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Abstract: Aims: Evidence for drug–drug interactions (DDIs) that may cause age-dependent differ-
ences in the incidence and severity of adverse drug reactions (ADRs) in newborns is sparse. We
aimed to develop machine learning (ML) algorithms that predict DDI presence by integrating each
DDI, which is objectively evaluated with the scales in a risk matrix (probability + severity). Methods:
This double-center, prospective randomized cohort study included neonates admitted to the neonatal
intensive care unit in a tertiary referral hospital during the 17-month study period. Drugs were
classified by the Anatomical Therapeutic Chemical (ATC) classification and assessed for potential
and clinically relevant DDIs to risk analyses with the Drug Interaction Probability Scale (DIPS,
causal probability) and the Lexicomp® DDI (severity) database. Results: A total of 412 neonates
(median (interquartile range) gestational age of 37 (4) weeks) were included with 32,925 patient days,
131 different medications, and 11,908 medication orders. Overall, at least one potential DDI was
observed in 125 (30.4%) of the patients (2.6 potential DDI/patient). A total of 38 of these 125 pa-
tients had clinically relevant DDIs causing adverse drug reactions (2.0 clinical DDI/patient). The
vast majority of these DDIs (90.66%) were assessed to be at moderate risk. The performance of
the ML algorithms that predicts of the presence of relevant DDI was as follows: accuracy 0.944
(95% CI 0.888–0.972), sensitivity 0.892 (95% CI 0.769–0.962), F1 score 0.904, and AUC 0.929 (95% CI
0.874–0.983). Conclusions: In clinical practice, it is expected that optimization in treatment can be
achieved with the implementation of this high-performance web tool, created to predict DDIs before
they occur with a newborn-centered approach.

Keywords: drug–drug interactions; machine learning; neonatal intensive care unit; adverse drug reactions

1. Introduction

Undesirable effects that occur in a potential or clinically relevant way with the concur-
rent use of two or more drugs are drug–drug interaction (DDI) and adverse drug reactions
(ADR) [1]. In the broadest sense, a DDI occurs whenever one drug affects the pharmacoki-
netics (PK), pharmacodynamics (PD), efficacy, or toxicity of another drug depending on
various factors such as drug-related (such as the mechanism of action, route of administra-
tion, dose, dose interval, duration of treatment, dosing times) and patient-related (such as
diagnosis, polypharmacy, pharmacogenetics, length of hospital stays) [2–4] factors. DDIs
often lead to increased healthcare costs, morbidity, and mortality, originating from 2.5 to
4.4% of ADRs and 3 to 5% of all inpatient medication errors [5,6].
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Many DDIs in neonatal intensive care unit (NICU) patients can remain unrecognized
by considering these various factors as well as the workload of the health care professionals.
Neonates, particularly admitted to the NICU, have increased the severity of DDIs to result
in more common/severe ADR compared to other populations due to physiological/organ
immaturity, congenital diseases, birth-related complications, and significant differences
in PKs such as extravascular total body water, immature renal/hepatic functions, plasma
protein concentrations, blood–brain barrier permeability [7,8]. As a recent illustration of
this complexity of DDI in neonates, Salerno et al. explored the impact of co-administration
of fluconazole on sildenafil disposition, including the PD-relevant metabolite (N-desmethyl
sildenafil). Interestingly, the AUC fold change in adults (2.11-fold) was different in infants
(2.82-fold), necessitating a dose reduction of about 60% to attain similar exposure [9].

With the digitalization of health and medicine and the widespread use of electronic
health records (EHR), healthcare professionals have begun to adopt the latest methodologies
of artificial intelligence (AI). Machine learning (ML) algorithms, a subtype of AI, can act
as a kind of co-pilot and predict DDIs before they occur with a patient-centered approach.
Due to the lack of comprehensive experimental data for neonates, high study cost, and
long experimental duration, the use of computational prediction and DDIs assessment is
an encouraging strategy to improve precision medicine: recognize the cases at higher risk
to mitigate risks. [10].

Although software DDI checkers for adults are widely available, most have lim-
ited clinical utility, especially for neonates. In this context, it was aimed to develop
ML algorithms and web tool that predict high-performance DDI by integrating each
DDI, which is objectively evaluated with the scales in risk matrix (probability + sever-
ity) (http://www.softmed.hacettepe.edu.tr/NEO-DEER_Drug_Interaction/ (accessed on
7 August 2022)).

2. Methods
2.1. Study Design and Population

Newborns (postnatal age between 0 and 28 days), patients admitted to the NICU for
at least 24 h, and patients who received at least one systemic drug during their hospital
stay were included in this double-center and prospective randomized cohort study from
February 2020 to June 2021. The newborns with hepatic or renal impairment excluded in
the study. The Institutional Review Board of Hacettepe University ethical approved this
study and written informed consent was obtained from each parent/legal guardian of the
participant (decision no. 2020/11-21). This study registered with the ClinicalTrials.gov
(accessed on 7 August 2022) (NCT04899960).

2.2. Data Acquisition

Patients’ follow-up was performed daily to acquire the clinical status via a compre-
hensive assessment by the multidisciplinary team including physicians, nurses, and a
clinical pharmacist. Demographical, clinical, and drug administration data were obtained
from routine follow-up for each patient. International Classification of Diseases 10th Re-
vision (ICD-10) codes for diagnoses, Anatomical Therapeutic Chemical (ATC) codes for
categorization of drugs were used for all patients.

2.3. Causal Probability, Severity, a Risk Matrix Development of DDIs

Potential DDIs with all drugs prescribed simultaneously in each NICU patient until
discharge was prospectively determined using the Lexicomp® DDI database, clinical and
laboratory findings by the clinical pharmacist. The inhibitor/inductor and substrate (victim)
drugs, mechanism of DDIs, ADRs of clinically relevant DDIs, and duration of exposure
(days) were prospectively registered.

The Drug Interaction Probability Scale (DIPS) was used to determine the causal probabil-
ity for each potential DDI. The DIPS consists of 10 questions and each question is answered
as ‘Yes’, ‘No’ or ‘Unknown or Not Applicable (NA)’, DDIs are categorized as >8 points

http://www.softmed.hacettepe.edu.tr/NEO-DEER_Drug_Interaction/
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‘highly probable’, 5–8 points ‘probable’, 2–4 points ‘possible’, and <2 points ‘doubtful’ [11].
By consensus, all DDIs except the ‘doubtful’ were considered clinically significant (any
score ≥ 2). In this study, the probability categories were numbered between 1 (doubtful) to
4 (highly probable).

The Lexicomp® DDI database was used to determine the potential severity of each
DDI. According to the Lexicomp® database, DDIs are rated as X (avoid combination),
D (consider therapy modification), C (monitor therapy), B (no action needed), and A (no
known interaction) [12]. In this study, the severity categories obtained were numbered
between 1 (A = no known interaction) and 5 (X = avoid combination).

These categories are placed in rows (severity, 1–4) and columns (probability, 1–5) in the
risk matrix, which consists of risk scores obtained by multiplying severity and probability
values. In this risk matrix, the risk category was obtained for each DDI as low (white),
moderate (light gray), and high (dark gray) risk. This risk matrix created was approved by
the consensus of the clinicians involved in the study.

2.4. Establishment, Optimization, and Validation of Random Forest Model

Primarily, statistically significant correlations and differences were examined among
all general and prescription information (as input variables), and the presence of DDI(s)
during hospitalization (as output variables) by univariate analyses. Input variables that
were found to be significant according to univariate analysis were chosen as independent
variables (p < 0.05). Secondly, the data set containing the dependent and independent
variables was randomly divided into train sets (70%) for obtain models and test set (30%)
for obtaining model performance. Since the 10-fold cross-validation method separates
the train data into train and validation sets, a separate validation set was not used when
dividing the data set. Elastic net, random forest (RF), and support vector machine (SVM)
with different kernel functions were used to compare model performances. The highest
performance was provided by RF and the study was analyzed with RF. The accuracy,
sensitivity (recall), specificity, positive predictive value (precision-PPV), negative predictive
value (NPV), F1 score, and area under ROC curve (AUC) were used as performance
measures in classification models to compare the performance of the models. A high-
performance model requires these measurements of 0.70 and above.

Accuracy is the ratio of correctly classified samples to the total number of samples.
Sensitivity and specificity are the ability of a model to correctly identify positive and
negative samples, respectively. PPV is an indicator of how many of the samples classified
as positive by the model are actually positive. NPV is an indicator of how many of the
samples classified as negative by the model are actually negative. F1 score is harmonic
mean of precision and recall. Lastly, AUC is an indicator of how well the classes are
separated from each other according to the model obtained.

The model performances were compared after parameter optimization to avoid over-
fitting with the tuneLength argument in the Classification and Regression Training (caret)
package [13]. Variable importance plots were used in the study to show the importance
order of the variables used in the prediction models.

Finally, data were collected prospectively to examine the predictive validity of the ML-
based model in a different hospital (Erasmus Medical Centre Sophia Children’s Hospital)
and country (The Netherlands) by the same web tool user (clinical pharmacist) to ensure
quality standard.

2.5. Statistical Analysis

For predictive models based on ML, it is not possible to measure the effect size as
in hypothesis testing. Instead of calculating the sample size according to the effect size
of a certain power level, rules of thumb such as taking 10 or 20 times the number of
independent variables as the sample size can be applied. In this study, it was planned to
have a maximum of 20 independent variables in the final models, so the minimum sample
size was determined as 400 patients, with 20 observations per variable [14]. Continuous
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variables were defined as the mean (standard deviation, SD) and median (range). The
normality of continuous variables was tested using the Shapiro–Wilk test. Categorical
variables were defined as percentages and were compared using the χ2 test. Univariate
analysis was carried out in IBM SPSS Statistics Version 23 software. For all tests, p < 0.05 was
considered statistically significant. All ML analyses were performed, using the open-source
software R (version 3.6.3, http://www.rproject.org (accessed on 7 August 2022)). In terms
of reproducibility, the seed number was set at 1234. Caret [13] package was used as the
primary package for model training, 10-fold cross-validation, and variable importance.
pROC [15], precrec [16], and ggplot2 [17] R packages were used for obtaining the ROC
curve. The quantitative features were normalized before training the models.

3. Results
3.1. Clinical Characteristics

During the study period, 468 newborns were admitted to the 22-bed capacity NICU
in a tertiary referral hospital. Fifty-six patients were excluded because of non-survival
(n = 21, 4.5%) or not receiving any systemic drug (n = 35, 7.4%). Therefore, 412 patients
were included in the study: 232 (56.3%) were males, 177 (43%) were preterm births, and
172 (41.7%) were low birth weight (<2500 g). According to the numeric variables, the
median (IQR) postnatal age (PNA) was 1 (1) day and the median (IQR) length of hospital
stay (LOS) was 8 (11) days. General and postnatal information about patients is given in
Table 1.

Table 1. Data acquisition parameters of the study (N = 412).

Population Characteristics

Sex, Male, n (%) 232 (56.3%)

Sex ratio (male/female) 1.29

5 min APGAR score, median (IQR) 8 (2)

Gestational age (weeks), median (IQR) 37 (4)

Extremely preterm (<28 weeks), n (%) 7 (1.7%)

Very preterm (28 to 32 weeks), n (%) 52 (12.6%)

Moderate preterm (32 to 34 weeks), n (%) 16 (3.9%)

Late preterm (34 to 37 weeks), n (%) 102 (24.8%)

Term (>37 weeks), n (%) 235 (57%)

SGA at admission, n (%) 88 (21.4%)

Birth weight (g), mean (SD) 2631.1 (877.2)

Extremely low birth weight (<1000 g), n (%) 26 (6.3%)

Very low birth weight (1000 to 1500 g), n (%) 27 (6.6%)

Low birth weight (1500 to 2500 g), n (%) 119 (28.9%)

Normal birth weight (>2500 g), n (%) 240 (58.3%)

Multiple birth, n (%) 53 (12.9%)

Caesarean section, n (%) 337 (81.8%)

Diagnosis (ICD-10), n (%)

Complications of labor and delivery, n (%) 165 (40%)

Infectious diseases, n (%) 46 (11.2%)

Diseases of the respiratory system, n (%) 46 (11.2%)

Diseases of the circulatory system, n (%) 37 (9%)

Other disorders of fluid, electrolyte, and acid-base balance, n (%) 26 (6.3%)

http://www.rproject.org
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Table 1. Cont.

Population Characteristics

Diseases of the digestive system, n (%) 24 (5.8%)

Diseases of the nervous system, n (%) 20 (4.9%)

Neonatal jaundice, n (%) 19 (4.6%)

Congenital malformations, deformations and chromosomal abnormalities, n (%) 15 (3.6%)

Metabolic disorders, n (%) 9 (2.2%)

Neoplasms, n (%) 6 (1.4%)

Drugs (ATC) (N = 2280), n (%)

J. Anti-infectives for systemic use, n (%) 905 (39.69%)

A. Alimentary tract and metabolism, n (%) 591 (25.92%)

N. Nervous system, n (%) 229 (10.05%)

B. Blood and blood-forming organs, n (%) 175 (7.67%)

C. Cardiovascular system, n (%) 170 (7.46%)

R. Respiratory system, n (%) 81 (3.55%)

H. Systemic hormonal preparations, n (%) 70 (3.07%)

S. Sensory organs, n (%) 31 (1.36%)

M. Musculo-skeletal system, n (%) 11 (0.48%)

G. Genito-urinary system and sex hormones, n (%) 10 (0.44%)

L. Antineoplastic and immunomodulating agents, n (%) 7 (0.31%)
APGAR: Appearance, Pulse, Grimace, Activity, and Respiration, SGA: Small for gestational age, ICD: International
Classification of Diseases 10th Revision, ATC: Anatomical Therapeutic Chemical.

A total of 412 NICU patients (5.53 drugs/patient/day) to whom 2280 drugs were
prescribed in 32,925 patient days and 11,908 medication orders (28.9 order/patient) were
prescribed with the computerized physician order entry (CPOE) system were prospectively
examined from prescribing to the follow-up process. The median (range) values of the total
number of drugs and anti-infectives used during the hospitalization period were 3 (0–29)
and 2 (0–9) respectively. According to the ATC, the most frequently prescribed drugs in
these orders were anti-infective (38.82%), alimentary tract and metabolism (32.89%), and
nervous system (8.07%) drugs. In the study period, a total of 131 different drugs were
prescribed. The most commonly used of these agents were intravenous fluids (12.06%),
gentamicin (8.03%), and ampicillin (7.81%). The rate of anti-infectives among the total
number of drugs prescribed was 39.96% (Table S1).

3.2. Characteristics of Potential and Observed DDIs: Incidence and Severity

At least one potential DDI was observed in 125 (30.4%) of the patients included in the
study. The total number of potential DDIs detected was 328 (2.6 potential DDI/patient,
range 1–15). Of these patients, 66 (52.8%) had 1 DDI, 15 (12.0%) 2 DDIs, 19 (15.2%) 3 DDIs,
25 (20.0%) 4 or more DDIs.

Of 125 patients with potential DDIs, 38 (30.3%) had clinically relevant DDIs known to
cause ADR were identified. The total number of clinically relevant DDIs observed in these
38 patients was 75 (2.0 clinically relevant DDI/patient, range: 1–5) (Figure 1). The vast
majority (65/75, 99.6 %) of observed clinically relevant DDIs were found to be of moderate
risk. Low- and high-risk clinically relevant DDIs were seen in 3 and 4 patients, respectively.
According to the risk matrix, while the mean risk score is 10.3 in patients with potential
DDIs, this score increases to 21.1 in patients with only clinically relevant DDIs.
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The most common clinically relevant DDI observed in patients was between van-
comycin and amikacin (17.3%). As a result of this DDI, the mean creatinine was above the
upper level to the baseline on the 17th day of this combination. It was recognized that this
DDI was determined as a ‘possible’ probability and C (monitoring) severity level. As a
result, when the probability and severity data were placed in the risk matrix, it was seen
that the DDI was ‘moderate’ risk. DDIs with clinical findings identified as high risk were
amiodarone–flecainide, caffeine–adenosine, midazolam–fentanyl, and linezolid–salbutamol
(Table 2).

When the probability and severity analysis of all potential DDIs were evaluated
separately, ‘doubtful’ probability (77.44%) and moderate (C = monitor therapy) severity
(79.88%) of DDIs were most commonly observed in the risk matrix (Table 3).

3.3. Development and Optimization of a Model to Predict the Presence of Clinically Relevant DDI

The parameters that have the highest correlation with DDIs and are included in the
model were: the total number of anti-infectives, total number of drugs, nervous system
drugs, cardiovascular system drugs, respiratory system drugs, and anti-infectives. When
considering the importance of the parameters included in the model, it was seen that the
most effective variable in predicting the DDI is the total number of anti-infectives (Figure 2).
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Table 2. The type, outcome, duration of exposure, probability, severity, and risk category of clinically relevant DDIs observed in the study (n = 38).

Affecting Drug
(Inhibitor/Inductor)

Affected
Drug (Victim) Mechanism of DDIs ADRs Observed as a Result

of DDI *

Duration of
Exposure

(Mean Day)

DIPS
(Probability)

Lexicomp®

(Severity)
Risk Score Risk

Category

Vancomycin Amikacin Additive/synergistic Increase in creatinine (13) 16.76 2 3 6 2

Dexmedetomidine Fentanyl Additive Bradycardia (6)
Hypotension (2) 3.25 2 3 6 2

Amikacin Furosemide Additive/synergistic Increase in creatinine (4) 2 2 3 6 2
Dexmedetomidine Furosemide Additive Hypotension (3) 4.33 2 3 6 2

Phenytoin Phenobarbital Metabolism Decreased effect of phenytoin (2) 11 3 3 9 2
Hydrocortisone Furosemide Additive Hypokalemia (2) 4.50 2 3 6 2
Phenobarbital Furosemide Unknown Hypotension (2) 7.50 2 3 6 2

Salbutamol Furosemide Additive Hypokalemia (2) 6.50 2 3 6 2
Amiodarone Flecainide Additive QTc prolongation 2 4 4 16 3

Furosemide Captopril Volume depletion Increase in creatinine
Hypotension 4 2 3 5 2

Hydrocortisone Furosemide Additive Hypokalemia 3 2 3 6 2

Hydrochlorothiazide Diazoxide Decrease in insulin
secretion Hyperglycemia 8 3 3 9 2

Nifedipine Propranolol Additive Hypotension 5 2 3 6 2
Caffeine Adenosine Antagonism Decreased effect of adenosine 10 3 4 12 3

Amiodarone Fluconazole Metabolism QTc prolongation 3 2 4 8 2
Phenobarbital Levetiracetam Unknown Decreased effect of levetiracetam 26 2 3 6 2

Ibuprofen Amikacin Unknown Increase in creatinine 3 3 3 9 2

Spironolactone Captopril
Increase in potassium

retention due to
aldosterone reduction

Hyperkalemia 18 3 3 9 2

Fluconazole Midazolam Metabolism Prolonged sedation 1 2 3 6 2
Diazoxide Dexmedetomidine Additive Hypotension 3 2 3 6 2

Dexamethasone Hydrochlorothiazide Additive Hypokalemia 2 2 3 6 2
Fluconazole Ibuprofen Metabolism Decrease in hemoglobin 2 2 3 6 2

Ciprofloxacin Phenytoin Unknown Decreased phenytoin plasma
concentration 5 4 2 8 2

Allopurinol Phenytoin Unknown Increased phenytoin plasma
concentration 1 3 3 9 2

Midazolam Fentanyl Additive Chest rigidity 3 4 4 16 3
Adenosine Dexmedetomidine Additive Bradycardia 3 2 3 6 2

Phenobarbital Topiramate Unknown Decreased effect of topiramate 7 2 3 6 2
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Table 2. Cont.

Affecting Drug
(Inhibitor/Inductor)

Affected
Drug (Victim) Mechanism of DDIs ADRs Observed as a Result

of DDI *

Duration of
Exposure

(Mean Day)

DIPS
(Probability)

Lexicomp®

(Severity)
Risk Score Risk

Category

Phenobarbital Dexmedetomidine Catecholamine
reduction Hypotension 3 2 3 6 2

Fentanyl Furosemide Unknown Hypotension
Decreased urine output 5.50 2 3 6 2

Salbutamol Hydrochlorothiazide Additive Hypokalemia 7 2 3 6 2
Phenytoin Topiramate Metabolism Decreased effect of topiramate 5 2 3 6 2

Ciprofloxacin Midazolam Metabolism Prolonged sedation 3 2 2 4 1
Ferrous fumarate Levothyroxine Absorption Decreased effect of levothyroxine 13 2 4 8 2

Cefuroxime Amikacin Additive/synergistic Increase in creatinine 1 2 3 6 2
Nitroglycerine Furosemide Additive Hypotension 16 2 3 6 2

Potassium chloride Furosemide Unknown Hyponatremia 1 2 2 4 1
Methylprednisolone Furosemide Additive Hypokalemia 1 2 3 6 2

Linezolid Salbutamol Metabolism Hypertension 10 3 4 12 3
Nitroglycerine Dexmedetomidine Additive Hypotension 6 2 3 6 2

Potassium chloride Phenobarbital Unknown Hyponatremia 6 2 3 6 2
Dexmedetomidine Salbutamol Unknown Hypokalemia 1 2 2 4 1

Furosemide Levothyroxine Unknown Increase in free T4 7 2 3 6 2
Furosemide Levosimendan Additive Hypotension 1 2 3 6 2

Prednisolone Furosemide Additive Hypokalemia 3 3 3 9 2
Adrenalin Dopamine Additive Hypertension 3 2 3 6 2

DIPS: Drug Interaction Probability Scale, ADR: adverse drug reaction, DDI: drug–drug interaction. * The numbers in parentheses show how many times that DDI has been observed.
The other ADRs were observed only once in that DDIs. Risk category column; white: low risk, light gray: moderate risk, dark gray: high risk.



J. Clin. Med. 2022, 11, 4715 9 of 13

Table 3. Distribution of potential drug–drug interactions detected by probability and severity.

P SEVERİTY
R
O

A (1)
n = 1 (0.30%)

B (2)
n = 24 (7.32%)

C (3)
n = 262 (79.88%)

D (4)
n = 40 (12.20%)

X (5)
n = 1 (0.30%)

B
A

Highly Probable (4)
n = 3 (0.91%) 4 8 12 16 20

B
I

Probable (3)
n = 16 (4.88%) 3 6 9 12 15

L
I

Possible (2)
n = 55 (16.77%) 2 4 6 8 10

T
Y

Doubtful (1)
n = 254 (77.44%) 1 2 3 4 5

1–4 points (low risk-white), 5–10 points (moderate risk-light gray), 12–20 points (high risk-dark gray).
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The obtained model showed very high performance in predicting the presence of
DDI. Performance measurements of the model were as follows: accuracy 0.944 (95% CI
0.888–0.972), sensitivity 0.892 (95% CI 0.769–0.962), selectivity 0.966 (95% CI 0.913–0.991),
PPV 0.917 (95% CI 0.812–0.966), NPV 0.955 (95% CI) 0.906–0.979), F1 score 0.904, and AUC
0.929 (95% CI 0.874–0.983). The high AUC indicates that the model predicting the presence
of DDI correctly classified 92.9% of the patients (Figure 3).

Data were collected prospectively to examine the predictive validity of the model.
In total, a sample of 51 NICU patients was reached and 15.7% (n = 8) had observed DDI.
The model correctly classified 92% of them. Sensitivity and NPV were obtained as 0.75.
Sensitivity and PPV were obtained as 0.92. Similar to the results of the test data set,
prospective data set results had high sensitivity and PPV.
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4. Discussion

This study confirmed that the presence of ADRs (causal probability, DIPS) and risk
category of each DDI (severity, Lexicomp® DDI database) varies between patients. Related
to this variability, it was shown that the presence of DDIs can be predicted in neonates by
using ML algorithms that show high prediction performance in such complex models.

It is estimated that >70% of neonates in the NICU are exposed to DDIs [18]. In our
study, a total of 328 potential DDIs were detected in 30.4% of the patients included. More
than half of the patients had only one potential DDI during hospitalization. In 30.3% of
these patients with potential DDIs, clinically relevant DDIs were determined by an objective
DIPS. Looking at the broader picture, a potential DDI was detected in approximately a
third of the patients included in the study, and a clinically relevant DDI was detected in
a third of these patients (9.2% of the study population). Similarly, Choi et al. identified
clinically relevant DDIs in 16 (10.1%) PICU patients [19]. When putting our observations
on DDI incidence (potential 30%, clinically relevant 9%) into perspective, other cohorts
reported potential DDI incidences of 70, 13.2, or 66.2% [7,20,21].

The DIPS and Lexicomp® database are mostly used in adults in clinical practices and
studies. Although there is limited research on the implementation of the DIPS [22,23]
and Lexicomp® DDI database [24] in children, there is no study for its implementation
in neonates in the current literature. To the best of our knowledge, this is the first study
to use these measurements in neonates. Related to the causal probability and severity of
each potential DDI detected with the risk analysis matrix (Table 3), 77.44% were ‘doubt-
ful’ according to the DIPS, and 79.88% were in ‘category C = monitor’ according to the
Lexicomp® database. In a study evaluating the prevalence of potential DDIs in the NICU,
61.4% of these were in category C [21]. In a single-center retrospective study evaluating
the causal probability of DDIs, it was determined that 54.5% of clinically relevant DDIs
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were ‘probable’ [19]. In our study, clinically relevant DDIs were determined as ‘probable’
at a lower rate (31.57 %). Accordingly, it is understood that the vast majority of DDIs are
potentially ongoing, and monitoring is sufficient for these DDIs without the need for any
intervention such as drug change, dose change, or drug discontinuation.

While 29–50% of potential DDIs were classified as major in two studies conducted in
the NICU, only 12.5% of DDIs were classified in the D or X category in our study [7,25]. In
another study conducted in the NICU, 37.5% of potential DDIs were determined as severe
or contraindicated [20].

When the DDIs were examined on causal probability (DIPS), only three potential DDIs
were identified as ‘highly probable’. These DDIs were observed for amiodarone–flecainide
(day 3 of use), midazolam–fentanyl (day 3 of use), and ciprofloxacin–phenytoin (day 5 of
use) (Table 2). For a full overview of the ADRs observed, refer to Table 2.

In the literature, the use of CPOE itself has not been associated with a significant
decrease in the rate of DDIs [4]. Therefore, there is a need for further development of a
clinical decision support system (CDSS) with ML algorithms within CPOE systems. Most
of the alerts generated by the legacy CDSS were related to DDIs and dosages [26]. Al-
though there are theoretical and review ML studies on DDI extraction from the biomedical
literature [27], DrugBank and other databases [28,29], bioinformatics algorithms to predict
DDI [30], and clinical safety DDI information retrieval [31], there are no real-life studies
that reflect clinical practice in neonates.

In our study, due to the balanced distribution of the patients with and without the DDI,
the high-performance model that predicts whether a DDI will occur in a patient with ML
algorithms has been designed successfully. According to this model, the most important
variables used in the prediction were, respectively: the total number of anti-infective drugs;
the total number of drugs; and nervous system, endocrine system, cardiovascular system,
respiratory system, and anti-infective drugs (AUC: 0.929). Our study hereby confirms
previously reported cohorts, with polypharmacy as a risk factor for potential DDI in the
NICU (OR: 1.60; p < 0.01) and PICU (≥11 prescribed medicines; p < 0.001) [7,25]. Similar to
our study, polypharmacy (OR: 4.8) and respiratory system drugs (OR: 3.8) were the main
risk factors associated with an increased incidence of DDIs in children with respiratory
disorders [32].

According to a study in which the DIPS, which was also used in our study, was
used in cardiovascular diseases, the predictive ability of probability scores showed good
performance (AUC: 0.800, p < 0.001) [33]. In our study, the model predicting the presence
of DDIs with ML algorithms showed a higher predictive ability (AUC: 0.929). In a study
in which more than 74,000 DDIs from 572 different drugs in DrugBank (only theoretical
information) were converted into a prediction model using deep learning techniques
using protein binding, substrate, and enzyme, the accuracy and AUC were found to be,
respectively, 0.885 and 0.921 [28]. In our real-life study, solely based on clinical data of
newborns, accuracy and AUC values were higher (accuracy: 0.944, AUC: 0.929), although
the number of patients and DDIs were lower. There are no ML-based studies in the literature
that predict whether DDIs will occur during the period from hospitalization to discharge
using clinical data.

It is reasonable to suggest that such prediction models could be instrumental in the
evolution to precision medicine, with the identification of a subgroup of patients at high
risk of DDI, instead of the alert fatigue related to an overload of automated alerts [26].
The limited duration of the study, number of patients, and absence of patient and health
service (policy) heterogeneity due to the double-center study design are limitations. Due
to the limited number of patients in a prospective study design, other parameters (risk
category, ADRs, etc.) could not be included as output variables because it reduces the
model performance.
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5. Conclusions

To our knowledge, this is the first study in the literature to predict the presence of
DDI using risk analysis and ML algorithms. Clinically significant DDIs were predicted
with high performance according to risk analysis in neonates with PK and PD properties
quite different from the pediatric and adult population. In this context, it is important
to predict the likelihood of a DDI event as part of precision medicine and individualized
treatment regimens.
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