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Abstract: Automatic and accurate estimation of choroidal thickness plays a very important role in a 
computer-aided system for eye diseases. One of the most common methods for automatic estima-
tion of choroidal thickness is segmentation-based methods, in which the boundaries of the choroid 
are first detected from optical coherence tomography (OCT) images. The choroidal thickness is then 
computed based on the detected boundaries. A shortcoming in the segmentation-based methods is 
that the estimating precision greatly depends on the segmentation results. To avoid the dependence 
on the segmentation step, in this paper, we propose a direct method based on convolutional neural 
networks (CNNs) for estimating choroidal thickness without segmentation. Concretely, a B-scan 
image is first cropped into several patches. A trained CNN model is then used to estimate the cho-
roidal thickness for each patch. The mean thickness of the choroid in the B-scan is obtained by taking 
the average of the choroidal thickness on each patch. Then, 150 OCT volumes are collected to eval-
uate the proposed method. The experiments show that the results obtained by the proposed method 
are very competitive with those obtained by segmentation-based methods, which indicates that di-
rect estimation of choroidal thickness is very promising.  

Keywords: choroidal thickness; optical coherence tomography; direct estimation; convolutional 
neural networks 
 

1. Introduction 
The choroid, the posterior segment of the uveal tract, is a layer of blood vessels and 

connective tissue between the retina and sclera. It plays an important role in many phys-
iologic processes, including nourishing the retina and prelaminar optic nerve, acting as a 
light absorber, and working as a heat sink [1,2]. The choroidal thickness changes with the 
development of the eyes and can be employed to assist in the diagnosis of retinal and 
choroidal disorders. Some diseases, such as central serous chorioretinopathy and Vogt–
Koyanagi–Harada diseases, are related to an anomalous thick choroid. Some others, such 
as myopic maculopathy, are correlated with an abnormally thin choroid [3].  

Precise visualization of the choroid can be achieved with an optical coherence tomog-
raphy (OCT) machine with technologies that can increase penetration and decrease the 
backscatter of the retinal pigment epithelium, such as enhanced depth imaging OCT and 
swept-source OCT [4,5]. To measure the choroidal thickness accurately, once the OCT 
images are obtained, a trained doctor is generally required to delineate the boundaries of 
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the choroid. However, manually delineating the boundaries of the choroid is an exhaust-
ing task. 

To relieve the burden on the doctors, many automatic methods for estimating cho-
roidal thickness have been developed, among which segmentation-based methods are the 
most common at present. In the segmentation-based methods, the boundaries of the cho-
roid are first detected. The thickness is then computed based on the detected boundaries. 
In the process, designing choroidal segmentation methods is the key step. Before the re-
vival of deep learning [6], especially deep convolutional neural networks [7], graph-
cut/search-based methods [8] were popular for the segmentation of choroids. Hu et al. [9] 
employed a graph-based, multistage segmentation approach to identify the boundaries of 
the choroid. Tian et al. [10] presented an algorithm that could segment the choroid auto-
matically based on graph search methods. Chen et al. [11] proposed an improved 2D 
graph-search method with curve smooth constraints to obtain the choroidal segmentation. 
Danesh et al. [12] designed a multiresolution, texture-based model with graph cuts for 
segmentation of choroidal boundaries. 

With the development of deep learning, designing methods for choroidal segmenta-
tion based on deep neural networks, including fully convolutional networks [13], SegNet 
[14], and U-Net [15], has become mainstream. Mao et al. [16] designed a skip connection 
attention module and integrated it into the U-Net architecture to segment choroidal 
boundaries. Zhang et al. [17] proposed a biomarker-infused global-to-local network for 
choroidal segmentation. Cheng et al. [18] designed a refinement residual block and a chan-
nel attention block to improve the ability of U-Net on segmentation of choroid. Kugelman 
et al. [19] presented a variety of patch-based and fully convolutional deep learning meth-
ods to accurately determine the location of the choroidal boundaries. Moreover, some re-
searchers have also tried to combine the deep learning techniques and graph cut/search 
for segmentation of choroid. For example, Sui et al. [20] presented a multiscale and end-
to-end convolutional network architecture to learn an optimal graph-edge weight for de-
tecting choroidal boundaries. 

Notably, the choroidal thickness can only be computed after choroidal segmentation 
in segmentation-based methods. In the process of choroidal segmentation, several inter-
mediate steps might also be included. For example, in the patch-based method presented 
in [19], the authors first employed CNNs to obtain the probability maps. Graph search 
was then applied to obtain the choroidal boundaries. As the choroidal thickness is com-
puted based on the detected boundaries, the estimating precision in segmentation-based 
methods greatly depends on the intermediate steps. In other words, if an algorithm cannot 
detect the boundaries of a choroid correctly, the computed choroidal thickness based on 
the detected boundaries might not be correct either. In this paper, we propose a direct 
method without segmentation for estimating choroidal thickness based on CNNs. As the 
proposed method is segmentation-free, it can avoid being dependent on segmentation 
steps and instead directly focuses on the final clinical purpose. 

Employing direct methods without segmentation to estimate object properties can be 
found in other medical imaging domains. For example, Wang et al. [21] proposed a 
method for direct estimation of cardiac biventricular volumes with an adapted Bayesian 
formulation. With the revival of deep learning, some researchers have also employed deep 
neural networks for the direct estimation of object properties from medical images. Zhen 
et al. [22] presented a multiscale deep network and regression forest for direct biventric-
ular volume estimation. Luo et al. [23] proposed a new network structure for end-to-end 
left ventricular volume estimation on cardiac MR images. Manit et al. [24] presented a 
deep CNN approach for forehead tissue thickness estimation on laser backscattering im-
ages. Zhang et al. [25] proposed a CNN-based regression model to learn inherent associ-
ations between local image patches and target anatomical landmarks. Vos et al. [26] em-
ployed CNNs for direct coronary calcium scoring in cardiac and chest CT images. Mariot-
toni et al. [27] presented a deep learning segmentation-free method for quantification of 
retinal nerve fiber layer thickness on OCT images.  
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However, to the best of our knowledge, there is little published research on the esti-
mation of choroidal thickness in OCT images without segmentation. In this study, the 
characteristics of the choroid, e.g., its shape, are different from the objectives reported in 
existing studies [21–27]. In addition, the imaging technologies used to obtain the data 
needed for different objectives are also different. Thus, a question arises as to whether 
direct methods are also effective for estimating the choroidal thickness based on OCT im-
ages. To explore this issue, in this paper, we propose a method to estimate the choroidal 
thickness in OCT images directly based on CNNs, making this the first study to estimate 
the choroidal thickness in OCT images without segmentation.  

2. Materials and Methods 
2.1. Patients 

This study was approved by the Institutional Review Board (IRB) of Joint Shantou 
International Eye Center, Shantou University, and the Chinese University of Hong Kong. 
Due to the retrospective nature of the study, informed consent was waived by the IRB.  

We collected 150 OCT volumes from 150 eyes with Topcon Triton, a swept-source 
OCT. Each OCT volume consists of 256 B-scans with a size of 596 × 800 × 3, covering a 7 × 
7 × 2.6 mm3 region centered on the fovea. The choroidal boundaries in each B-scan were 
automatically delineated using the inbuilt algorithm of the Topcon system and then re-
vised by a trained doctor if the inbuilt algorithm could not detect the boundaries correctly. 
The ground truth of choroidal thickness was computed based on the delineated bounda-
ries. To train and test the CNN models, the OCT volumes were randomly divided into a 
training set, validation set, and test set with a ratio of 60–20–20%. Specifically, 90 OCT 
volumes were selected as the training set, 30 OCT volumes, as the validation set, and 30 
as the test set. It is worth noting that the training, validation, and test sets were organized 
randomly by subjects. Participants were different across different datasets. The numbers 
of B-scans in the training, validation, and test sets were 90 × 256 = 23040, 30 × 256 = 7680, 
and 30 × 256 = 7680, respectively. In the training, validation, and test sets, the mean cho-
roidal thicknesses were 57.8279 (pixels), 57.8356 (pixels), and 69.2251 (pixels), respectively, 
and the ranges were 18 to 109 (pixels), 19 to 109 (pixels), and 32 to 146 (pixels), respec-
tively. 

2.2. Design of Algorithm 
The flowchart of the proposed algorithm for the estimation of choroidal thickness is 

shown in Figure 1. A B-scan image was first cropped into several patches. A trained CNN 
model was then used to estimate the choroidal thickness for each patch. The mean thick-
ness of the choroid in the B-scan was obtained by taking the average of the choroidal 
thickness on each patch. 

 
Figure 1. The flowchart of the proposed method for estimation of choroidal thickness. A B-scan 
image was first cropped into several patches. A trained CNN model was then used to estimate the 
choroidal thickness for each patch. The mean thickness of the choroid in the B-scan was obtained 
by taking the average of the choroidal thickness on each patch. m and n are the width and height 
of a patch p respectively. 
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2.3. The Process of Cropping Images 
A large part of a retinal OCT image is the background or regions of vitreous, which 

do not contain useful information for estimating the choroidal thickness. If we employ a 
whole B-scan as the input for a CNN model, it would lead to memory consumption. In 
addition, the noise from the background would deteriorate the performance of CNNs. 
Moreover, if we predict the mean value of an entire choroidal region in a B-scan image 
directly, the mean value may not be representative of the complex structure of the choroid. 
To handle the problems caused by using the whole B-scan as input, we propose using 
patches as the input for a CNN model. As a patch is cropped from a B-scan, the size of a 
patch is smaller, thus saving more memory. In addition, while cropping the patches, we 
could make a patch containing the foreground while excluding the background as much 
as possible. As a result, the influence of the noise from the background is restricted. More-
over, in a small regional range, the choroidal thickness would not change considerably; 
thus, employing a mean value to represent the choroidal thickness in a small regional 
range is reasonable to some extent. 

The process for cropping the images is shown in Figure 2. Assume that the size of a 
B-scan image is N × M, where N is the height and M is the width of the B-scan image, 
respectively. The B-scan image is first divided into K segments in horizontal direction 
equally. The width of a patch is m = M/K. The height of a patch is n (n < N), which is set 
based on the rule that the patch should contain the foreground while excluding the back-
ground as much as possible. To determine the location of a patch in the vertical direction, 
we slide the window with a size of n × m from top to end in a B-scan image with a fixed 
stride, e.g., 10 pixels, as shown in Figure 2a, and the one with maximal summed intensity 
is selected as the final patch. Then, we slide the window into the next patch with the stride 
of m in the horizontal direction, as shown in Figure 2b, and repeat the process shown in 
Figure 2a. The process shown in Figure 2b is also repeated until the window reaches the 
rightmost side of the B-scan. It is worth noting that there is no intersection between two 
adjacent patches, so it is convenient for us to take the average choroidal thickness on each 
patch to compute the mean thickness of the choroid in the whole B-scan. 

  
(a) (b) 

Figure 2. The process for cropping images. (a) sliding in the vertical direction; (b) sliding in the 
horizontal direction. m and n are the width and height of a patch p respectively. 

2.4. Network’s Details for Choroidal Thickness Estimation 
Convolutional neural networks (CNNs) can be employed to solve different kinds of 

problems by constructing a proper network structure Rθ  and cost function φ  given 

the training set 1{( , )}Ss s sx y = , where sx  is the observed value, and sy  is the desired 
output [7]. This process can be formulated as 

, 1
min ( ( ( ), ))

S

learn s sR s
R R x y

θ
θθ

φ
∈Θ =

=   (1) 



J. Clin. Med. 2022, 11, 3203 5 of 12 
 

 

where Θ  is the set of all possible parameters. Once the learning step is completed, learnR  
can then be used for a specific task, e.g., classification, regression, etc. In this study, we 
employed CNNs to predict choroidal thickness based on OCT images. Thus, sx  and sy  
represent an image patch and corresponding choroidal thickness, respectively. Mean ab-
solute error is used as the loss function for CNNs—namely, 
( ( ), ) | ( ) y |s s s sR x y R xθ θφ = − . 

Particularly, the architecture of a typical CNN model includes several convolutional 
layers and optional pooling layers, followed by at least one fully connected layer. For the 
details about CNNs, we refer readers to the tutorial developed by Vedaldi et al. [28]. The 
CNN models applied in this study are shown in Figure 3. There were 7 convolutional 
layers with a kernel size of 3 × 3. Each convolutional layer was followed by a ReLu layer 
[29], which is not shown in Figure 3. Every two convolutional layers were followed by a 
pooling layer to downsample the feature maps. Finally, a fully connected layer was em-
ployed to map each component to the final prediction. It is worth noting that the CNN 
shown in Figure 3 is for the patches with a size of 200 × 200 × 3. For the patches with other 
sizes in the experimental section, the parameters, e.g., stride, would be changed while 
keeping the network architecture the same. 

 
Figure 3. The network architecture applied in this work. 

2.5. Training Details and Parameter Setting 

A PC, equipped with an Intel (R) Xeon (R) W-223 CPU at 3.60 GHz, 32 GB of RAM 
capacity, and NVIDIA Quadro P2200, was employed to perform the experiments with 
MATLAB. We used MatConvNet [28] to train the CNNs. The parameters of CNNs were 
initialized with the Xavier initialization method and trained for 41 epochs with a mini-
batch size of 15 instances. Training convergence can be observed within 31 epochs. For 
other hyperparameters, learning rates were set to 0.002 for the first 11 epochs, 0.0002 for 
the 12th to 27th epochs, and 0.00002 for the last few epochs. The momentum was 0.9, and 
the weight decay was 0.0005. 

2.6. Metrics 
The metrics used to evaluate the proposed method were mean absolute error (MAE), 

mean error (ME), and Poisson correlation coefficient (PCC) [30,31]. MAE and ME are 
quantities used to measure how close predictions are to the eventual outcomes, which are 
defined as 

1

1 | |
S

s s
s

MAE f y
S =

= −  (2) 

1

1 ( )
S

s s
s

ME f y
S =

= −  (3) 
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where sf  is the estimated result obtained by the algorithm, and sy  is the ground truth. 
A smaller MAE or ME indicates better performance. In this paper, MAE or ME represents 
the pixel-wise error between the predicted results and the ground truth. PCC is a measure 
of the linear correlation between two variables (predicted results and ground truth in this 
paper), defined as 

1

2 2
1

( )( )

( ) ( )

S
s ss

S
s ss

f f y y
PCC

f f y y
=

=

− −
=

− −




 (4) 

It has a value between +1 and -1, where 1 is a total positive linear correlation, 0 is no linear 
correlation, and -1 is a total negative linear correlation. A higher correlation coefficient 
indicates better performance. 

3. Results 
In the proposed method, a B-scan image was first cropped into several patches, and 

a trained CNN model was then employed to estimate the choroidal thickness for each 
patch. The mean thickness of the choroid in the B-scan was obtained by taking the average 
of the choroidal thickness on each patch. In this process, there were two types of choroidal 
thickness that needed to be estimated, one corresponding to the patch and another to the 
B-scan. Thus, we evaluated the performance of the proposed method at the patch and B-
scan levels, respectively.  

Figure 4 shows some examples to demonstrate the predicted results obtained by the 
proposed method. In the given examples, eight patches were cropped from a B-scan. The 
predicted result for each patch is shown in yellow color. The average on the predicted 
results of each patch cropped from the same B-scan is also in yellow. The white parts in 
Figure 4 are the corresponding ground truth, and green curves are the boundaries of the 
choroid. It is observed that the predicted results obtained by the proposed method were 
very close to the ground truth for some cases, e.g., Figure 4f, while the proposed method 
might also fail for some other cases, e.g., Figure 4c. 

  
(a) (b) 

  
(c) (d) 
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(e) (f) 

Figure 4. Examples to demonstrate the predicted results obtained by the proposed method, in 
which yellow parts are the results obtained by the proposed method. White parts are the ground 
truth. Green curves are the boundaries of choroid. (a) MAE = 0.5884, (b) MAE = 4.0118, (c) MAE = 
17.1611, (d) MAE = 0.0307, (e) MAE = 8.4348, (f) MAE = 0.9919. 

Table 1 summarizes the quantitative results obtained at the patch and B-scan levels, 
respectively. It is observed that different patch sizes would lead to different performances. 
It is worth noting that the size of a patch is represented as n × m, where n represents the 
vertical value, and m represents the horizontal value. When the patch size was 200 × 50, 
i.e., when 16 patches were cropped from a B-scan, the average MAE was 7.1197, with a 
standard deviation of 9.1715, and PCC was 0.8644 at the patch level. At the B-scan level, 
MAE was 4.5871, with a standard deviation of 6.4419, and PCC was 0.9193. When the 
patch size was increased to 200 × 200, i.e., when four patches were cropped from a B-scan, 
the performance improved, compared with the performance of the patch size of 200 × 50. 
However, this does not mean that the larger the patch size, the better. As can be seen in 
Table 1, although the MAE decreased at the patch level when the patch size was 400 × 400, 
the performance deteriorated, compared with the performance of patches with a size of 
200 × 200 at the B-scan level. In addition, the larger the patch size, the less local information 
could be obtained. Thus, 200 × 200 was a good choice that could guarantee the proposed 
method achieves high accuracy but also could ensure the proposed method provides rel-
atively much more local information.  

From Table 1, we can also observe that the ME value was negative for patches with 
sizes of 200 × 50, 200 × 100, and 200 × 200, which indicates that the CNNs tended to under-
estimate the values of choroidal thickness for these cases. While for patches with a size of 
400 × 400, the ME value was positive, which means that the CNNs tended to overestimate 
the values. Another phenomenon observed in Table 1 is that the performance at the B-
scan level was always better than the performance at the patch level regardless of the 
patch size. The reason is that the mean thickness of choroid in a B-scan is computed by 
taking the average of the thicknesses on the patches cropped from that B-scan, which 
makes the errors in patch level offset each other to some extent. Figure 4d gives an exam-
ple; as can be observed, the trained CNN model could not predict the choroidal thickness 
correctly for some patches—namely, the predicted results were larger or smaller, com-
pared with the ground truth. However, when we took the average, the biases in larger 
and smaller cases offset each other; thus, the precision of choroidal thickness at the B-scan 
level improved, compared with that at the patch level. 

Table 1. The obtained results at patch and B-scan levels with different patch sizes. 

 Patch Level B−Scan Level 
Patch Size MAE (Pixels) ME (Pixels) PCC MAE (Pixels) ME (Pixels) PCC 

200 × 50 7.1197 ± 9.1915 −1.7032 ± 11.5010 0.8644 4.5871 ± 6.4419 −1.7032 ± 7.7228 0.9193 
200 × 100 8.1371 ± 10.1308 −1.3165 ± 12.9272 0.8225 5.6696 ± 7.4609 −1.3165 ± 9.2779 0.8801 
200 × 200 6.0435 ± 7.5231 −1.3090 ± 9.5608 0.9041 4.3001 ± 5.8070 −1.3090 ± 7.1064 0.9274 
400 × 400 5.8868 ± 7.5539 0.5584 ± 9.5607 0.8901 4.6766 ± 6.3843 0.5584 ± 7.8944 0.8969 
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The scatterplots are also drawn to evaluate the performance of the proposed method. 
In a scatterplot, the difference between the predicted results and the ground truth can be 
observed clearly. The more points close to the identical line in a scatterplot indicate a bet-
ter performance of the proposed method. Figure 5 shows the scatterplots for the patch 
level, where the horizontal axis represents the ground truth, and the vertical axis repre-
sents the predicted results. Table 2 summarizes the percentage of patches in different MAE 
intervals. It is observed that the percentage of patches in the interval of MAE ≤ 5 reached 
0.6153 when the patch size was 200 × 200, which is the best among the listed cases. The 
percentage of patches in the interval of MAE ≤ 10 was larger than 0.8 when the patch size 
was 200 × 200, which indicates that the choroidal thickness can be estimated correctly by 
the CNN models for most patches. 

 
(a) (b) 

  
(c) (d) 

Figure 5. The scatterplots in patch level: (a) the patch size is 200 × 50; (b) 200 × 100; (c) 200 × 200; 
(d) 400 × 400. 

Table 2. The percentage of patches in different MAE intervals. 

Patch Size MAE ≤ 5 5 < MAE ≤ 10 10 < MAE ≤ 15 MAE > 15 
200 × 50 58.08% 21.59% 8.15% 12.18% 

200 × 100 53.03% 22.78% 9.31% 14.88% 
200 × 200 61.53% 22.40% 7.76% 8.31% 
400 × 400 57.94% 28.02% 8.74% 5.29% 

Figure 6 shows the scatterplots at the B-scan level. Table 3 summarizes the percentage 
of B-scans in different MAE intervals. It is observed that the percentage of B-scan in the 
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interval of MAE ≤ 10 was 0.9086 when the patch size was 200 × 200, which also indicates 
that the proposed method can estimate the choroidal thickness correctly for most B-scans. 

  
(a) (b) 

  
(c) (d) 

Figure 6. The scatterplots in B-scan level: (a) rhe patch size is 200 × 50; (b) 200 × 100; (c) 200 × 200; 
(d) 400 × 400. 

Table 3. The percentage of B-scans in different MAE intervals. 

Patch Size MAE ≤ 5 5 < MAE ≤ 10 10 < MAE ≤ 15 MAE > 15 
200 × 50 74.01% 15.74% 4.45% 5.80% 

200 × 100 66.06% 18.71% 6.58% 8.65% 
200 × 200 75.30% 15.56% 4.83% 4.77% 
400 × 400 69.68% 23.10% 4.01% 3.20% 

4. Discussion 
In this paper, we proposed a direct method to estimate the choroidal thickness in 

OCT images based on CNNs. In the proposed method, a B-scan image was first cropped 
into several patches, which were taken as the input for a trained CNN model. The output 
of the CNN model was the mean thickness of the choroid in a patch. The mean thickness 
of choroid in a B-scan was obtained by computing the average of the choroidal thickness 
on the patches cropped from that B-scan. Notably, there is no segmentation step in the 
proposed method, which makes the proposed method independent of the segmentation 
step and puts focus on the final clinical purpose. We collected 38400 B-scan images to 
evaluate the proposed direct method. The experiments show that the predicted values 
were very close to the ground truth when MAE ≤ 10, and the points were almost located 
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in the identical line when MAE ≤ 5, which indicates that a CNN model for choroidal thick-
ness estimation would be acceptable in clinical practice if it achieves the performance with 
MAE ≤ 10. The percentages of B-scans in the intervals with MAE ≤ 5 and MAE ≤ 10 
achieved by the proposed method were 0.7530 and 0.9086, respectively, which means that 
the proposed method can estimate the choroidal thickness correctly in a direct way for 
most B-scans. 

To evaluate the performance of the proposed direct method further, several segmen-
tation-based methods for choroidal thickness estimation, including deep-learning-based 
methods and graph-cut-based methods [12,15–17], were selected for comparison. Nota-
bly, in segmentation-based methods, there are two boundaries—the Bruch’s membrane 
(BM) and choroid–sclera interface (CSI) boundaries—to be detected to compute the cho-
roidal thickness. Table 4 summarizes the results, where BM and CSI represent the pixel-
wise mismatch between the detected results and the ground truth in the segmentation-
based methods. MAE represents the pixel-wise error of choroidal thickness between the 
results obtained by different methods and ground truth at the B-scan level. The best re-
sults reported in the corresponding literature are cited directly for comparison. If a metric 
was not reported in the corresponding literature, it appears as a gap in Table 4. It is ob-
served that the results obtained by the proposed direct method are very competitive with 
those obtained by segmentation-based methods, including the Bio-Net [17], which indi-
cates that the direct estimation of the choroidal thickness without segmentation is very 
promising. 

Table 4. Comparison with segmentation based methods. 

Methods BM (Pixels) CSI (Pixels) MAE (Pixels) 
Graph Cut [12] 2.4800 9.7900 - 

SCA-CENet [16] 1.8640 8.5310 - 
Bio-Net [17] 0.7700 4.3100 4.300 
U-Net [15] 1.4500 5.8700 5.4800 
Proposed - - 4.3001 

Although the results obtained by the proposed direct method are very competitive, 
because of the black-box nature of the CNNs, it is difficult to judge in which cases the 
proposed method can estimate the thickness correctly and in which it cannot, which is a 
major limitation for the proposed direct method, compared with segmentation-based 
methods. In segmentation-based methods, the detected choroidal boundaries can be vis-
ualized; thus, a trained doctor can judge whether the choroidal boundaries are detected 
correctly based on the visual results, while in the proposed direct method, the output of 
CNNs is a direct value of choroidal thickness; thus, there is no other supporting infor-
mation for doctors to judge whether the predicted values are reliable or not. A promising 
way to address this shortage is uncertainty quantification [32], which can provide a meas-
ure of trust in CNNs’ decisions. To achieve uncertainty quantification, a potential method 
is to combine the segmentation-based and direct methods; for instance, we can employ 
the segmentation-based methods to achieve an estimated value, and the direct methods 
to achieve another. Then, these two values would be compared: If their differences are 
less than a certain threshold, the estimated value would be acceptable with high confi-
dence. Additionally, other elegant methods for uncertainty quantification would also be 
explored in our future research. Furthermore, the technologies, termed explainable artifi-
cial intelligence [33], that can make CNN models become more transparent could also be 
employed to address the limitations of the proposed method. Additionally, in a future 
study, we would also like to exploit a technique that can help the doctor assess the relia-
bility of the predicted values obtained by the proposed direct method based on explaina-
ble artificial intelligence.  

In conclusion, the direct estimation of the choroidal thickness with CNNs is a very 



J. Clin. Med. 2022, 11, 3203 11 of 12 
 

 

promising approach and competitive with segmentation-based methods. 
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