Assessment of Smell and Taste Disturbances among COVID-19 Convalescent Patients: A Cross-Sectional Study in Armenia
Abstract
:1. Introduction
2. Methodology
2.1. Study Design
2.1.1. Assessment of Smell Sensation through Sensitivity Tests of Olfactory and Trigeminal Nerves
2.1.2. Assessment of the Ability to Differentiate Various Odors
2.1.3. Assessment of the Level of Taste Perception and Differentiation
2.2. Study Population
- Age ≥ 18 years and ≤65 years
- Armenian nationality
- Subjective presence of smell and/or taste disturbances upon presentation
- Positive SARS-CoV-2 PCR test at the time of COVID-19 diagnosis
- Anti-SARS-CoV-2 antibodies < 1 cutoff index
- Smell and/or taste disturbances present before COVID-19 diagnosis due to other causes such as recent rhinoplasty, traumas etc.
- Presence of comorbidities such as active allergies, acute rhinitis, neurodegenerative disorders etc.
2.3. Sample Size Calculation
2.4. Sampling Strategy
2.5. Study Instrument
- Demographic and symptomatic information of the participant
- 2.
- A sensitivity test to assess the sensation of smell as triggered by olfactory and trigeminal nerves
- 3.
- Differentiation tests to assess the ability to differentiate various odors.
- 4.
- Taste test to assess the level of taste perception and differentiation.
2.6. Study Variables
2.7. Statistical Analysis
3. Ethical Considerations
4. Results
4.1. Descriptive Analysis
4.2. Smell Sensitivity and Smell Differentiation Tests of Olfactory and Trigeminal Nerves
4.3. Gustatory Tests for Sweet, Salty, Sour, and Bitter Tastes
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Scores and Percentage Values of the Healthy Pretested Population
References
- Rocha-Filho, P.A.S.; Albuquerque, P.M.; Carvalho, L.C.L.S.; Gama, M.D.P.; Magalhães, J.E. Headache, anosmia, ageusia and other neurological symptoms in COVID-19: A cross-sectional study. J. Headache Pain 2022, 23, 2. [Google Scholar] [CrossRef] [PubMed]
- Malik, P.; Patel, K.; Pinto, C.; Jaiswal, R.; Tirupathi, R.; Pillai, S.; Patel, U. Post-acute COVID-19 syndrome (PCS) and health-related quality of life (HRQoL)—A systematic review and meta-analysis. J. Med. Virol. 2022, 94, 253–262. [Google Scholar] [CrossRef]
- Chigr, F.; Merzouki, M.; Najimi, M. Autonomic Brain Centers and Pathophysiology of COVID-19. ACS Chem. Neurosci. 2020, 11, 1520–1522. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.K.; Sayad, R.; Mahmoud, I.A.; El-Monem, A.M.A.; Badry, S.H.; Ibrahim, I.H.; Hafez, M.H.; El-Mokhtar, M.A.; Sayed, I.M. “Anosmia” the mysterious collateral damage of COVID-19. J. NeuroVirol. 2022, 1, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Mao, Y.; Ye, B.; Fan, C.; Wu, J.; Wang, B.; Shen, Y.; Shi, Z.; Xiang, M. Correlation between Coronavirus Disease 2019 and Olfactory Dysfunction. Front. Public Health 2022, 10, 539. [Google Scholar] [CrossRef]
- Lee, S.-H.; Yeoh, Z.X.; Sachlin, I.S.; Gazali, N.; Soelar, S.A.; Foo, C.Y.; Low, L.L.; Alwi, S.B.S.; Kamalden, T.M.I.T.; Shanmuganathan, J.; et al. Self-reported symptom study of COVID-19 chemosensory dysfunction in Malaysia. Sci. Rep. 2022, 12, 2111. [Google Scholar] [CrossRef] [PubMed]
- Arons, M.M.; Hatfield, K.M.; Reddy, S.C.; Kimball, A.; James, A.; Jacobs, J.R.; Taylor, J.; Spicer, K.; Bardossy, A.C.; Oakley, L.P.; et al. Presymptomatic SARS-CoV-2 Infections and Transmission in a Skilled Nursing Facility. N. Engl. J. Med. 2020, 382, 2081–2090. [Google Scholar] [CrossRef] [PubMed]
- Melley, E.L.; Bress, E.; Polan, E. Hypogeusia as the initial presenting symptom of COVID-19. BMJ Case Rep. 2020, 13, e236080. [Google Scholar] [CrossRef]
- Liang, Y.; Xu, J.; Chu, M.; Mai, J.; Lai, N.; Tang, W.; Yang, T.; Zhang, S.; Guan, C.; Zhong, F.; et al. Neurosensory dysfunction: A diagnostic marker of early COVID-19. Int. J. Infect. Dis. 2020, 98, 347–352. [Google Scholar] [CrossRef]
- Spudich, S.; Nath, A. Nervous system consequences of COVID-19. Science 2022, 375, 6578. [Google Scholar] [CrossRef]
- Finsterer, J.; Stollberger, C. Causes of hypogeusia/hyposmia in SARS-CoV2 infected patients. J. Med. Virol. 2020, 92, 1793–1794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pavlidis, P.; Cámara, R.J.A.; Kekes, G.; Gouveris, H. Bilateral taste disorders in patients with Ramsay Hunt syndrome and Bell palsy. Ann. Neurol. 2018, 83, 807–815. [Google Scholar] [CrossRef]
- Henkin, R.I. Drug-Induced Taste and Smell Disorders. Drug-Safety 1994, 11, 318–377. [Google Scholar] [CrossRef]
- Matschke, J.; Lütgehetmann, M.; Hagel, C.; Sperhake, J.P.; Schröder, A.S.; Edler, C.; Mushumba, H.; Fitzek, A.; Allweiss, L.; Dandri, M.; et al. Neuropathology of patients with COVID-19 in Germany: A post-mortem case series. Lancet Neurol. 2020, 19, 919–929. [Google Scholar] [CrossRef]
- Azizi, S.A.; Azizi, S.-A. Neurological injuries in COVID-19 patients: Direct viral invasion or a bystander injury after infection of epithelial/endothelial cells. J. NeuroVirol. 2020, 26, 631–641. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Zheng, M.; Tang, X.; Chen, Y.; Tong, A.; Zhou, L. Potential of SARS-CoV-2 to Cause CNS Infection: Biologic Fundamental and Clinical Experience. Front. Neurol. 2020, 11, 659. [Google Scholar] [CrossRef]
- Sungnak, W.; Huang, N.; Becavin, C.; Berg, M.; Queen, R.; Litvinukova, M.; Talavera-Lopez, C.; Maatz, H.; Reichart, D.; Sampaziotis, F.; et al. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat. Med. 2020, 26, 681–687. [Google Scholar] [CrossRef] [Green Version]
- Jafari, M.; Seyed Ahadi MSahraian, M.S. What is the Mystery Behind Anosmia and Ageusia in COVID-19? Am. J. Otolaryngol. Head Neck Surg. 2020, 3, 1098. [Google Scholar]
- Li, Y.; Li, H.; Fan, R.; Wen, B.; Zhang, J.; Cao, X.; Wang, C.; Song, Z.; Li, S.; Li, X.; et al. Coronavirus Infections in the Central Nervous System and Respiratory Tract Show Distinct Features in Hospitalized Children. Intervirology 2016, 59, 163–169. [Google Scholar] [CrossRef] [PubMed]
- Metlay, J.P.; Waterer, G.W.; Long, A.C.; Anzueto, A.; Brozek, J.; Crothers, K.; Cooley, L.A.; Dean, N.C.; Fine, M.J.; Flanders, S.A.; et al. Diagnosis and Treatment of Adults with Community-Acquired Pneumonia. An Official Clinical Practice Guideline of the American Thoracic Society and Infectious Diseases Society of America. Am. J. Respir. Crit. Care Med. 2019, 200, e45–e67. [Google Scholar] [CrossRef]
- Mao, L.; Wang, M.; Chen, S.; He, Q.; Chang, J.; Hong, Y.; Wang, D.; Li, Y.; Jin, H.; Hu, B. Neurological Manifestations of Hospitalized Patients with COVID-19 in Wuhan, China: A retrospective case series study. medExiv 2020. [Google Scholar] [CrossRef]
- Wilson, R.I. Neural and behavioral mechanisms of olfactory perception. Curr. Opin. Neurobiol. 2008, 18, 408–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clinical Management of COVID-19: Interim Guidance. 27 May 2020. Available online: https://apps.who.int/iris/handle/10665/332196 (accessed on 24 April 2022).
- Meinhardt, J.; Radke, J.; Dittmayer, C.; Franz, J.; Thomas, C.; Mothes, R.; Laue, M.; Schneider, J.; Brünink, S.; Greuel, S.; et al. Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous system entry in individuals with COVID-19. Nat. Neurosci. 2021, 24, 168–175. [Google Scholar] [CrossRef]
- Kaye, R.; Chang, C.W.D.; Kazahaya, K.; Brereton, J.; Denneny, I.J.C. COVID-19 Anosmia Reporting Tool: Initial Findings. Otolaryngol. Head Neck Surg. 2020, 163, 132–134. [Google Scholar] [CrossRef]
- Hintschich, C.A.; Fischer, R.; Hummel, T.; Wenzel, J.J.; Bohr, C.; Vielsmeier, V. Persisting olfactory dysfunction in post-COVID-19 is associated with gustatory impairment: Results from chemosensitive testing eight months after the acute infection. PLoS ONE 2022, 17, e0265686. [Google Scholar] [CrossRef]
- Allis, T.J.; Leopold, D.A. Smell and Taste Disorders. Facial Plast. Surg. Clin. North Am. 2012, 20, 93–111. [Google Scholar] [CrossRef]
- Flint, P.; Haughey, B.; Lund, V.; Robbins, K.J.; Thomas, R.; Lesperance, M.; Francis, H.W. Cummings Otolaryngology, 7th ed.; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Doty, R.L. Intranasal trigeminal detection of chemical vapors by humans. Physiol. Behav. 1975, 14, 855–859. [Google Scholar] [CrossRef]
- Ye, Q.; Wang, B.; Mao, J. The pathogenesis and treatment of the ‘Cytokine Storm’ in COVID-19. J. Infect. 2020, 80, 607–613. [Google Scholar] [CrossRef]
- Kajiya, K.; Inaki, K.; Tanaka, M.; Haga, T.; Kataoka, H.; Touhara, K. Molecular Bases of Odor Discrimination: Reconstitution of Olfactory Receptors that Recognize Overlapping Sets of Odorants. J. Neurosci. 2001, 21, 6018–6025. [Google Scholar] [CrossRef]
- Xu, H.; Blair, N.T.; Clapham, D.E. Camphor Activates and Strongly Desensitizes the Transient Receptor Potential Vanilloid Subtype 1 Channel in a Vanilloid-Independent Mechanism. J. Neurosci. 2005, 25, 8924–8937. [Google Scholar] [CrossRef] [Green Version]
- Roper, S.D. TRPs in Taste and Chemesthesis. In Mammalian Transient Receptor Potential (TRP) Cation Channels; Springer: Berlin, Germany, 2014; Volume 223, pp. 827–871. [Google Scholar] [CrossRef] [Green Version]
- Wise, P.M.; Wysocki, C.J.; Lundström, J. Stimulus Selection for Intranasal Sensory Isolation: Eugenol Is an Irritant. Chem. Senses 2012, 37, 509–514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doty, R.L.; Shaman, P.; Kimmelman, C.P.; Dann, M.S. University of pennsylvania smell identification test: A rapid quantitative olfactory function test for the clinic. Laryngoscope 1984, 94, 176–178. [Google Scholar] [CrossRef]
- Kim, J.-S.; Kim, D.-H.; Jeon, E.-J.; Kim, B.G.; Yu, J.; Shin, H.-I. Taste test using an edible taste film kit: A randomised controlled trial. BMJ Open 2019, 9, e029077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melis, M.; Barbarossa, I.T. Taste Perception of Sweet, Sour, Salty, Bitter, and Umami and Changes Due to l-Arginine Supplementation, as a Function of Genetic Ability to Taste 6-n-Propylthiouracil. Nutrients 2017, 9, 541. [Google Scholar] [CrossRef] [Green Version]
- Lafreniere, D.; Mann, N. Anosmia: Loss of Smell in the Elderly. Otolaryngol. Clin. North Am. 2009, 42, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Wolff, F.; Dahma, H.; Duterme, C.; Wijngaert, S.V.D.; Vandenberg, O.; Cotton, F.; Montesinos, I. Monitoring antibody response following SARS-CoV-2 infection: Diagnostic efficiency of 4 automated immunoassays. Diagn. Microbiol. Infect. Dis. 2020, 98, 115140. [Google Scholar] [CrossRef] [PubMed]
- Higgins, R.L.; Rawlings, S.A.; Case, J.; Lee, F.Y.; Chan, C.W.; Barrick, B.; Burger, Z.C.; Yeo, K.-T.J.; Marrinucci, D. Longitudinal SARS-CoV-2 antibody study using the Easy Check COVID-19 IgM/IgG™ lateral flow assay. PLoS ONE 2021, 16, e0247797. [Google Scholar] [CrossRef]
- Husain, S.; Hamid, I.A.; Zahedi, F.D.; Hamizan, A.K.W. Malaysian Version of the Sniffin’ Sticks Identification Smell Test: Cutoff Points of Hyposmia. ORL 2022. [Google Scholar] [CrossRef]
- Malaty, J.; Malaty, I.A.C. Smell and Taste Disorders in Primary Care. Am. Fam. Physician 2013, 88, 852–859. [Google Scholar]
- The Chi Squared Tests. Available online: https://www.bmj.com/about-bmj/resources-readers/publications/statistics-square-one/8-chi-squared-tests (accessed on 1 February 2022).
- Lechien, J.R.; Chiesa-Estomba, C.M.; De Siati, D.R.; Horoi, M.; Le Bon, S.D.; Rodriguez, A.; Dequanter, D.; Blecic, S.; El Afia, F.; Distinguin, L.; et al. Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): A multicenter European study. Eur. Arch. Oto-Rhino-Laryngol. 2020, 277, 2251–2261. [Google Scholar] [CrossRef]
- Fortunato, F.; Martinelli, D.; Iannelli, G.; Milazzo, M.; Farina, U.; Di Matteo, G.; De Nittis, R.; Ascatigno, L.; Cassano, M.; Lopalco, P.L.; et al. Self-reported olfactory and gustatory dysfunctions in COVID-19 patients: A 1-year follow-up study in Foggia district, Italy. BMC Infect. Dis. 2022, 22, 77. [Google Scholar] [CrossRef]
- Schwob, J.E. Neural regeneration and the peripheral olfactory system. Anat. Rec. 2002, 269, 33–49. [Google Scholar] [CrossRef]
- Iwema, C.L.; Fang, H.; Kurtz, D.B.; Youngentob, S.L.; Schwob, J.E. Odorant Receptor Expression Patterns Are Restored in Lesion-Recovered Rat Olfactory Epithelium. J. Neurosci. 2004, 24, 356–369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caronna, E.; Pozo-Rosich, P. Headache as a Symptom of COVID-19: Narrative Review of 1-Year Research. Curr. Pain Headache Rep. 2021, 25, 73. [Google Scholar] [CrossRef] [PubMed]
- Otte, M.S.; Bork, M.-L.; Zimmermann, P.H.; Klussmann, J.P.; Lüers, J.-C. Patients with COVID-19-associated olfactory impairment also show impaired trigeminal function. Auris Nasus Larynx 2021, 49, 147–151. [Google Scholar] [CrossRef]
- COVID-19 Anosmia Reporting Tool—American Academy of Otolaryngology-Head and Neck Surgery (AAO-HNS). Available online: https://www.entnet.org/covid-19-anosmia-reporting-tool/ (accessed on 28 January 2022).
- Agyeman, A.A.; Chin, K.L.; Landersdorfer, C.B.; Liew, D.; Ofori-Asenso, R. Smell and Taste Dysfunction in Patients with COVID-19: A Systematic Review and Meta-analysis. Mayo Clin. Proc. 2020, 95, 1621–1631. [Google Scholar] [CrossRef]
- Kattar, N.; Do, T.M.; Unis, G.D.; Migneron, M.R.; Thomas, A.J.; McCoul, E.D. Olfactory Training for Postviral Olfactory Dysfunction: Systematic Review and Meta-analysis. Otolaryngol.-Head Neck Surg. 2021, 164, 244–254. [Google Scholar] [CrossRef]
- Addison, A.B.; Wong, B.; Ahmed, T.; Macchi, A.; Konstantinidis, I.; Huart, C.; Frasnelli, J.; Fjaeldstad, A.W.; Ramakrishnan, V.R.; Rombaux, P.; et al. Clinical Olfactory Working Group consensus statement on the treatment of postinfectious olfactory dysfunction. J. Allergy Clin. Immunol. 2021, 147, 1704–1719. [Google Scholar] [CrossRef]
- Ogawa, T.; Nakamura, K.; Yamamoto, S.; Tojima, I.; Shimizu, T. Recovery Over Time and Prognostic Factors in Treated Patients with Post-Infectious Olfactory Dysfunction: A Retrospective Study. Ann. Otol. Rhinol. Laryngol. 2020, 129, 977–982. [Google Scholar] [CrossRef]
- Vasconcelos, C.C.F.; Hammerle, M.B.; Sales, D.S.; Lopes, F.C.R.; Pinheiro, P.G.; Gouvea, E.G.; Alves, M.C.D.F.; Pereira, T.V.; Schmidt, S.L.; Alvarenga, R.M.P.; et al. Post-COVID-19 olfactory dysfunction: Carbamazepine as a treatment option in a series of cases. J. NeuroVirol. 2022, 1, 1–7. [Google Scholar] [CrossRef] [PubMed]
Concentrated | Intermediate | Dilute | |
---|---|---|---|
Saccharose | 15 g/% | 8.25 g/% | 1.5 g/% |
Sodium chloride | 6 g/% | 3.6 g/% | 1.2 g/% |
Citric acid | 4 g/% | 2.2 g/% | 0.4 g/% |
Caffeine benzoate | 5 g/% | 3.7 g/% | 2.5 g/% |
Descriptive Characteristics | Total Participants (n = 202) | Descriptive Characteristics | Total Participants (n = 202) |
---|---|---|---|
Age in years | Trigeminal nerve smell status, n (%) | ||
Mean (SD) | 37.04 (11.82) | Anosmia | 6 (02.97) |
Min–max | 18–65 | Severe hyposmia | 55 (27.23) |
Height in cms | Moderate hyposmia | 56 (27.72) | |
Mean (SD) | 165.78 (07.27) | Mild hyposmia | 27 (13.37) |
Min–max | 150–190 | Normosmia | 58 (28.71) |
Weight in kgs | Sweet taste status, n (%) | ||
Mean (SD) | 68.22 (15.47) | Ageusia/Severe hypogeusia | 3 (01.49) |
Min–max | 41–134 | Moderate hypogeusia | 8 (03.96) |
BMI | Mild hypogeusia | 90 (44.55) | |
Mean (SD) | 24.75 (5.11) | Normogeusia | 101 (50.00) |
Min–max | 16.13–50.43 | Salty taste status, n (%) | |
Sex, n (%) | Ageusia/Severe hypogeusia | 6 (02.97) | |
Male | 51 (25.25) | Moderate hypogeusia | 12 (05.94) |
Female | 151 (74.75) | Mild hypogeusia | 32 (15.84) |
Olfactory nerve smell status, n (%) | Normogeusia | 152 (75.25) | |
Anosmia | 5 (02.48) | Sour taste status, n (%) | |
Severe hyposmia | 11 (05.45) | Ageusia/Severe hypogeusia | 2 (00.99) |
Moderate hyposmia | 12 (05.94) | Moderate hypogeusia | 6 (02.97) |
Mild hyposmia | 34 (16.83) | Mild hypogeusia | 33 (16.34) |
Normosmia | 140 (69.31) | Normogeusia | 161 (79.70) |
Date difference (Visit—Onset of symptoms) | Bitter taste status, n (%) | ||
Early (<130 days), n (%) | 100 (49.50) | Ageusia/Severe hypogeusia | 27 (13.37) |
Late (>130 days), n (%) | 102 (50.50) | Moderate hypogeusia | 21 (10.40) |
Severity of disease, n (%) | Mild hypogeusia | 43 (21.29) | |
Mild | 182 (90.1) | Normogeusia | 111 (54.95) |
Moderate | 11 (5.4) | ||
Severe | 9 (4.5) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Melkumyan, K.; Shingala, D.; Simonyan, S.; Torossian, H.; Mkrtumyan, K.; Dilbaryan, K.; Davtyan, G.; Vardumyan, E.; Yenkoyan, K. Assessment of Smell and Taste Disturbances among COVID-19 Convalescent Patients: A Cross-Sectional Study in Armenia. J. Clin. Med. 2022, 11, 3313. https://doi.org/10.3390/jcm11123313
Melkumyan K, Shingala D, Simonyan S, Torossian H, Mkrtumyan K, Dilbaryan K, Davtyan G, Vardumyan E, Yenkoyan K. Assessment of Smell and Taste Disturbances among COVID-19 Convalescent Patients: A Cross-Sectional Study in Armenia. Journal of Clinical Medicine. 2022; 11(12):3313. https://doi.org/10.3390/jcm11123313
Chicago/Turabian StyleMelkumyan, Karine, Darshan Shingala, Syuzanna Simonyan, Hrag Torossian, Karen Mkrtumyan, Karen Dilbaryan, Garri Davtyan, Erik Vardumyan, and Konstantin Yenkoyan. 2022. "Assessment of Smell and Taste Disturbances among COVID-19 Convalescent Patients: A Cross-Sectional Study in Armenia" Journal of Clinical Medicine 11, no. 12: 3313. https://doi.org/10.3390/jcm11123313