in GLCM, 866 in 

GLDM, 1016 in GLRLM, 1289 in GLSZM, and 437 in NGTDM. Furthermore, 9203 signifi-

cant DRF with p-values 0.0238 ± 0.0144 were extracted for outcome prediction, and there 

were 2089 DRF in First_order, 2650 in GLCM, 1304 in GLDM, 1254 in GLRLM, 1439 

GLSZM, and 467 in NGTDM. The detailed statistics of each significant DRF were intro-

duced in Table 5 and Figures 3b–d and 4a). 

 

Figure 4. Correlation between outstanding DRF and the ground truths of three evaluation 

items. (a–c) are the Pearson correlation coefficients between outstanding DRF with ground 

truth for ischemic stroke detection, NIHSS evaluation, and outcome prediction; (d) is a 

box plot of the Pearson correlation coefficients for the three evaluation items. 

3.2.2. Selected Outstanding DRF for Three Evaluation Items 

This study used the Lasso algorithm to select outstanding DRF from significant DRF 

for each evaluation item. As a result, 34 outstanding DRF were selected for ischemic stroke 

detection and defined as Lasso (Ft-test, ischemic stroke detection). Among them, there were 

only 1 DRF in First_order, 9 in GLCM, 13 in GLDM, 5 in GLRLM, 4 in GLSZM, and 2 in 

NGTDM. Besides, 32 and 40 outstanding DRF were selected for NIHSS evaluation and 

outcome prediction, respectively. In the Lasso (Ft-test, NIHSS evaluation), there were 7 out-

standing DRF in First_order, 5 in GLCM, 5 in GLDM, 2 GLRLM, 4 in GLSZM, and 8 in 

NGTDM. In the Lasso (Ft-test, Outcome prediction), there were 6 outstanding DRF in 

First_order, 21 in GLCM, 9 in GLDM, 2 in GLSZM, 2 in NGTDM, and none in GLRLM. 
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All of the outstanding DRF for the three evaluation items were completely different, with 

only one DRF (F4) selected for both ischemic stroke detection and outcome prediction. 

Thus, a total of 105 outstanding DRF were selected. The outstanding DRF were renamed 

as Fk, and k represents the order of outstanding DRF. 

Besides, the absolute values of Pearson correlation coefficients (R-values) between 

outstanding DRF and ground truths for ischemic stroke detection ranged from 0.158 to 

0.451. For NIHSS evaluation, the absolute R-values between outstanding DRF and ground 

truths for NIHSS evaluation ranged from 0.156 to 0.365, and the absolute R-values be-

tween outstanding DRF and ground truths for outcome prediction ranged from 0.161 to 

0.334. The results showed that the selected outstanding DRF had weak or moderate cor-

relations with ischemic stroke, NIHSS, and outcome (seen in Figure 4b–d). 

3.2.3. Dimension-Reduction DRF Obtained from Five Dimension-Reduction Algorithms 

This study’s feature dimension-reduction algorithms are unsupervised feature selec-

tion methods, and each feature dimension-reduction algorithm can obtain the same set of 

dimensionality-reduction DRF for the three evaluation items. The R-value of each dimen-

sion-reduction DRF with the corresponding ground truth was calculated and is shown in 

Figure 5. For example, for ischemic stroke detection, the dimension-reduction DRF ob-

tained from PCA had R-values of 0.110 ± 0.121 and that from ICA, TSNE, IOSMAP, and 

UMAP had R-values of 0.140 ± 0.079, 0.110 ± 0.121, 0.294 ± 0.139, and 0.098 ± 0.133, respec-

tively. For NIHSS evaluation, the dimension-reduction DRF obtained from PCA, ICA, 

TSNE, IOSMAP, and UMAP had R-values of 0.097 ± 0.089, 0.107 ± 0.075, 0.088 ± 0.069, 

0.077 ± 0.052, and 0.155 ± 0.113. For outcome prediction, the dimension-reduction features 

obtained from PCA, ICA, TSNE, IOSMAP, and UMAP had R-values of 0.093 ± 0.092, 0.097 

± 0.087, 0.093 ± 0.092, 0.100 ± 0.088, and 0.157 ± 0.113. 

 

Figure 5. Dimension-reduction DRF for the three evaluation items. (a–c) are the Pearson correlation 

coefficients between dimension-reduction DRF and the ground truth for ischemic stroke detection, 

NIHSS evaluation, and outcome prediction. (d–f) are box plots of the Pearson correlation coeffi-

cients for the three evaluation items. 

3.2.4. Selected Outstanding Dimension-Reduction DRF 

This study used the Lasso algorithm to extract the outstanding dimension-reduction 

DRF from the dimension-reduction DRF in PCA, ICA, TSNE, ISMOP, and UMAP. As a 

result (seen in Figure 6), none of the dimension-reduction DRF in ICA were selected for 
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the three evaluation items. Besides, for PCA, two outstanding dimension-reduction DRF 

(PCA0 and PCA1) for NIHSS evaluation and outcome prediction and four outstanding 

dimension-reduction DRF (PCA0, PCA1, PCA3, PCA4) for ischemic stroke detection were 

selected. Similar results were achieved for TSNE. TSNE0 and TSNE1 were selected for 

NIHSS evaluation and outcome prediction, and additional TSNE3 and TSNE4 were se-

lected for ischemic stroke detection. For UMAP and ISOMAP, no outstanding dimension-

reduction DRF was selected for outcome prediction. Furthermore, {UMAP0, UMAP3, 

UMAP4} and {ISOMAP0, ISOMAP1, ISOMAP5} were selected for ischemic stroke detec-

tion. UMAP1 and {ISOMAP0, ISOMAP1, ISOMAP7} were selected for NIHSS evaluation. 

 

Figure 6. Outstanding dimension-reduction DRF for the three evaluation items. (a–d) are the se-

lected outstanding dimension-reduction DRF by PCA, TSNE, ISOMAP, and UMAP for the three 

evaluation items; the dark green represents the selected outstanding dimension-reduction DRF. 

3.3. Performance of Four Experimental Groups 

This study evaluated the performance of the four constructed experimental groups 

in classifying and predicting neurological impairment by ischemic stroke detection, 

NIHSS evaluation, and outcome prediction. Among the four experiments, the combina-

tion DRF in experimental group_D achieved the best score in the three evaluation items. 

In particular, the combinations of Lasso + PCA_Lasso and Lasso + TSNE_Lasso achieved 

the same highest score, respectively, which proved the potentially significant value of 

DRF in the clinical treatment and prognosis analysis of stroke. The detailed results were 

introduced as follows. 

For experimental group_A (seen in Table 6), the outstanding DRF from Lasso per-

formed best, and the five dimension-reduction DRF achieved a similar score, with the sig-

nificant DRF Ft-test selected by t-test analysis in the three items. In detail, the significant 

DRF achieved the best AUC of 0.731 for ischemic stroke detection, 0.652 for NIHSS assess-

ment, and 0.679 for outcome prediction. In terms of ischemic stroke detection, the AUCs 

of dimension-reduction DRF obtained by PCA, TSNE, UMAP, ICA, and ISOMAP ranged 

from 0.672 ± 0.033, 0.664 ± 0.036, 0.681 ± 0.040, 0.684 ± 0.034, and 0.687 ± 0.027, respectively. 

In contrast, all of the AUCs of outstanding DRF selected by Lasso were better than 0.731, 

ranging from 0.819 ± 0.064, and the best AUC was 0.837. In terms of NIHSS assessment, 



J. Clin. Med. 2022, 11, 5364 14 of 22 
 

 

the AUCs of dimension-reduction DRF obtained by PCA, TSNE, UMAP, ICA, and ISO-

MAP ranged from 0.540 ± 0.038, 0.529 ± 0.025, 0.502 ± 0.050, 0.531 ± 0.045, and 0.551 ± 0.050, 

and the best one of them had an AUC of 0.649. The outstanding DRF from Lasso achieved 

the best AUC of 0.795, and the performance of significant DRF (best AUC = 0.652) was 

better than all of the dimension-reduction DRF (best AUC = 0.649). In terms of outcome 

prediction, the AUCs of dimension-reduction DRF obtained by PCA, TSNE, UMAP, ICA, 

and ISOMAP ranged from 0.544 ± 0.025, 0.544 ± 0.025, 0.560 ± 0.049, 0.562 ± 0.029, and 0.602 

± 0.036. Similarly, the best AUC of 0.818 was achieved by outstanding DRF from Lasso, 

and the performance of significant DRF (best AUC = 0.679) was better than all of the di-

mension-reduction DRF (best AUC = 0.646). 

Table 6. The performance of DRF in experimental group_A. 

Item Classifier Lasso PCA TSNE UMAP ICA IOSMAP t-Test 

Stroke  

detection 

SVM 0.861 0.691 0.691 0.710 0.686 0.731 0.716 

nn 0.861 0.680 0.634 0.680 0.666 0.646 0.713 

RF 0.783 0.711 0.666 0.660 0.688 0.704 0.698 

DT 0.662 0.615 0.596 0.613 0.632 0.647 0.601 

KNN 0.873 0.669 0.669 0.692 0.666 0.705 0.719 

Ada 0.797 0.642 0.642 0.639 0.739 0.669 0.679 

LR 0.854 0.704 0.704 0.723 0.729 0.699 0.723 

NB 0.840 0.639 0.639 0.722 0.646 0.685 0.653 

GBDT 0.791 0.659 0.685 0.648 0.677 0.683 0.687 

DA 0.867 0.710 0.710 0.722 0.710 0.692 0.731 

NIHSS  

evaluation 

SVM 0.727 0.482 0.482 0.500 0.528 0.492 0.500 

nn 0.743 0.619 0.562 0.464 0.610 0.533 0.652 

RF 0.692 0.548 0.521 0.486 0.504 0.533 0.587 

DT 0.663 0.587 0.568 0.521 0.494 0.557 0.603 

KNN 0.677 0.523 0.523 0.428 0.522 0.480 0.536 

Ada 0.731 0.526 0.526 0.491 0.476 0.597 0.574 

LR 0.795 0.532 0.532 0.496 0.512 0.568 0.629 

NB 0.755 0.527 0.527 0.618 0.607 0.649 0.667 

GBDT 0.687 0.513 0.509 0.531 0.518 0.527 0.606 

DA 0.783 0.541 0.541 0.489 0.541 0.574 0.607 

Outcome  

prediction 

SVM 0.818 0.546 0.546 0.500 0.549 0.573 0.576 

nn 0.766 0.551 0.554 0.635 0.605 0.646 0.647 

RF 0.684 0.553 0.526 0.572 0.540 0.588 0.578 

DT 0.595 0.515 0.525 0.596 0.550 0.592 0.521 

KNN 0.694 0.592 0.592 0.584 0.553 0.667 0.638 

Ada 0.681 0.504 0.504 0.525 0.562 0.622 0.553 

LR 0.797 0.546 0.546 0.503 0.510 0.559 0.679 

NB 0.818 0.526 0.526 0.616 0.606 0.597 0.664 

GBDT 0.681 0.544 0.561 0.562 0.580 0.618 0.593 

DA 0.676 0.563 0.563 0.508 0.563 0.556 0.571 

For experimental group_B (Table 7), the performance can be improved when com-

bining the outstanding DRF with each dimension-reduction DRF in ischemic stroke de-

tection and NIHSS assessment. However, these combinations failed in outcome predic-

tion. In detail, in terms of ischemic stroke detection, when combining Lasso with PCA, the 

best AUC increased from 0.711 (PCA) to 0.899 (Lasso + PCA); when combining Lasso with 
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TNSE, the best AUC increased from 0.710 (TNSE) to 0.905 (Lasso + TNSE); when combin-

ing Lasso with UMAP, the best AUC increased from 0.723 (UMAP) to 0.873 (Lasso + 

UMAP); when combining Lasso with ICA, the best AUC increased from 0.739 (ICA) to 

0.893 (Lasso + ICA); when combining Lasso with ISOMAP, the AUC increased from 0.731 

(ISOMAP) to 0.874 (Lasso + ISOMAP). Besides, the above combination performed better 

than the best score of 0.873 (Lasso) in experimental group_A. In terms of NIHSS assess-

ment, when combining Lasso with PCA and TSNE, the best AUC increased from 0.583 

(PCA, TSNE) to 0.835 (Lasso + PCA, Lasso + TSNE); when combining Lasso with UMAP, 

the best AUC increased from 0.618 (UMAP) to 0.786 (Lasso + UMAP); when combining 

Lasso with ICA, the best AUC increased from 0.610 (ICA) to 0.835 (Lasso + ICA); when 

combining Lasso with ISOMAP, the AUC increased from 0.668 (ISOMAP) to 0.812 (Lasso 

+ UMAP). Besides, the Lasso + UMAP obtained a lower score than the best score of 0.795 

(Lasso) in experimental group_A, and the other four combinations achieved better scores. 

Regarding outcome prediction, when combining Lasso with PCA, TSNE, and ICA, the 

best AUCs were 0.806; when combining Lasso with UMAP and ISOMAP, the best AUCs 

were 0.795 and 0.814, respectively. In this item, all of the combinations of Lasso and each 

dimension-reduction DRF were inferior to the outstanding DRF (Lasso) but better than 

the single dimension-reduction DRF and significant DRF (t-test) in experimental 

group_A. 

Table 7. The performance of DRF in experimental group_B. 

 Classifier Lasso + PCA Lasso + TSNE Lasso + UMAP Lasso + ICA 
Lasso + IOS-

MAP 

Stroke  

detection 

SVM 0.691 0.691 0.840 0.861 0.731 

nn 0.730 0.685 0.848 0.842 0.743 

RF 0.808 0.802 0.796 0.808 0.809 

DT 0.684 0.700 0.648 0.682 0.641 

KNN 0.669 0.669 0.853 0.873 0.705 

Ada 0.766 0.766 0.772 0.784 0.753 

LR 0.899 0.905 0.873 0.874 0.874 

NB 0.847 0.847 0.820 0.839 0.846 

GBDT 0.790 0.790 0.778 0.758 0.777 

DA 0.893 0.893 0.843 0.893 0.837 

NIHSS  

evaluation 

SVM 0.482 0.482 0.658 0.727 0.492 

nn 0.586 0.636 0.782 0.780 0.573 

RF 0.674 0.684 0.665 0.662 0.667 

DT 0.633 0.650 0.607 0.657 0.660 

KNN 0.536 0.536 0.622 0.677 0.480 

Ada 0.701 0.701 0.676 0.684 0.747 

LR 0.824 0.824 0.776 0.805 0.800 

NB 0.760 0.760 0.732 0.745 0.744 

GBDT 0.667 0.667 0.684 0.686 0.671 

DA 0.835 0.835 0.786 0.835 0.812 

Outcome 

prediction 

SVM 0.555 0.555 0.732 0.818 0.573 

nn 0.616 0.616 0.793 0.770 0.697 

RF 0.662 0.684 0.694 0.657 0.669 

DT 0.634 0.618 0.623 0.673 0.622 

KNN 0.594 0.594 0.639 0.694 0.667 

Ada 0.715 0.715 0.696 0.689 0.697 

LR 0.770 0.770 0.795 0.802 0.765 

NB 0.804 0.804 0.795 0.796 0.814 

GBDT 0.642 0.654 0.697 0.663 0.660 

DA 0.806 0.806 0.735 0.806 0.716 
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For experimental group_C (Table 8), the selected outstanding dimension-reduction 

DRF (PCA_Lasso, TSNE_Lasso, UMAP_Lasso, and IOSMAP_Lasso) achieved a better 

AUC than the dimension-reduction DRF in experimental group_A. However, it was still 

inferior to the Lasso in experimental group_A and the combinations in experimental 

group_B. In detail, in terms of ischemic stroke detection, the best AUCs of the outstanding 

dimension-reduction DRF in PCA, TSNE, UMAP, and ISOMAP were 0.742, 0.742, 0.748, 

and 0.742, which were better than the AUCs of the original dimension-reduction DRF in 

experimental group_A, 0.711, 0.710, 0.723, and 0.731, but lower than the best performance, 

0.873, in experimental group_A and 0.905 in experimental group_B. In terms of NIHSS 

assessment, the best AUCs of the outstanding dimension-reduction DRF in PCA, TSNE, 

and UMAP (0.645, 0.660, and 0.536) were better than the AUCs of the original dimension-

reduction DRF (0.619, 0.568, and 0.610) in experimental group_A. In contrast, the best 

AUC (0.581) of the outstanding dimension-reduction DRF in ISOMAP was inferior to the 

AUC (0.649) of ISOMAP in experimental group_A. The best AUC in experimental 

group_C was lower than in experimental group_A and experimental group_B. Regarding 

outcome prediction, the best AUC’s 0.596 of outstanding dimension-reduction DRF in 

PCA and TSNE was better than that of the original dimension-reduction DRF in experi-

mental group_A but inferior to the best performance 0.818 in experimental group_A and 

0.814 in experimental group_B. 

Table 8. The performance of DRF in experimental group_C. 

 Classifier PCA_Lasso TSNE_Lasso UMAP_Lasso IOSMAP_Lasso 

Stroke detection 

SVM 0.717 0.717 0.722 0.724 

nn 0.634 0.633 0.704 0.707 

RF 0.670 0.677 0.705 0.742 

DT 0.618 0.598 0.652 0.672 

KNN 0.704 0.704 0.690 0.679 

Ada 0.647 0.647 0.588 0.704 

LR 0.742 0.742 0.748 0.712 

NB 0.658 0.658 0.737 0.717 

GBDT 0.665 0.633 0.665 0.716 

DA 0.730 0.730 0.730 0.718 

NIHSS evaluation 

SVM 0.496 0.496 0.500 0.501 

nn 0.550 0.613 0.524 0.557 

RF 0.645 0.655 0.536 0.502 

DT 0.602 0.627 0.536 0.534 

KNN 0.621 0.621 0.472 0.581 

Ada 0.618 0.618 0.433 0.532 

LR 0.550 0.550 0.482 0.574 

NB 0.570 0.570 0.492 0.580 

GBDT 0.641 0.660 0.507 0.514 

DA 0.541 0.541 0.508 0.554 

Outcome prediction 

SVM 0.532 0.532   

nn 0.573 0.575   

RF 0.571 0.556   

DT 0.524 0.506   

KNN 0.555 0.555   

Ada 0.505 0.505   

LR 0.596 0.596   

NB 0.577 0.577   

GBDT 0.531 0.531   

DA 0.591 0.591   
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For experimental group_D (Table 9), the combination of outstanding DRF and out-

standing dimension-reduction DRF provided a chance to improve their performance fur-

ther. In terms of ischemic stroke detection, the combination of outstanding DRF and out-

standing dimension-reduction DRF in PCA, TSNE, UMAP, and ISOMAP obtained the 

best AUCs, 0.925, 0.925, 0.873, and 0.887, which were the highest scores among all of the 

experimental groups. In terms of NIHSS assessment, the combination of outstanding DRF 

and outstanding dimension-reduction DRF in PCA and TSNE achieved the best AUC of 

0.853 in all four experimental groups. The combination of outstanding DRF and outstand-

ing dimension-reduction DRF in UMAP and ISOMAP failed to surpass the best perfor-

mance in experimental group_B, with the best AUC of 0.787 and 0.829, respectively. Fi-

nally, regarding outcome prediction, the combination of Lasso and outstanding dimen-

sion-reduction DRF in PCA and TSNE achieved the best AUC of 0.828, which also was the 

best score in the four experimental groups. Besides, among all of the ten classification 

models, the performance of DA and LR was better than the other models, and they 

achieved almost all of the best AUCs. 

Table 9. The performance of DRF in experimental group_D. 

 Classifier Lasso + PCA_Lasso Lasso + Tsne_Lasso Lasso + UMAP_Lasso Lasso + Iosmap_Lasso 

Stroke  

detection 

SVM 0.717 0.717 0.872 0.724 

nn 0.795 0.803 0.861 0.732 

RF 0.809 0.802 0.796 0.814 

DT 0.623 0.663 0.614 0.662 

KNN 0.704 0.704 0.834 0.679 

Ada 0.776 0.776 0.773 0.766 

LR 0.905 0.905 0.873 0.887 

NB 0.847 0.847 0.833 0.847 

GBDT 0.790 0.778 0.772 0.770 

DA 0.925 0.925 0.862 0.874 

NIHSS  

evaluation 

SVM 0.496 0.496 0.761 0.501 

nn 0.788 0.735 0.777 0.741 

RF 0.703 0.692 0.656 0.684 

DT 0.675 0.612 0.636 0.630 

KNN 0.616 0.616 0.662 0.577 

Ada 0.726 0.726 0.756 0.686 

LR 0.846 0.846 0.770 0.829 

NB 0.759 0.759 0.736 0.740 

GBDT 0.673 0.673 0.672 0.657 

DA 0.853 0.853 0.787 0.822 

Outcome 

prediction 

SVM 0.522 0.522   

nn 0.808 0.808   

RF 0.669 0.699   

DT 0.592 0.615   

KNN 0.541 0.541   

Ada 0.705 0.705   

LR 0.803 0.803   

NB 0.828 0.828   

GBDT 0.629 0.647   

DA 0.756 0.756   
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4. Discussion 

The ability to accurately detect ischemic stroke and predict its neurological recovery 

is of great clinical value [50], which can help to prepare appropriate treatment plans and 

improve the prognosis and recovery of patients. Previous studies have proved the value 

of medical images (CT, DWI, SWI, PWI, CTP, and ASL) in ischemic stroke detection [51–

55], outcome prediction [56–58], and the association between NIHSS and prognosis [59–

61]. In addition, some scholars have introduced radiomics technology into the above stud-

ies [36,40,41]. However, these studies generally focused on the relationship between local 

features in lesions while ignoring global information in the whole brain. Furthermore, few 

studies directly used the dynamic perfusion information in DSC-PWI images to perform 

the above works. This study intended to explore the role of whole-brain DRF in evaluating 

the state of brain tissue and neurological function, especially in ischemic stroke diagnosis, 

the assessment of neurological impairment, and outcome prediction. As a result, the high-

est AUC was 0.925 for ischemic stroke diagnosis, 0.846 for the assessment of neurological 

impairment (NIHSS), and 0.835 for outcome prediction (90-day mRS). Therefore, the re-

producibility and applicability of this study indicate the feasibility of whole-brain DRF-

based radiomics in detecting and assessing ischemic stroke and predicting the neurologi-

cal recovery of ischemic stroke patients. 

This paper is an exploratory work based on the DRF of the whole brain. In DSC-PWI 

images, the intensity of voxels changes under the action of the contrast agent, resulting in 

changes in 3D image features. Therefore, the 3D image features can reflect the process of 

the propagation of the contrast agent in the brain tissue and then indicate the state of 

blood flow propagation. Furthermore, ischemic stroke is a vascular disease that causes 

tissue and neurological damage due to vascular blockage. Therefore, there is an inevitable 

relationship between the extracted time-related DRF and ischemic stroke. Some studies 

reported that the intensity drop of the ischemic tissue was less than normal tissue, and the 

decline rate was slower than in normal tissues [62]. In addition, although ischemic stroke 

is caused by local tissue ischemia, when the local tissue is in an ischemic state, the blood 

flow characteristics of the whole brain will also change accordingly, since blood flow 

propagation is carried out in the whole brain. Therefore, global cerebral blood flow fea-

tures may provide a chance to diagnose and treat ischemic stroke. Based on the above, 

this study used radiomics technology to extract the radiomics features of each 3D image 

in the time series of DSC-PWI images. Then DRF that reflects the blood flow transmission 

changes of the whole brain were generated. From the results of this study, the original 

significant DRF Ft-test can obtain an AUC of 0.731 for ischemic stroke, 0.652 for NIHSS as-

sessment, and 0.679 for outcome prediction. It can be seen that DRF can reflect the changes 

in blood flow and assess the state of brain tissue and the degree of damage to brain nerve 

function. 

Lasso and dimension-reduction algorithms have been used in various scenes of is-

chemic stroke analysis [48,49,63,64]. This study used Lasso and five dimension-reduction 

algorithms to generate four experimental groups, evaluating the role of DRF in the diag-

nosis, assessment, and outcome prediction of ischemic stroke. Based on the results in ex-

perimental group_A, the performance of outstanding DRF from Lasso was better than 

dimension-reduction DRF from PCA, ICA, TSNE, UMAP, and ISOMAP, and the best 

score of dimension-reduction DRF was similar to the original significant DRF from T-test. 

Therefore, it may mean that Lasso was the best among all of the feature selection methods. 

Then, this study combined the outstanding DRF from Lasso with each dimension-reduc-

tion DRF from PCA, ICA, TSNE, UMAP, and ISOMAP and evaluated them in experi-

mental group_B. Based on the results in experimental group_B, the combination features 

achieved a better AUC than single features in experimental group_A for stroke diagnosis 

and NIHSS assessment and failed to surpass single features in experimental group_A for 

outcome prediction. Besides, this study used Lasso to select outstanding DRF from di-

mension-reduction DRF (PCA, ICA, TSNE, UMAP, and ISOMA), which were shown as 

experimental group_C. Based on the results in experimental group_C, the performance of 
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outstanding DRF in experimental group_A performed better than outstanding dimen-

sion-reduction DRF in PCA, ICA, TSNE, UMAP, and ISOMAP, and the best score of di-

mension-reduction DRF was similar to the original significant DRF from t-test. This also 

means that Lasso was the best one among all of the feature selection methods. Finally, the 

outstanding DRF in experimental group_A and outstanding dimension-reduction DRF in 

experimental group_C were combined, achieving the best score for the three evaluation 

items. Thus, it can be concluded that different combinations of Lasso and dimension-re-

duction algorithms could achieve different results for stroke detection, NIHSS assessment, 

and outcome prediction. 

Although the results showed that the combination of outstanding DRF and outstand-

ing dimension-reduction DRF selected from Lasso could improve performance in stroke 

detection, NIHSS assessment, and outcome prediction, further optimization of the models 

can be regarded as one future work. We will validate our improved method with the more 

extensive and varied datasets before applying it to clinical trials in future work. The re-

sults in this study do not mean that the models can be used alone for stroke treatment 

decision-making. Instead, this study should be considered a support tool in stroke treat-

ment guidance. 

5. Conclusions 

In conclusion, although different feature selection methods on whole-brain DRF 

achieved diverse performance, the critical role of whole-brain DRF in ischemic stroke de-

tection, NIHSS assessment, and outcome prediction has been proven. From experimental 

group_A to experimental group_D, it can be concluded that the combination of outstand-

ing DRF with outstanding dimension-reduction DRF in experimental group_D performed 

best in all of the three evaluation items. Comparing the best AUC of Ft-test in experimental 

group_A and the best_AUC experimental group_D, the AUC in stroke detection increased 

by 19.4% (from 0.731 to 0.925), the AUC in NIHSS assessment increased by 20.1% (from 

0.652 to 0.853), and the AUC in prognosis prediction increased by 14.9% (from 0.679 to 

0.828). This study provided a potential clinical tool for detailed clinical diagnosis and out-

come prediction before treatment. 

Author Contributions: Conceptualization, Y.K. and Y.L. (Yu Luo); methodology, Y.G., Y.Y., Y.L. 

(Yu Luo), J.G. and Y.K.; software, Y.G., X.M., Y.L. (Yang Liu), J.G. and X.Z.; validation, F.C., X.Z. 

and Y.G.; formal analysis, Y.G., M.W. and X.M.; investigation, M.W., A.Z. and F.C.; data curation, 

M.W. and Y.L. (Yu Luo); writing—original draft preparation, Y.G., Y.Y. and J.L.; writing—review 

and editing, A.Z., Y.L. (Yang Liu), J.L., F.C. and Y.G.; funding acquisition, Y.K.. All authors have 

read and agreed to the published version of the manuscript. 

Funding: This research was funded by the National Natural Science Foundation of China, Grant 

Number: 62071311; the Stable Support Plan for Colleges and Universities in Shenzhen of China, 

Grant Number: SZWD2021010; the Scientific Research Fund of Liaoning Province of China, Grant 

Number: JL201919; the special program for key fields of colleges and universities in Guangdong 

Province (biomedicine and health) of China, Grant Number: 2021ZDZX2008. 

Institutional Review Board Statement: The studies involving human participants were reviewed 

and approved by the Ethics Committee of Shanghai Fourth People’s Hospital affiliated with the 

Tongji University School of Medicine, China (Approval Code: 20200066-01; Approval Date, 15 May 

2020). 

Informed Consent Statement: Patient consent was waived due to the nature of the retrospective 

study. 

Data Availability Statement: The data supporting this study’s findings are available from the cor-

responding author upon reasonable request. 

Acknowledgments: We would like to thank the Department of Radiology, Shanghai Fourth Peo-

ple’s Hospital, affiliated with the Tongji University School of Medicine, for providing the datasets 

and clinical opinions. We also appreciate the support of the College of Medicine and Biological In-

formation Engineering, Northeastern University, Department of Psychiatry, Columbia University, 



J. Clin. Med. 2022, 11, 5364 20 of 22 
 

 

School of Applied Technology, Shenzhen University, and Medical Device Innovation Center, Shen-

zhen Technology University. 

Conflicts of Interest: All authors have no conflicts of interest to report. 

References 

1. Puzio, M.; Moreton, N.; O’Connor, J.J. Neuroprotective Strategies for Acute Ischemic Stroke: Targeting Oxidative Stress and 

Prolyl Hydroxylase Domain Inhibition in Synaptic Signalling. Brain Disord. 2022, 5, 100030. 

2. Rha, J.H.; Saver, J.L. The impact of recanalization on ischemic stroke outcome: A meta-analysis. Stroke 2007, 38, 967–973. 

3. Zaidat, O.O.; Suarez, J.I.; Sunshine, J.L.; Tarr, R.W.; Alexander, M.J.; Smith, T.P.; Enterline, D.S.; Selman, W.R.; Dennis, D.M. 

Thrombolytic therapy of acute ischemic stroke: Correlation of angiographic recanalization with clinical outcome. Am. J. Neuro-

radiol. 2005, 26, 880–884. 

4. Kaur, M.; Sakhare, S.R.; Wanjale, K.; Akter, F. Early stroke prediction methods for prevention of strokes. Behav. Neurol. 2022, 

2022, 7725597. 

5. Hinman, J.D.; Rost, N.S.; Leung, T.W.; Montaner, J.; Muir, K.W.; Brown, S.; Arenillas, J.F.; Feldmann, E.; Liebeskind, D.S. Prin-

ciples of precision medicine in stroke. J. Neurol. Neurosurg. Psychiatry 2017, 88, 54–61. 

6. Baird, A.E.; Dambrosia, J.; Janket, S.J.; Eichbaum, Q.; Chaves, C.; Silver, B.; Barber, P.A.; Parsons, M.; Darby, D.; Davis, S.; et al. 

A three-item scale for the early prediction of stroke recovery. Lancet 2001, 357, 2095–2099. 

7. Ogoh, S.; Tarumi, T. Cerebral blood flow regulation and cognitive function: A role of arterial baroreflex function. J. Physiol. Sci. 

2019, 69, 813–823. 

8. You, W.; Andescavage, N.N.; Kapse, K.; Donofrio, M.T.; Jacobs, M.; Limperopoulos, C. Hemodynamic responses of the placenta 

and brain to maternal hyperoxia in fetuses with congenital heart disease by using blood oxygen–level dependent MRI. Radiology 

2020, 294, 141. 

9. Conti, E.; Piccardi, B.; Sodero, A.; Tudisco, L.; Lombardo, I.; Fainardi, E.; Nencini, P.; Sarti, C.; Allegra Mascaro, A.L.; Baldere-

schi, M. Translational Stroke Research Review: Using the Mouse to Model Human Futile Recanalization and Reperfusion Injury 

in Ischemic Brain Tissue. Cells 2021, 10, 3308. 

10. Lv, Y.; Zhang, Y.; Wu, J. Diffusion-Weighted Imaging Image Combined with Transcranial Doppler Ultrasound in the Diagnosis 

of Patients with Cerebral Infarction and Vertigo. Contrast Media Mol. Imaging 2022, 2022, 5313238. 

11. Guyon, J.; Chapouly, C.; Andrique, L.; Bikfalvi, A.; Daubon, T. The normal and brain tumor vasculature: Morphological and 

functional characteristics and therapeutic targeting. Front. Physiol. 2021, 12, 622615. 

12. Arvanitis, C.D.; Ferraro, G.B.; Jain, R.K. The blood–brain barrier and blood–tumour barrier in brain tumours and metastases. 

Nat. Rev. Cancer 2020, 20, 26–41. 

13. Gregori-Pla, C.; Blanco, I.; Camps-Renom, P.; Zirak, P.; Serra, I.; Cotta, G.; Maruccia, F.; Prats-Sánchez, L.; Martínez-Domeño, 

A.; Busch, D.R.; et al. Early microvascular cerebral blood flow response to head-of-bed elevation is related to outcome in acute 

ischemic stroke. J. Neurol. 2019, 266, 990–997. 

14. Demeestere, J.; Wouters, A.; Christensen, S.; Lemmens, R.; Lansberg, M.G. Review of perfusion imaging in acute ischemic stroke: 

From time to tissue. Stroke 2020, 51, 1017–1024. 

15. Kuriakose, D.; Xiao, Z. Pathophysiology and treatment of stroke: Present status and future perspectives. Int. J. Mol. Sci. 2020, 

21, 7609. 

16. De Jong, D.L.K.; de Heus, R.A.A.; Rijpma, A.; Donders, R.; Olde Rikkert, M.G.; Günther, M.; Lawlor, B.A.; van Osch, M.J.; 

Claassen, J.A. Effects of nilvadipine on cerebral blood flow in patients with Alzheimer disease: A randomized trial. Hypertension 

2019, 74, 413–420. 

17. De Heus RA, A.; de Jong DL, K.; Sanders, M.L.; van Spijker, G.J.; Oudegeest-Sander, M.H.; Hopman, M.T.; Lawlor, B.A.; Rikkert, 

M.G.M.O.; Claassen, J.A.H.R. Dynamic regulation of cerebral blood flow in patients with Alzheimer disease. Hypertension 2018, 

72, 139–150. 

18. Olivot, J.M.; Mlynash, M.; Vincent, N. Relationships between cerebral perfusion and reversibility of acute diffusion lesions in 

DEFUSE: Insights from RADAR. Stroke 2009, 40, 1692–1697. 

19. Wang, Y.R.; Li, Z.S.; Huang, W.; Yang, H.Q.; Gao, B.; Chen, Y.T. The value of susceptibility-weighted imaging (SWI) in evalu-

ating the ischemic penumbra of patients with acute cerebral ischemic stroke. Neuropsychiatr. Dis. Treat. 2021, 17, 1745. 

20. Ermine, C.M.; Bivard, A.; Parsons, M.W.; Baron, J. The ischemic penumbra: From concept to reality. Int. J. Stroke 2021, 16, 497–509. 

21. Fischer, U.; Arnold, M.; Nedeltchev, K.; Brekenfeld, C.; Ballinari, P.; Remonda, L.; Schroth, G.; Mattle, H.P. NIHSS score and 

arteriographic findings in acute ischemic stroke. Stroke 2005, 36, 2121–2125. 

22. Kwah, L.K.; Diong, J. National institutes of health stroke scale (NIHSS). J. Physiother. 2014, 60, 61. 

23. Martin-Schild, S.; Albright, K.C.; Tanksley, J.; Pandav, V.; Jones, E.B.; Grotta, J.C.; Savitz, S.I. Zero on the NIHSS does not equal 

the absence of stroke. Ann. Emerg. Med. 2011, 57, 42–45. 

24. Ahuja, A.S. The impact of artificial intelligence in medicine on the future role of the physician. PeerJ 2019, 7, e7702. 

25. Lea-Pereira, M.C.; Amaya-Pascasio, L.; Martínez-Sánchez, P.; Rodríguez Salvador, M.D.M.; Galván-Espinosa, J.; Téllez-Ramí-

rez, L.; Reche-Lorite, F.; Sánchez, M.-J.; García-Torrecillas, J.M. Predictive Model and Mortality Risk Score during Admission 

for Ischaemic Stroke with Conservative Treatment. Int. J. Environ. Res. Public Health 2022, 19, 3182. 



J. Clin. Med. 2022, 11, 5364 21 of 22 
 

 

26. Xie, Y.; Jiang, B.; Gong, E.; Li, Y.; Zhu, G.; Michel, P.; Wintermark, M.; Zaharchuk, G. Use of gradient boosting machine learning 

to predict patient outcome in acute ischemic stroke on the basis of imaging, demographic, and clinical information. Am. J. 

Roentgenol. 2019, 212, 44–51. 

27. Brugnara, G.; Neuberger, U.; Mahmutoglu, M.A.; Foltyn, M.; Herweh, C.; Nagel, S.; Schönenberger, S.; Heiland, S.; Ulfert, C.; 

Ringleb, P.A.; et al. Multimodal predictive modeling of endovascular treatment outcome for acute ischemic stroke using ma-

chine-learning. Stroke 2020, 51, 3541–3551. 

28. Brooks, S.D.; Spears, C.; Cummings, C.; VanGilder, R.L.; Stinehart, K.R.; Gutmann, L.; Domico, J.; Culp, S.; Carpenter, J.; Rai, 

A.; et al. Admission neutrophil–lymphocyte ratio predicts 90 day outcome after endovascular stroke therapy. J. Neurointerv. 

Surg. 2014, 6, 578–583. 

29. Barrett, K.M.; Ding, Y.H.; Wagner, D.P.; Kallmes, D.F.; Johnston, K.C. Change in diffusion-weighted imaging infarct volume 

predicts neurologic outcome at 90 days: Results of the Acute Stroke Accurate Prediction (ASAP) trial serial imaging substudy. 

Stroke 2009, 40, 2422–2427. 

30. Isensee, F.; Kickingereder, P.; Wick, W.; Bendszus, M.; Maier-Hein, K.H. Brain tumor segmentation and radiomics survival 

prediction: Contribution to the brats. In Proceedings of the International MICCAI Brainlesion Workshop, Quebec City, QC, Canada, 14 

September 2017; Springer: Berlin, Germany, 2017; pp. 287–297. 

31. Zhou, M.; Scott, J.; Chaudhury, B.; Hall, L.; Goldgof, D.; Yeom, K.W.; Iv, M.; Ou, Y.; Kalpathy-Cramer, J.; Napel, S.; et al. Radi-

omics in brain tumor: Image assessment, quantitative feature descriptors, and machine-learning approaches. Am. J. Neuroradiol. 

2018, 39, 208–216. 

32. Zhu, H.; Jiang, L.; Zhang, H.; Luo, L.; Chen, Y.; Chen, Y. An automatic machine learning approach for ischemic stroke onset 

time identification based on DWI and FLAIR imaging. NeuroImage Clin. 2021, 31, 102744. 

https://doi.org/10.1016/j.nicl.2021.102744. 

33. Gillies, R.J.; Kinahan, P.E.; Hricak, H. Radiomics: Images are more than pictures, they are data. Radiology 2016, 278, 563–577. 

34. Gatenby, R.A.; Grove, O.; Gillies, R.J. Quantitative imaging in cancer evolution and ecology. Radiology 2013, 269, 8–14. 

35. Lambin, P.; Leijenaar, R.T.H.; Deist, T.M.; Peerlings, J.; de Jong, E.E.C.; van Timmeren, J.; Sanduleanu, S.; Larue, R.T.H.M.; Even, 

A.J.G.; Jochems, A.; et al. Radiomics: The bridge between medical imaging and personalized medicine. Nat. Rev. Clin. Oncol. 

2017, 14, 749–762. https://doi.org/10.1038/nrclinonc.2017.141. 

36. Chen, Q.; Xia, T.; Zhang, M.; Xia, N.; Liu, J.; Yang, Y. Radiomics in Stroke Neuroimaging: Techniques, Applications, and Chal-

lenges. Aging Dis. 2021, 12, 143–154. 

37. Yang, Y.; Li, W.; Kang, Y.; Guo, Y.; Yang, K.; Li, Q.; Liu, Y.; Yang, C.; Chen, R.; Chen, H.; et al. A novel lung radiomics feature 

for characterizing resting heart rate and COPD stage evolution based on radiomics feature combination strategy. Math. Biosci. 

Eng. 2022, 19, 4145–4165. https://doi.org/10.3934/mbe.2022191. 

38. Ortiz-Ramón, R.; Hernández, M.D.C.V.; González-Castro, V.; Makin, S.; Armitage, P.A.; Aribisala, B.S.; Bastin, M.E.; Deary, I.J.; 

Wardlaw, J.M.; Moratal, D. Identification of the presence of ischaemic stroke lesions by means of texture analysis on brain 

magnetic resonance images. Comput. Med. Imaging Graph. 2019, 74, 12–24. 

39. Tang, T.-Y.; Jiao, Y.; Cui, Y.; Zhao, D.-L.; Zhang, Y.; Wang, Z.; Meng, X.-P.; Yin, X.-D.; Yang, Y.-J.; Teng, G.-J.; et al. Penumbra-

based radiomics signature as prognostic biomarkers for thrombolysis of acute ischemic stroke patients: A multicenter cohort 

study. J. Neurol. 2020, 267, 1454–1463. https://doi.org/10.1007/s00415-020-09713-7. 

40. Guo, Y.; Yang, Y.; Cao, F.; Li, W.; Wang, M.; Luo, Y.; Guo, J.; Zaman, A.; Zeng, X.; Miu, X.; et al. Novel Survival Features 

Generated by Clinical Text Information and Radiomics Features May Improve the Prediction of Ischemic Stroke Outcome. Di-

agnostics 2022, 12, 1664. 

41. Wang, H.; Sun, Y.; Ge, Y.; Wu, P.-Y.; Lin, J.; Zhao, J.; Song, B. A Clinical-Radiomics Nomogram for Functional Outcome Predic-

tions in Ischemic Stroke. Neurol. Ther. 2021, 10, 819–832. https://doi.org/10.1007/s40120-021-00263-2. 

42. Sohn, J.; Jung, I.Y.; Ku, Y.; Kim, Y. Machine-learning-based rehabilitation prognosis prediction in patients with ischemic stroke 

using brainstem auditory evoked potential. Diagnostics 2021, 11, 673. 

43. Studholme, C.; Hill, D.; Hawkes, D. An overlap invariant entropy measure of 3D medical image alignment. Pattern Recognit. 

1999, 32, 71–86. https://doi.org/10.1016/s0031-3203(98)00091-0. 

44. Smith, S.M.; Jenkinson, M.; Woolrich, M.W.; Beckmann, C.F.; Behrens, T.E.; Johansen-Berg, H.; Bannister, P.R.; De Luca, M.; 

Drobnjak, I.; Flitney, D.E.; et al. Advances in functional and structural MR image analysis and implementation as FSL. Neu-

roimage 2004, 23, S208–S219. 

45. Fan, S.; Bian, Y.; Wang, E.; Kang, Y.; Wang, D.; Yang, Q.; Ji, X. An Automatic Estimation of Arterial Input Function Based on 

Multi-Stream 3D CNN. Front. Neuroinform. 2019, 13, 49. https://doi.org/10.3389/fninf.2019.00049. 

46. van Griethuysen, J.J.M.; Fedorov, A.; Parmar, C.; Hosny, A.; Aucoin, N.; Narayan, V.; Beets-Tan, R.G.H.; Fillion-Robin, J.-C.; 

Pieper, S.; Aerts, H.J.W.L. Computational Radiomics System to Decode the Radiographic Phenotype. Cancer Res. 2017, 77, e104–

e107. https://doi.org/1158/0008-5472.can-17-0339. 

47. Zhang, Y.; Zhang, B.; Liang, F.; Liang, S.; Zhang, Y.; Yan, P.; Ma, C.; Liu, A.; Guo, F.; Jiang, C. Radiomics features on non-

contrast-enhanced CT scan can precisely classify AVM-related hematomas from other spontaneous intraparenchymal hema-

toma types. Eur. Radiol. 2019, 29, 2157–2165. 

48. Ghosh, P.; Azam, S.; Jonkman, M.; Karim, A.; Shamrat, F.J.M.; Ignatious, E.; Shultana, S.; Beeravolu, A.B.; De Boer, F. Efficient 

prediction of cardiovascular disease using machine learning algorithms with relief and LASSO feature selection techniques. 

IEEE Access 2021, 9, 19304–19326. 



J. Clin. Med. 2022, 11, 5364 22 of 22 
 

 

49. Muthukrishnan, R.; Rohini, R. LASSO: A feature selection technique in predictive modeling for machine learning. In Proceed-

ings of the IEEE International Conference on Advances in Computer Applications (ICACA), Coimbatore, India, 24 October 

2016. https://doi.org/10.1109/ICACA.2016.7887916. 

50. Ezzeddine, M.A.; Lev, M.H.; McDonald, C.T.; Rordorf, G.; Oliveira-Filho, J.; Aksoy, F.G.; Farkas, J.; Segal, A.Z.; Segal, L.H.; 

Schwamm, R.; et al. CT angiography with whole brain perfused blood volume imaging: Added clinical value in the assessment 

of acute stroke. Stroke 2002, 33, 959–966. 

51. Chawla, M.; Sharma, S.; Sivaswamy, J.; Kishore, L. A method for automatic detection and classification of stroke from brain CT 

images. In Proceeedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 

Minneapolis, MN, USA, 3–6 September 2009. https://doi.org/10.1109/IEMBS.2009.5335289. 

52. Edlow, B.L.; Hurwitz, S.; Edlow, J.A. Diagnosis of DWI-negative acute ischemic stroke: A meta-analysis. Neurology 2017, 89, 

256–262. 

53. Lansberg, M.G.; Albers, G.W.; Beaulieu, C.; Marks, M.P. Comparison of diffusion-weighted MRI and CT in acute stroke. Neu-

rology 2000, 54, 1557–1561. 

54. Abdelgawad, E.A.; Amin, M.F.; Abdellatif, A.; Mourad, M.A.; Abusamra, M.F. Value of susceptibility weighted imaging (SWI) 

in assessment of intra-arterial thrombus in patients with acute ischemic stroke. Egypt. J. Radiol. Nucl. Med. 2021, 52, 270. 

55. Zhang, S.; Yao, Y.; Zhang, S.; Zhu, W.; Tang, X.; Yu, Q.; Zhao, L.; Liu, C.; Zhu, W. Comparative study of DSC-PWI and 3D-ASL 

in ischemic stroke patients. J. Huazhong Univ. Sci. Technol. Med. Sci. 2015, 35, 923–927. 

56. Barber, P.A.; Darby, D.G.; Desmond, P.M.; Yang, Q.; Gerraty, R.P.; Jolley, D.; Donnan, G.A.; Tress, B.M.; Davis, S.M. Prediction 

of stroke outcome with echoplanar perfusion-and diffusion-weighted MRI. Neurology 1998, 51, 418–426. 

57. Dejobert, M.; Cazals, X.; Annan, M.; Debiais, S.; Lauvin, M.; Cottier, J. Susceptibility–diffusion mismatch in hyperacute stroke: 

Correlation with perfusion–diffusion mismatch and clinical outcome. J. Stroke Cerebrovasc. Dis. 2016, 25, 1760–1766. 

58. Beaulieu, C.; De Crespigny, A.; Tong, D.C.; Moseley, M.E.; Albers, G.W.; Marks, M.P. Longitudinal magnetic resonance imaging 

study of perfusion and diffusion in stroke: Evolution of lesion volume and correlation with clinical outcome. Ann. Neurol. Off. 

J. Am. Neurol. Assoc. Child Neurol. Society 1999, 46, 568–578. 

59. Bruno, A.; Saha, C.; Williams, L.S. Percent change on the National Institutes of Health Stroke Scale: A useful acute stroke out-

come measure. J. Stroke Cerebrovasc. Dis. 2009, 18, 56–59. 

60. Kasner, S.E. Clinical interpretation and use of stroke scales. Lancet Neurol. 2006, 5, 603–612. 

61. Fernandez-Lozano, C.; Hervella, P.; Mato-Abad, V.; Rodríguez-Yáñez, M.; Suárez-Garaboa, S.; López-Dequidt, I.; Estany-Gestal, 

A.; Sobrino, T.; Campos, F.; Castillo, J.; et al. Random forest-based prediction of stroke outcome. Sci. Rep. 2021, 11, 10071. 

62. Wu, X.; Wang, H.; Chen, F.; Jin, L.; Li, J.; Feng, Y.; DeKeyzer, F.; Yu, J.; Marchal, G.; Ni, Y. Rat model of reperfused partial liver 

infarction: Characterization with multiparametric magnetic resonance imaging, microangiography, and histomorphology. Acta 

Radiol. 2009, 50, 276–287. 

63. Bonkhoff, A.K.; Xu, T.; Nelson, A.; Gray, R.; Jha, A.; Cardoso, J.; Ourselin, S.; Hans, G.R.; Jäger, R.; Nachev, P. Reclassifying 

stroke lesion anatomy. Cortex 2021, 145, 1–12. 

64. Nanga, S.; Bawah, A.T.; Acquaye, B.A.; Billa, Ma.; Baeta, F.D.; Odai, N.A.; Obeng, S.K.; Nsiah, A.D. Review of Dimension Re-

duction Methods. J. Data Anal. Inf. Process. 2021, 9, 189–231. 


