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Abstract: The complement system constitutes a crucial part of the innate immunity, mediating
opsonization, lysis, inflammation, and elimination of potential pathogens. In general, there is an
increased activity of the complement system during pregnancy, which is essential for maintaining
the host’s defense and fetal survival. Unbalanced or excessive activation of the complement system
in the placenta is associated with pregnancy complications, such as miscarriage, preeclampsia,
and premature birth. Nonetheless, the actual clinical value of monitoring the activation of the
complement system during pregnancy remains to be investigated. Unfortunately, normal reference
values specifically for pregnant women are missing, and for umbilical cord blood (UCB), data on
complement protein levels are scarce. Herein, complement protein analyses (Clq, C3, C4, C3d
levels, and C3d/C3 ratio) were performed in plasma samples from 100 healthy, non-medicated and
non-smoking pregnant women, collected during different trimesters and at the time of delivery.
In addition, UCB was collected at all deliveries. Maternal plasma Cl1q and C3d/C3 ratio showed
the highest mean values during the first trimester, whereas C3, C4, and C3d had rising values
until delivery. We observed low levels of C1q and C4 as well as increased C3d and C3d/C3 ratio,
particularly during the first trimester, as a sign of complement activation in some women. However,
the reference limits of complement analyses applied for the general population appeared appropriate
for the majority of the samples. As expected, the mean complement concentrations in UCB were

much lower than in maternal plasma, due to the immature complement system in neonates.

Keywords: pregnancy; complement system; umbilical cord blood

1. Introduction

The highly conserved complement system has pivotal roles in innate immunity, e.g.,
by mediating opsonization, lysis, inflammation, and elimination of potential pathogens.
Furthermore, it provides a link between the innate and the adaptive immune system by
clearance of immune complexes and apoptotic cells [1]. In addition, the complement system
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is important in normal pregnancy and normal placentation for maternal host defense and
fetal survival. Several recent studies suggest that a delicate regulation of complement
activation is crucial for successful pregnancy [2,3]. During normal pregnancy, the mother’s
immune system undergoes certain adaptions, e.g., downregulation of polymorphic clas-
sical class I human leukocyte antigen (HLA) molecules (HLA-A and HLA-B) in invasive
trophoblasts [4,5], a shift from the T helper (Th) 1 to the Th2 phenotype [6], and expression
of uterine natural killer cells [7] at the maternal-fetal interface to protect the semiallogeneic
fetus and placenta [8].

The complement system is organized into three activation pathways: the classical path-
way (CP), the lectin pathway (LP), and the alternative pathway (AP). All pathways have
different recognition molecules and lead to increased formation of C3 and C5 convertases,
resulting in the cleavage of C3 and C5, respectively, and the release of the anaphylatoxins
C3a and C5a. Activation of C5 can further elicit assembly of the terminal pathway of the
complement cascade to generate the membrane attack complex. Clq is the first molecule of
the classical pathway of complement activation and is widely distributed in the human
decidual stroma [9,10]. Adequate Clq expression at the maternal-fetal interface appears
to be important in placental formation and pregnancy maintenance [9,11]. In both CP
and LP, the classical/lectin C3 convertase is produced via cleavage of C4, and the plasma
levels of consumed C4 reflect the potential activation of these two pathways. Apoptosis
and release of free deoxyribonucleic acid (DNA) occur during placental formation in early
pregnancy, which can trigger complement activation and complement system-mediated
clearance [2,3]. Three complement regulatory proteins expressed on syncytiotrophoblasts
can ensure the process of physiological placentation: decay-accelerating factor, membrane
co-factor protein, and protectin (CD59) [12,13].

In general, moderate activation of the complement system is crucial for maintaining
pregnancy, and any deviation from normal activation and regulation of the complement
system can result in adverse pregnancy outcomes (APO), such as recurrent miscarriage [14],
premature birth [15], and preeclampsia [16-18].

The complement components are synthesized from an early stage in the fetus with
a relative deficiency of most of the complement proteins in umbilical cord blood (UCB)
compared to levels in adults [19-22]. The first components to be detected are C3 and C4 at
weeks 5 and 8, respectively, of gestation, while factor B is present in the fetal circulation at
approximately the 10th gestational week (GW) [23,24]. Previous studies assume that all
the complement components can be detected at 18-20 weeks of gestation [23,25]. However,
more in-depth and recent investigations on the intrauterine development and function of
the complement system are scarce [22].

To our knowledge, normal ranges for complement proteins during pregnancy are not
known. Such intervals would facilitate an increased understanding of the complement
system during pregnancy, as well as the clinical assessment of pregnant women, to estimate
the risk of APO, e.g., in women with systemic lupus erythematosus (SLE) where the risks
of APO are increased [26]. Similarly, there is a knowledge gap regarding the complement
activation in UCB [22,27].

Most previous studies on the dysregulation of the complement system and APO had a
cross-sectional design. The present investigation is a longitudinal study that aims to establish
the normal plasma concentration ranges of complement components in healthy women during
different stages of normal pregnancy and in the UCB of healthy newborns. In addition, we
aimed to investigate potential correlations between the levels of the complement components
and some easily assessed variables, such as the mother’s age, parity, body mass index (BMI),
levels of serum albumin and cystatin C (cys C), as well as newborns birth weight.

2. Methods
2.1. Study Population

One hundred healthy, non-medicated and non-smoking women with 100 normal sin-
gleton pregnancies were recruited during the years 2015-2018, as previously described [28].
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EDTA plasma samples were made available from the pregnancy biobank (Graviditets-
biobanken, GraBB), founded at the Linkdping University Hospital in collaboration with
Linkdping University. Longitudinal clinical data and plasma samples were collected for
all the recruited females prospectively during the first (GW 8-11) and second (GW 12-25)
trimesters (T1 and T2), as well as at time of delivery (partus). Furthermore, all newborns’
UCB were available.

The women were aged 18-40 at the time of conception and their baseline BMI was
in the range of 18-25 kg/m?. All the pregnancies were term (duration ranging from
37-41 weeks) and without complications. Above 90% of the women were of Caucasian
origin. Only pregnancies resulting in non-instrumental vaginal delivery and neonates with
normal weight for gestational age were considered for the study. In addition, pregnancies
were selected by date of birth and evenly distributed over quarters of the year to minimize
the impact of seasonal variations. Selected characteristics of the participating women are
detailed in Table 1.

Table 1. Characteristics of the participating women 1 (n = 100) and their newborns.

Mean age, years (SD) 30.0 (3.8)
Caucasian ethnicity, 1 (%) 92 (92)
Mean body mass index at inclusion, kg/m? (SD) 22.0 (1.8)
Mean gestation duration in weeks + days (range) 40+1(37+4—41+4)
Multiparous, 1 (%) 39 (39)
Births in January—-March, n (%) 25 (25)
Births in April-June, n (%) 23 (23)
Births in July-September, 1 (%) 27 (27)
Births in October-December, 1 (%) 25 (25)
Mean birth weight, g (SD) 3572.2 (399.5)
Female newborns, 1 (%) 50 (50)
Routine Laboratory Analyses (mean (SD))

T1: P-albumin (g/L) 429 (4.3)
T2: P-albumin (g /L) 34.7 (3.6)
Partus: P-albumin (g/L) 34.1(4.5)
T1: P-cystatin C (mg/L) 0.74 (0.10)
T2: P-cystatin C (mg/L) 0.84 (0.11)
Partus: P-cystatin C (mg/L) 1.3 (0.28)
T1: eGFR (mL/min/1.73 m?) 116.8 (19.2)
T2: eGFR (mL/min/1.73 m?) 101.3 (17.3)
Partus: eGFR (mL/min/1.73 m?) 60.1 (13.8)

eGFR, estimated glomerular filtrations rate; P-, plasma; SD, standard deviation; T1, trimester 1; T2, trimester 2.
! The present study population was selected from a larger pregnancy cohort (GRABB) in order to include only
healthy females and normal singleton pregnancies [28].

2.2. Routine Laboratory Analyses

To rule out impaired renal function and/or hypoalbuminemia, cys C and albumin
were determined in all plasma samples from all subjects during pregnancy. Albumin and
cys C were analyzed at the unit for Clinical Chemistry at Linkoping University Hospital.
The estimated glomerular filtration rate (eGFR) based on cys C was also calculated [29].
These laboratory variables are reported in Table 1.
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2.3. Complement Analyses

The complement protein analysis was performed at the unit for Clinical Immunology
at Uppsala University Hospital. C1q was quantified by magnetic bead-based immunoassay,
which is an in-house assay performed using the Amine Coupling Kit (BIO-RAD) according
to the manufacturer’s instructions [30]. The concentrations of C3 and C4 were quantified
by nephelometry using an IMMAGE nephelometer (Beckman Coulter, Bromma, Sweden).
C3d was measured by nephelometry, after the removal of high molecular weight forms of
C3 by polyethylene glycol precipitation [31]. The normal reference limits applied in clinical
routine are: Clq = 70-300 mg/L; C3 =0.67-1.29 g/L,; C4 = 0.13-0.32 g/L, C3d < 5.3 g/L;
C3d/C3 ratio < 5.3.

2.4. Statistics

Statistical analyses were performed with SPSS statistics version 28 (IBM, Armonk, NY,
USA) or with GraphPad Prism version 9 (GraphPad Software, La Jolla, CA, USA). As data
were mainly normally distributed, the mean values of complement proteins were calculated,
and parametric statistical methods were applied. One-way ANOVA was used to detect any
significant differences between the groups. To assess the six different comparisons between
the different blood samplings (T1, T2, partus, and UCB), paired t-tests were performed.
The multiple comparisons between the time samples were Bonferroni-adjusted. p-values
< 0.05 were considered statistically significant. Correlation analyses between continuous
variables were performed with Pearson’s r test for parametric data, and the associations of
continuous variables and categorical variables were analyzed by the Mann-Whitney U test.

2.5. Ethical Approval

Oral and written informed consent was obtained from all study participants during
their first visit to the antenatal clinic, which allows biobank access to plasma samples as
described above, as well as present and future medical records for research purposes. This
information was given according to the Declaration of Helsinki. The study protocol was
approved by the Swedish Ethical Review Authority (Decision number 2010/296-31 and
2019-00424).

3. Results
3.1. Complement Protein Levels during Pregnancy

The current normal complement protein ranges used in clinical routine were compared
with the levels detected during pregnancy. Our results show that the mean values of Clq,
C3, C4, C3d, and C3d/C3 ratio are within the established normal limits, even with respect to
UCB (Table 2). However, during maturity of the pregnancies, complement factors changed.
For example, the 5th percentile of C1lq was clearly lower than the lower reference limit
at all three samplings (T1, T2, and partus). The same observation was made for C4 in
T1. In addition, the 95th percentile of both C3d and C3d/C3 ratio showed higher levels
than the cut-offs applied in clinical routine for all sampling occasions. All complement
proteins levels in UCB plasma were significantly lower than in maternal plasma whereas
the C3d/C3 ratio was higher (Table 2 and Figure 1A-E).

Table 2. Complement protein levels in maternal plasma and umbilical cord blood.

Complement Sampling Mean SD  Min  Max Percentiles
Occassion st 3rd 5th 95th  97th  99th
T1 846 223 478 2058 478 503 521 1122 1228  205.1
Clq (mg/L) T2 698 155 341 1139 341 398 458 957 1039 1139
Ref. 70-300 Partus 815 197 380 1349 380 445 469 1218 1239 1348

UucCB 58.2 16.4 19.9 112.4 19.9 34.2 36.7 85.4 102.3 112.4
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Table 2. Cont.
. Percentiles
Complement Samph'ng Mean SD Min Max
Occassion 1st 3rd 5th 95th 97th 99th
T1 0.95 0.17 0.43 1.3 0.43 0.65 0.67 1.2 1.2 1.3
C3 (g/L) T2 1.1 0.16 0.47 1.6 0.47 0.81 0.82 1.3 1.4 1.6
Ref. 0.67-1.29 Partus 1.2 0.21 0.57 1.9 057 069 079 15 1.6 1.9
UCB 0.74 0.15 0.49 1.2 0.49 0.52 0.54 1.0 1.1 1.2
T1 0.19 0.05 0.08 0.4 0.08 0.10 0.11 0.29 0.30 0.36
C4(g/L) T2 0.19 0.05 0.09 0.4 0.09 0.11 0.13 0.30 0.33 0.35
Ref. 0.13-0.32 Partus 028  0.09 006 0.6 0.06  0.11 013 041 049 055
UCB 0.13 0.04 0.05 0.3 0.05 0.08 0.09 0.20 0.21 0.31
T1 44 0.98 1.6 6.5 1.6 2.3 2.6 6.0 6.1 6.5
C3d (g/L) T2 44 1.0 25 7.7 25 2.8 29 6.1 6.4 7.7
Ref. <5.3 Partus 49 1.9 22 20.1 2.2 2.8 29 7.6 8.1 20.1
UCB 44 2.6 0.01 24.0 0.02 1.2 1.7 8.2 8.4 23.9
T1 4.7 1.2 1.4 8.9 1.4 24 3.0 6.7 7.4 89
C3d/C3 ratio T2 43 12 24 10.4 24 2.8 29 6.2 6.7 10.4
Ref. <5.3 Partus 4.1 1.7 1.9 17.2 1.9 2.6 2.7 6.6 7.8 17.2
UCB 6.0 3.5 0.01 32.1 0.03 1.8 2.6 99 14.0 32.0
C3, complement protein 3; C4, complement protein 4; Ref., reference limits; SD, standard deviation; T1, trimester
1; T2, trimester 2; UCB, umbilical cord blood.
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Figure 1. (A-E) Complement protein levels in maternal plasma during different stages of pregnancy

and in umbilical cord blood (UCB). Dotted lines indicate reference limits used in clinical routine.

Boxes show the 25th to 75th percentile, with median values marked inside. The provided p values are

Bonferroni-adjusted.
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3.2. Associations between Complement Proteins and Evaluated Variables

Clq at T1 showed significant association with parity, as the detected levels were
significantly lower in primipara than in multipara (mean Clq primipara 45.1 vs. 59.0 mg/L;
p = 0.02). Albumin inversely correlated with C3 and C4 during every studied trimester,
and with C3d/C3 ratio in T1. Throughout the pregnancies, albumin levels showed inverse
correlations with C3 (p < 0.0001), C4 (p < 0.0001), C3d/C3 ratio (p < 0.0001), and Clq
(p = 0.02), as demonstrated in Figure 2A-E. As shown in Table 3, BMI measured during the
three pregnancy periods was significantly correlated with C3 (p = 0.04) and C4 (p = 0.03) at
T2, and with C3d at T1 (p = 0.05). The birth weight of the newborns showed a significant
correlation with C3 in UCB (p = 0.03) and with C3d at T2 (p = 0.05).
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Figure 2. (A-E) Correlations of plasma albumin levels and different complement levels throughout
the pregnancies. Correlation coefficients and significance levels are given both for merged data and
for all sampling occasions.
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Table 3. Associations between complement protein levels and studied variables.

Comp-Lement Sampl.ing Body Mass Index (Mothers’) P-Cystatin C Mothers’ New!:orns’ Parity
Occasion T1 T2 Partus  TI T2 Partus Age Weight

T1 n.s. n.t. n.t. n.s. n.t. n.t. n.s. n.s. p =0.02
Clq T2 n.t. n.s. n.t. n.t. n.s. n.t. n.s. n.s. n.s.
(mg/L) Partus n.t. n.t. n.s. n.t. n.t. n.s. n.s. n.s. n.s.
UcCB n.t. n.t. n.t. n.t. n.t. n.t. n.t. ns. ns.
T1 n.s. n.t. n.t. ns. n.t. n.t. ns. ns. ns.
C3 12 n.t. ;z%%)i, n.t. n.t. n.s. n.t. ns. n.s. n.s.
(8/L) Partus n.t. n.t. n.s. n.t. n.t. n.s. n.s. n.s. n.s.
UucB n.t. n.t. n.t. n.t. n.t. n.t. n.t. ;;::%%)é’ n.s.
T1 n.s. n.t. n.t. ns. n.t. n.t. ns. n.s. ns.
C4 T2 n.t. r=023 n.t. n.t. ns. n.t. r=—024; ns. ns.

(/L) p=0.03 p =0.02

Partus n.t. n.t. ns. n.t. n.t. n.s. ns. ns. ns.
Uucs n.t. n.t. n.t. n.t. n.t. n.t. n.t. ns. n.s.
T1 :;==(()]%]42, n.t. n.t. n.s. n.t. n.t. n.s. n.s. n.s.
((gj;’g) T2 n.t. n.s. n.t. n.t. n.s. n.t. n.s. ;;::%%)% n.s.
Partus n.t. n.t. n.s. n.t. n.t. n.s. n.s. n.s. n.s.
UucsB n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.s. n.s.
T1 n.s. n.t. n.t. n.s. n.t. n.t. n.s. n.s. n.s.
C3d/C3 ratio 12 n.t. n.s. n.t. n.t. n.s. n.t. n.s. n.s. n.s.
Partus n.t. n.t. n.s. n.t. n.t. n.s. n.s. n.s. n.s.
UCB n.t. n.t. n.t. n.t. n.t. n.t. n.t. ns. ns.

BMI, body mass index; C3, complement protein 3; C4, complement protein 4; n.s., not significant; n.t., not tested;
T1, trimester 1; T2, trimester 2; UCB, umbilical cord blood

No significant correlations were found between complement levels and cys C and du-
ration of pregnancy (weeks). Neither did we observe any association between complement
and the newborn’s sex (Table 3).

4. Discussion

The complement proteins investigated herein are quantified in daily clinical routine,
e.g., to detect complement deficiencies and complement activation after the formation of
immune complexes, as seen in systemic inflammatory diseases, such as SLE and antiphos-
pholipid syndrome [32-34]. The regulation of complement activation is a delicate balance
between activation and inhibition that is necessary for a normal pregnancy, while unreg-
ulated complement activation has a role in the development of pregnancy complications
such as miscarriage, preeclampsia, and preterm births [14-16].

In this study, we observed that the levels of complement proteins changed significantly
during the different stages of pregnancy, but still mainly remained within the normal
reference range used in clinical routine. However, as a sign of activation of the CP, decreased
levels of Clq (all trimesters), C4 (T1), and increased C3d and C3d/C3 ratio (all trimesters)
were observed in approximately 5% of the women. Variation of circulating complement
protein levels during the trimesters of normal successful pregnancies probably reflects the
delicate regulation of the complement system. A recent study made similar observations
and concluded that the pregnancy itself may affect complement protein levels [35].
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There is a lack of knowledge regarding the levels of complement proteins in UCB and
only a few prior studies have investigated this matter in detail [19,27]. Consistent with the
results from Johnson et al. [27], we found significantly lower levels of complement proteins
in UCB than in the corresponding maternal plasma, due to the low production of these
proteins related to immaturity of the complement system in neonates [22], which poses a
considerable risk for severe infections [7,36,37].

Plasma albumin correlated repeatedly and significantly in all periods of pregnancy
with both C3 and C4 levels and with C3d/C3 ratio in T1. In addition, albumin levels were
slightly below the normal limit during T1 and T2. It is well established that plasma albumin
is a known negative acute phase reactant that decreases during infectious and inflammatory
conditions [38]. The pregnancy itself normally causes low-grade inflammation, generally
represented by elevated levels of C-reactive protein (CRP) in normal and uncomplicated
pregnancies [39-41]. A recent investigation, performed by our research group on the same
study population, found an inverse correlation between plasma albumin and CRP, and CRP
levels seemed to be above the normal range limits used for non-pregnant women [28]. In
this context, it is worth mentioning that CRP has the potential to activate the CP [42]. How-
ever, the positive correlations between plasma albumin and some levels of the complement
proteins support a possible association between low-grade inflammation and complement
activation during normal pregnancies.

Cys C in plasma was analyzed herein since it can be used for close supervision and
early diagnosis of renal impairment in pregnant women—with better reliability than plasma
creatinine according to previous studies [43,44]. Cys C levels in our study population were
within the normal limits during T1 and T2 with a slight increase in partus samplings as
shown in Table 1. Consequently, the eGFR calculated from cys C showed values within
reference limits in T1 and T2, while the mean value of eGFR in partus samplings was
below normal limits (éGFR >90 mL/min/1.73 m?). As previously mentioned, cys C levels
were not found to be decreased in term pregnancy, though GFR of low molecular mass
substances is known to increase by at least 40% during pregnancy in general [44]. This is
in line with a known decrease in GFR even in normal and healthy term pregnancy, which
is associated with glomerular endothelial swelling (endotheliosis) [45,46]. Thus, despite
cys C changes during studied pregnancies here, it had not correlated with the complement
proteins levels in all studied pregnancy periods.

The mothers’ BMI was within the normal limits (18-25 kg/m?) at the time of concep-
tion. BMI was measured at different stages of pregnancy, and it correlated with C3, C4, and
C3d during some of the pregnancy periods (Table 3). A positive correlation was also ob-
served between the weight of the offspring and C3 in UCB as well as with C3d in maternal
plasma during T2. The relation between body weight or weight changes and levels of AP
components of the complement system has previously been highlighted, possibly due to
the production of pro-inflammatory factors in adipose tissue or at other sites [47].

The main limitation of this study is the relatively small number of included subjects.
The homogeneity of the study population, which was mainly of Caucasian origin, also limits
the possibility of generalization of our results to other ethnicities. The longitudinal design
of the study, with measurement of complement factors in different stages of pregnancy in a
well-characterized study population, represents a major strength of our investigation.

5. Conclusions

With the exceptions described above, we conclude that the reference ranges of com-
plement factors used in clinical practice are principally reliable and broad enough to
encompass the variations seen in women during normal pregnancy and in newborns after
normal gestation and uncomplicated deliveries. Nonetheless, the significant differences
observed in levels of complement proteins over time may suggest the implementation of
more stringent ranges during different phases of gestation. Our findings have implications,
particularly in clinical settings where monitoring of the complement system may be cru-
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cial to avoid APO. As expected, complement levels were generally lower in UCB than in
maternal plasma due to the still immature neonatal immune system.
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