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Abstract: Objective: The aim of our study was to examine cognition response to sprint interval
exercise (SIE) against different levels of hypoxia. Research design and methods: 26 recreational active
males performed SIE (20 × 6 s of all-out cycling bouts, 15 s of passive recovery) under normoxia
(FIO2: 0.209), moderate hypoxia (FIO2: 0.154), and severe hypoxia (FIO2: 0.112) in a single-blinded
crossover design. Cognitive function and blood glucose were assessed before and after 0, 10, 30, and
60 min of the SIE. Heart rate (HR), peripheral oxygen saturation (SpO2), and ratings of perceived
exertion (RPE, the Borg 6–20-point scale) during each SIE trial were recorded before and immediately
after every five cycling bouts, and after 0, 10, 30, and 60 min of the SIE. Results: All the three SIE
trials had a significantly faster overall reaction time in the Stroop test at 10 min after exercise as
compared to that of the baseline value (p = 0.003, η2 = 0.606), and returned to normal after 60 min.
The congruent RT at 10 min after SIE was significantly shorter than that of the baseline (p < 0.05,
η2 = 0.633), while the incongruent RT at both 10 min and 30 min were significantly shorter than
that measured at baseline (p < 0.05, η2 = 0.633). No significant differences in terms of accuracy were
found across the three trials at any time points (p = 0.446, η2 = 0.415). Blood glucose was significantly
reduced at 10 min and was sustained for at least 60 min after SIE when compared to pre-exercise
in all trials (p < 0.05). Conclusions: Acute SIE improved cognitive function regardless of oxygen
conditions, and the sustained improvement following SIE could last for at least 10–30 min and was
unaffected by the altered blood glucose level.

Keywords: high-intensity interval training; normoxia; executive function; glucose

1. Introduction

High-intensity interval training (HIIT) has been promoted over the last decade as an
effective form of exercise training for improving cardiovascular and metabolic function
and mental health in active young adults [1,2] and patients with coronary artery disease [3].
The benefits of the lower volume and time commitment of HIIT in overcoming the time-
related barrier to physical activity adherence show clear superiority compared to traditional
endurance exercise. As such, extreme short (<10 s) bouts of all-out sprint interval exercise
(SIE), classified as one form of HIIT, seems to be an attractive option for achieving exercise-
related health benefits [4].

Hypoxic training has been widely adopted as an effective strategy to enhance exercise
performance and physical fitness in athletes for decades. More recently, this training strat-
egy has shown its beneficial effects on cardiometabolic health and weight management
in untrained individuals [5–8]. Compared to training at sea level, hypoxic training could
further enhance blood oxygen transport capacity and aerobic endurance, as reported in pre-
vious studies [8–10]. However, the optimal dose of hypoxic severity for health-enhancing
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strategies is yet to be determined in view of the widely varying hypoxic exposure duration
and severity used in the experimental protocols in the previous studies. The discrepancies
in methodology make generalization challenging. Protocols that elicit beneficial effects
on cardiorespiratory, metabolic, and immune health without pathology are more likely
to arise from hypoxic exposure to a 9–16% fraction of inspired O2 [11]. Under such con-
ditions, the exaggerated reduction in oxygen saturation increased ventilatory demand in
response to hypoxia as a compensatory effect [12], with a more severe hypoxic level during
a short period of exposure most often leading to beneficial cardiovascular effects [11]. This
suggested that the severity of hypoxia appears to be the pivotal factor to determine this
critical dependency.

A number of studies have demonstrated that acute exposure to hypoxia can negatively
alter human cognitive function due to reduced oxygen partial pressure [13]. Cognitive dete-
rioration may occur in acute hypoxic exposure at altitudes above 6000 m (FiO2: 0.097) [14].
Physical activity has previously been shown to enhance cognitive function [15–17]. It has
been found that SIE improved selective attention [18], lexical learning [19], and executive
function [20] in adults, and such beneficial effects were greater [19] and lasted longer [20]
when compared to those resulting from continuous aerobic exercise. Due to the discrep-
ancies in severity and duration of hypoxic exposure, however, results from randomized
control trials and reviews investigating exercise combined with hypoxia showed both bene-
ficial [21–27] and detrimental effects [28–34] on cognitive performance. Notably, studies on
cerebral oxygenation have reported that central oxygenation between normoxia and hy-
poxic conditions were different. Near-infrared spectroscopy (NIRS) measurement revealed
that during incremental exercise under hypoxia, stages in low to high intensity elicit a larger
degree of cerebral deoxygenation compared with normoxia, which may limit cognitive
activity and exercise performance [35]. Investigations that used electroencephalography
and transcranial magnetic stimulation reported that as the severity of the hypoxia increased,
cerebral oxygenation became more predominant in influencing cognitive activity and ex-
ercise performance [36]. Our previous studies demonstrated that high-intensity exercise
under moderate hypoxia (FiO2: 0.154) [34] and moderate-intensity exercise under severe
hypoxia (FiO2: 0.12) [25] had no detrimental effect on cognitive function. More information
about the impact of different hypoxic severities on cognitive function is needed.

Acute SIE improved postprandial glucose metabolism in healthy subjects [37], an
obese population [38,39], and type 2 diabetes patients [40] immediately or up to 24 h after
exercise. Hypoxia is known to improve glucose effectiveness, and is suggested to facilitate
further improvement in insulin sensitivity when combined with exercise [41]. Glucose is
the major energy resource for the brain when processing cognition-related information.
The brain is sensitive to disruptions in energy supply, whereas a modest increase in blood
glucose concentration was associated with better cognitive performance [42]. Research
has also shown that difficult cognitive tasks, such as those involving executive function
pertaining to the frontal cortex, were more susceptible to glycemic alteration [43]. Available
data indicate that acute hypoglycemia, or when the blood glucose concentration was below
3 mmol·L−1, would impair cognition performance [44]. Therefore, glucose fluctuations
induced by exercise in hypoxic conditions may have a negative influence on cognitive
performance.

Given the above, this study used a single-blinded crossover design to evaluate the
effects of SIE under normoxia, moderate hypoxia (FIO2: 0.154, simulating an altitude of
2500 m), and severe hypoxia (FIO2: 0.112, simulating an altitude corresponding to 5000 m)
on cognitive function. We particularly focused on whether the cognitive-improvement
effects of SIE were impaired while performing under hypoxia as the severity of hypoxia
increased, and whether blood glucose was associated with cognitive performance during
exercise under hypoxia. Given that brain function and tissue integrity are dependent on a
continuous and sufficient oxygen supply, we hypothesized that cognitive function would
be impaired during exercise under hypoxia as the severity of hypoxia increased.
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2. Materials and Methods
2.1. Participants

The study was approved by the Research Ethics Panel of the University of Macau,
and all experimental procedures were in accordance with the declaration of Helsinki.
Advertisements including research purposes and inclusion criteria were posted on the
e-bulletin board of the university to recruit recreational active males. The inclusion criteria
were: (1) a maximal oxygen uptake (

.
VO2max) level of over 40 mL·kg−1·min−1 but lower

than 55 mL·kg−1·min−1; (2) right-hand dominant; (3) nonhighland resident (above 1000 m);
(4) without prior experience in hypoxic training; (5) free of any known neurological,
cardiovascular, and pulmonary disorders; and (6) free from color blindness or abnormal
vision. Smokers or those taking medication or having any physical barriers to performing
SIE under hypoxia were excluded. Volunteers who were interested in this study were
required to perform an incremental ramp test in the kinesiology lab to determine their
.

VO2max and eligibility.
An a priori power analysis was conducted using G*Power Version 3.1 to estimate

the sample size. When the effect size was set at medium (f = 0.25), 21 participants would
be needed to detect a significant difference in a two-way repeated-measures ANOVA
with a power of 80% and a significance level of 5%. Considering a 20% dropout rate,
26 recreational active males were invited to participate in this study. All participants
were informed of the experimental procedures and potential risks, and provided a written
consent prior to participation. This study was conducted from October 2019 to September
2020. A total of 20 recreational active males (age: 21.4 ± 2.0 y, stature: 175.9 ± 9.1 cm, body
mass: 68.7 ± 11.4 kg, body mass index (BMI): 22.1 ± 2.1 kg·m−2, maximal oxygen uptake
(

.
VO2max): 42.9 ± 1.3 mL·kg−1·min−1) completed all experimental trials and required

measurements (Figure 1).
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Figure 1. Flow diagram of the study.

2.2. Experimental Design

This study included a familiarization session and three experimental trials. During the
familiarization session, participants were familiarized with the experimental procedures
and practiced the SIE protocol and the Stroop test.

After the familiarization session, the participants accomplished three main trials at the
same time on different days, namely an SIE trial under normoxia (N), an SIE trial under
normobaric moderate hypoxia (M, FIO2: 0.154, simulated at an altitude of 2500 m), and
an SIE trial under severe hypoxia (S, FIO2: 0.112, simulating an altitude corresponding to
5000 m). The three trials were assigned in a random and counterbalanced order, and were
interspersed by three to seven days of washout period.
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On the day of trials, participants were required to report to the lab before 17:50 to
perform a baseline blood glucose test (using glucose and lactate analyzer, Biosen C-Line,
EKF diagnostics, Barleben, Germany) and a Stroop test after a 10 min rest. Then, a standard
dinner was provided to them at 18:00. A modified gas-mixing system (Everest Summit
II Hypoxic Generator, New York, NY, USA) was used to generate normoxic or hypoxic
gases, and the normoxic or hypoxic gas mixtures were delivered to participants through
a breathing mask and tubes. At 19:30, participants were fitted with the breathing mask
connected to the gas-mixing system, and they rested on the seat for 25 min. Then, a pre-
exercise test of blood glucose and the Stroop test were performed. The SIE session (5 min
warmup, 7 min exercise, and 3 min cooldown) began at 20:00 under the conditions of
normobaric normoxia (i.e., the N trial) or normobaric hypoxia (i.e., the M and S trials).
Stroop tests were carried out subsequent to the measurement of blood glucose levels at 10,
30, and 60 min after SIE. The breathing mask was taken off at 20:30.

Participants were unaware of the normoxic or hypoxic condition of the experimental
trials, and they were required to guess the oxygen condition of the SIE trial by answering
the question “Under what condition do you think you were exercising, normoxia, moderate
hypoxia or severe hypoxia (i.e., sea level, 2500 m or 5000 m)?” However, no confirmation
was given to the participants in order to avoid a potential influence on the subsequent trials.

2.3. Sprint Interval Exercise

The 7 min SIE trial consisted of 20 repetitions for 6 s of high-intensity cycling bouts
interspersed with 15 s of passive recovery. Participants pedaled maximally against a load
equivalent to 7.5% of their body mass during the 6 s work durations, and underwent
passive recovery during the 15 s rest periods on a cycle ergometer (Monark 839E, Vansbro,
Sweden). Heart rate (HR) and peripheral oxygen saturation (SpO2) during each SIE trial
were recorded continuously by a pulse oximeter (Radical-7 Pulse CO-Oximeter, Masimo,
Irvine, CA, USA), while ratings of perceived exertion (RPE, the Borg 6–20-point scale) were
recorded before and immediately after every five cycling bouts, as well as 10 min, 30 min,
and 60 min after the SIE. Participants were introduced to the scale and given standardized
instructions on how to rate their overall sensations of effort (including the feeling of
peripheral working muscles and joints, central cardiovascular and respiratory systems,
and the central nervous system [45]) before each exercise session. Peak power, average
power, and the fatigue index were calculated using Monark Anaerobic Test software
(Sports Medicine Industries, Inc., St. Cloud, MN, USA). The fatigue index was analyzed to
determine the level of fatigue during the anaerobic exercise [46]. A higher fatigue index
indicated a lower ability to maintain anaerobic performance over a series of sprints. The
exercise HR was estimated using the average HR during the entire exercise session. The
HRmax was determined as the highest value attained when the

.
VO2max test was performed

during the familiarization session. The percentage of HRmax was estimated using the ratio
between exercise HR and HRmax.

2.4. Cognitive Test

For the cognitive task, the color–word matching Stroop test [47] was adopted to
reflect prefrontal cortex function. A laptop with a pre-established E-Prime program was
used to administrate the Stroop test. For each trial, two lines of letters were displayed
on the laptop screen, and participants were instructed to determine whether the color of
the letters on the top line matched the name of the color displayed on the bottom line
(Figure 2), and to input their response by pressing “F” or “J” buttons to provide a “yes”
or “no” choice with their index fingers. Each experimental session consisted of 30 trials,
including 10 neutral trials, 10 congruent trials, and 10 incongruent trials, which appeared in
a random order. For the neutral trial, the top line contained a group of Xs (XXXX) printed
in red, green, blue, or yellow, and the bottom line contained the word “RED”, “GREEN”,
“BLUE,” or “YELLOW” printed in black. For the congruent trial, the top line contained
the word “RED”, “GREEN”, “BLUE,” or “YELLOW” printed in a congruent color. For
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the incongruent trial, the word “RED”, “GREEN”, “BLUE,” or “YELLOW” on the top line
was printed in an incongruent color. All the word stimuli were presented in Chinese. To
achieve sequential visual attention, the upper line was displayed 100 ms before the lower
line (Schroeter et al., 2002). The rate of correct answers assigned to “yes” or “no” was 50%
each. The stimulus disappeared from the screen when a response was given, or remained
on the screen for 2 s. The correct answer rate (ACC) and reaction time (RT) for each type
of trial (i.e., neutral, congruent, and incongruent trials) were calculated to measure the
prefrontal cortex function.
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color–word matching Stroop task.

2.5. Blood Glucose Measures

Arterialized venous blood samples from capillary finger-prick samples were collected
before meals (baseline) and at 90 min (just before exercise), 120 min (10 min after exercise),
135 (30 min after exercise), and 150 min (60 min after exercise) after meals. Duplicate
measures were analyzed with a portable glucometer (ACCU-CHEK Active, Roche Diagnos-
tics, Indianapolis, IN, USA) that met the accuracy standards outlined by ISO 15197. If the
measurement error between the first two blood samples exceeded 1.0 mmol·L−1, one or
two additional samples were taken. The average measurement from the two blood samples
with the least variance was documented as the glucose concentration for the corresponding
time point.

2.6. Physical Activity and Diet

In order to exclude the potential influence of diet and daily physical activity on out-
come variables, six standard meals (i.e., 3 lunches and 3 dinners) were provided to each
participant on the day of trials that included 1600–1620 kcal of total energy, with carbohy-
drate, protein, and fat accounting for approximately 60%, 10%, and 30%, respectively, of
the total energy intake. Lunch and dinner were provided at 1:00 p.m. and 6:00 p.m., respec-
tively, and the participants were required to finish in 15 min. Moreover, participants were
instructed to refrain from coffee and alcohol, as well as strenuous exercise, for 48 h before
the experiment days. Routine physical activities were assessed using pedometers (Yamax
Digi-Walker SW-200, Tokyo, Japan) on one day before and on the day of the experiment.

2.7. Statistical Analyses

The PASW software (Release 22.0; IBM, Armonk, NY, USA) was used for statistical
analyses. Prior to main statistical analyses, the Shapiro–Wilk test was conducted to confirm
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the normal distribution of the outcome variables. The data on cognitive function and
psychological responses were analyzed using a two-way analysis of variance with two
within-factors of condition (N, M, and S), and time (baseline; pre-exercise; and 10, 30, and
60 min after exercise). Significant interactions were further analyzed using a one-way
repeated-measure test and/or paired test when necessary. The effect size of partial eta
squared (η2) was calculated to determine the main and interaction effects. The effect size
was considered small if η2 < 0.06 and large if η2 > 0.14 [48]. Cohen’s d values were used
to access the effect sizes for the difference between the exercise trial and the control, and
scores of 0.2, 0.5, and >0.8 were classified as small, moderate, and large, respectively [49].
All data are expressed as the mean ± standard deviation (SD), and p < 0.05 was taken as
the level of statistical significance.

3. Results
3.1. Daily Activity and Baseline Values

No differences in routine physical activities were found among the three trials one
day before (N vs. M vs. S = 8874 ± 3365 vs. 9427 ± 5112 vs. 8617 ± 4008 steps) and the
experimental day (N vs. M vs. S = 7572 ± 3334 vs. 7536 ± 4231 vs. 7293 ± 2607 steps),
despite fewer steps on the experimental day (p > 0.05).

The percentages of correct estimation of oxygen conditions were 30.0% in normoxia
(N), 70.4% in moderate hypoxia (M), and 65% in severe hypoxia (S), indicating that the
participants could not recognize the oxygen conditions (p = 0.06). Baseline measurements
for cognitive function and blood glucose were taken at time points of baseline and pre-
exercise, as shown in Table 1. As expected, the pre-exercise SpO2 was significantly lower
in hypoxia compared to normoxia (p < 0.001), confirming the hypoxic conditions. Overall
RT (p = 0.952) and ACC (p = 0.346) were not significantly different between baseline and
pre-exercise (Figures 3 and 4).

Table 1. Physiological responses before and after SIE in normoxia and hypoxia.

N M S

SpO2 (%)
Baseline 98 ± 1 98 ± 1 98 ± 1
Pre 98 ± 3 89 ± 3 *,a 78 ± 4 *,**,a,b

Post 0 96 ± 3 84 ± 5 *,a,b 74 ± 58 *,**,a,b

Post 10 97 ± 1 89 ± 4 *,a 79 ± 5 *,**,a

Post 30 97 ± 1 97 ± 2 b,c,d 96 ± 3 b,c,d

Post 60 97 ± 1 97 ± 2 b,c,d 97 ± 2 b,c,d

HR (bpm)
Baseline 63 ± 7 62 ± 6 64 ± 5
Pre 65 ± 6 72 ± 8 *,a 79 ± 10 *,**,a,b

Post 0 167 ± 9 a,b 168 ± 11 a,b 168 ± 7 a,b

Post 10 92 ± 11 a,b,c 94 ± 16 a,b,c 95 ± 12 a,b,c

Post 30 86 ± 11 a,b,c,d 86 ± 13 a,b,c,d 87 ± 11 a,b,c,d

Post 60 81 ± 10 a,b,c,d,e 80 ± 11 a,b,c,d,e 80 ±9 a,b,c,d,e

RPE20
Baseline 6 ± 0 6 ± 1 6 ± 0
Pre 7 ± 1 7 ± 1 7 ± 1
Post 0 17 ± 2 a,b 18 ± 2 a,b 17 ± 2 a,b

Post 10 8 ± 2 c 8 ± 2 c 8 ± 2 c

Post 30 7 ± 2 c 7 ± 1 c 7 ± 2 c

Post 60 7 ± 1 c 7 ± 1 c 6 ± 1 c

N: sprint interval exercise in normoxia; M: sprint interval exercise in moderate hypoxia; S: sprint interval exercise
in severe hypoxia; Pre: pre-exercise; Post 0: immediately after exercise; Post 10: 10 min after exercise; Post 30:
30 min after exercise; Post 60: 60 min after exercise. * p <0.05 vs. N, ** p < 0.05 vs. S; a p < 0.05 vs. baseline;
b p < 0.05 vs. Pre; c p < 0.05 vs. Post 0; d p < 0.05 vs. Post 10; e p < 0.05 vs. Post 30.
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test in responses to sprint interval exercise (SIE) under normoxia (20.9% O2) and hypoxia (15.4%O2

and 11.2%). The shaded part indicates oxygen condition. N: SIE in normoxia; M: SIE in moderate
hypoxia; S: SIE in severe hypoxia; Pre: pre-exercise; Post 10: 10 min after exercise; Post 30: 30 min
after exercise; Post 60: 60 min after exercise. † p < 0.05 vs. baseline; ‡ p < 0.05 vs. Pre; § p < 0.05 vs.
Post 10; ¥ p < 0.05 vs. Post 30.
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Figure 4. Overall (A), congruent (C-ACC, B), and incongruent accuracy (INC-ACC, C) in the Stroop
test in responses to sprint interval exercise (SIE) under normoxia (20.9% O2) and hypoxia (15.4%O2,

and 11.2%). The shaded part indicates oxygen condition. N: SIE in normoxia; M: SIE in moderate
hypoxia; S: SIE in severe hypoxia; Pre: pre-exercise; Post 10: 10 min after exercise; Post 30: 30 min
after exercise; Post 60: 60 min after exercise.

3.2. Exercise Performance and Physiological Responses

Peak power output was significantly lower in the S trial compared to that in the N trial
(p < 0.01, Table 2). Mean power output was significantly higher in the M (6.1 ± 0.7 W·kg−1)
and S (5.9 ± 0.9 W·kg−1) trials compared to that in N (6.4 ± 0.8 W·kg−1, p < 0.01). There
were no differences in the fatigue index, exercise HR, and percentage of HRmax among the
three trials (p > 0.05).

Table 2. Variables of SIE in normoxia, moderate hypoxia, and severe hypoxia.

N M S

Peak power (W/kg) 11.6 ± 1.9 11.4 ± 1.8 9.9 ± 2.8 *,#
Average power (W/kg) 6.4 ± 0.8 6.1 ± 0.7 * 5.9 ± 0.9 *
Fatigue index (%) 45.0 ± 13.6 48.8 ± 14.9 51.0 ± 18.4
Exercise HR (bpm) 169 ± 9 169 ± 11 168 ± 9
%HRmax (%) 93.1 ± 4.3 93.2 ± 5.4 92.8 ± 4.6

N: sprint interval exercise in normoxia; M: sprint interval exercise in moderate hypoxia; S: sprint interval exercise
in severe hypoxia. * p < 0.05 vs. N; # p < 0.05 vs. M.
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The physiological responses (SpO2, HR, and RPE20) to SIE in normoxia and hypoxia
are displayed in Table 1. There were significant interaction effects (F = 119.374, p < 0.001,
η2 = 0.992) on SpO2 among the three trials. Specifically, SpO2 was significantly lower in the
M and S trials compared to the N trial at pre-exercise, and immediately and 10 min after
SIE (F = 365.884, p <0.001, η2 = 0.976). In the M and S trials, SpO2 was significantly lower
at the time points of pre-exercise, immediately, and 10 min postexercise compared to that
of the baseline (F = 446.551, p < 0.001, η2 = 0.993). Significant interaction effects were also
found in the HR levels (F = 4.682, p = 0.011, η2 = 0.824); the HR before exercise was higher
in the M and S trials compared to the N trial (F = 11.082, p = 0.001, η2 = 0.552), and the
HR levels measured in the later periods were lower than those measured in the preceding
periods during the N, M, and S trials (F = 1613.675, p < 0.001, η2 = 0.998). There were
no differences in self-reported RPE between the three oxygen conditions (i.e., normoxia,
2500 m hypoxia, and 5000 m hypoxia; p = 0.993, η2 < 0.001), suggesting that the three
trails induced similar physical exertion at the same time point. However, participants
perceived more effort immediately after exercise compared to that perceived at baseline
and pre-exercise (p < 0.001, η2 = 0.966).

3.3. Cognitive Function and Blood Glucose

After SIE, the overall reaction time of the Stroop test was significantly reduced at
10 min after exercise as compared to that of the baseline value (p = 0.003, η2 = 0.606), which
was significantly higher at Post 60 when compared to Post 10 (Figure 3A). As for particular
trials, the reaction time at 10 min after SIE was significantly shorter than that of the baseline
in congruent trials (p < 0.05; Figure 3B), while the reaction times at both 10 min and 30 min
after SIE were significantly shorter than that measured at baseline in incongruent trials
(p < 0.05; Figure 3C). In terms of accuracy, no significant differences were found across the
three trials at any time points (p = 0.446, η2 = 0.415, Figure 4). Additionally, blood glucose
was significantly reduced at 10 min and 30 min after SIE when compared to pre-exercise in
all trials (p < 0.05, Figure 5).
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4. Discussion

This study was the first trial to demonstrate the effects of SIE under normoxia and
moderate and severe hypoxia on cognitive function and metabolic health in active males.
Our result showed that acute SIE, regardless of oxygen conditions, facilitated cognitive
function, and the lasting effect was sustained for at least 10–30 min. We also demonstrated
that the RT improvement was unaffected by glucose alterations.

The main findings of this study were that SIE with or without hypoxia decreased RT,
and this improvement did not sacrifice ACC in both conditions, indicating that this effect
could improve cognitive function independently if it was normoxia, moderate hypoxia,
or severe hypoxia. No detrimental effect was observed under exposure to a significant
hypoxic-induced oxidative stress condition, which was strongly associated with greater
reductions in cognitive function [32] by inducing low partial pressure of oxygen (PaO2)
levels, indicated by the SpO2 decline from 98% to 89% and 78% in the moderate hypoxic SIE
trial and severe hypoxic SIE trial, respectively, which may have been due to a compensation
of the benefit of exercise-induced cerebral blood flow. It has been suggested that increased
CBF and cerebral metabolism that maintained oxygen delivery to the brain during exercise
are associated with cognitive improvement. Another possible reason for the stable cognitive
performance may be attributed to the delivery of reserve oxygen. Under severe hypoxia,
peak power and average power were significantly lower than N, with a small to medium
Cohen’s d effect size (d = 0.37) of the fatigue index. A higher fatigue index in severe hypoxic
SIE showed that sprinting under severe hypoxia made it more difficult to maintain the
power than in other conditions, which induced a significant drop in the power output. It is
plausible that the decrement in the performance was associated with the delivery of reserve
oxygen to maintain homeostasis in the whole-body biological requirement and cerebral
function, other than the exercising skeletal muscle, to prevent cognitive impairment.

In our study, overall RT and RT in congruent tasks improved following SIE regardless
of oxygen conditions, and the effect was sustained for 10 min during the recovery phase
and then returned to the baseline value; whereas the incongruent RT, a more sensitive
type of task to detect the performance decrement based on the premise that it activated
the neurobehavioral probe for the region associated with selective attention in a more
challenging way [50], persisted for 30 min in both the normoxic and hypoxic SIE trials and
returned to the baseline value after 60 min. In line with our results, SIE was previously
found to improve cognitive performance as determined by a Stroop test, and the effect
persisted for up to 30 min [20]; while another experimental study reported that intermittent
exercise improved inhibitory control as assessed by a flanker test, and it was sustained for
at least 60 min [51]. However, a negative effect was also found in a prolonged exercise that
exposed the participants to an altitude of 5486 m, as assessed using visual perception, for
up to 24 h [52]. Possible pathways by which acute hypoxic SIE may improve cognition
included increasing cerebral blood flow [53] and enhancing the arousal level [20] and
neurometabolism [54] in the brain to a positive level that led to an improvement in cognitive
performance. Taken together, despite inconclusive results and an inapparent effect between
oxygen conditions and different levels of hypoxia, the lasting effect of hypoxic SIE on
cognitive function was significant in this study, regardless of oxygen conditions.

In our study, all trials showed a significant rise in blood glucose value at 90 min
after meal ingestion and a significant drop after SIE and hypoxic SIE, and maintained a
level lower than the pre-exercise value for at least 60 min. Our results were consistent
with a recent study in healthy subjects that suggested that blood glucose remained stable
under a hypoxic condition [55]. A recent review demonstrated that the mobilization
of energy provisions augmented by hypoxic-induced physiological demand resulted in
gluconeogenesis and glycogenolysis [56], and favored the energy balance in the competition
of glucose demand. Others reported that exercise under hypoxia was expected to be efficient
in glucose metabolism because it would further activate the exercise-induced glucose
transport pathway, especially in SIE, which is characterized by its nature of high exercise
intensity [57,58]. A possible mechanism is that lower oxygen availability would increase the
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higher proportion of glucose metabolism activated by sympathetic nervous system [59,60].
Our observations of cognitive performance during pre- and postprandial blood glucose
excursion showed that cognitive performance was maintained as stable while postprandial
glucose levels rose. In addition, the beneficial effects of SIE and the two levels of hypoxic
SIE on cognitive performance were unaffected by the glucose drop at the postexercise time
point compared to the preprandial glucose baseline value. Overall, our study showed
that normoxic SIE and two different levels of hypoxic SIE significantly improved cognitive
function, accompanied and unaffected by the altered blood glucose level.

There were several limitations to this study. Firstly, it was technically difficult to
measure Post 0 due to the nature of SIE, so that immediate response was lacking in this
study. In addition, the main effect of hypoxia needs to be clarified by a seated nonex-
ercising trial with participants exposed to hypoxia for the same duration of time of the
experimental trials. Our strengths were that we observed cognitive performance during
a prescribed physiological state at successive multiple time points. This study provided
evidence that cognitive improvement remains stable at both normoxic SIE and two levels
of hypoxia, and it is also unaffected during blood glucose excursions. We used prolonged
time points to investigate the lasting effects on cognition and blood glucose, which helped
to provide information on the responsiveness of cognitive function following hypoxic SIE
over successive time points, and how glycemic changes influenced cognition.

5. Conclusions

Similar positive effects on cognitive function were found in normoxia, moderate
hypoxia, and severe hypoxia following acute bouts of SIE. Cognitive improvements lasted
for at least 10–30 min, with neither losing accuracy nor being affected by an altered blood
glucose level. Further research is warranted to elucidate the effects of different levels
of hypoxia on cognitive performance with multiple tasks and gather data on cerebral
blood flow to provide insight into brain activity, as well as the role of blood glucose in
relation to the cognitive performance in active young adults, to better clarify the underlying
mechanisms for the interaction between cognition and glucose metabolism. This study has
implications for the use of SIE and hypoxia as a time-saving and more effective strategy to
enhance physiological health [8–10] without cognitive impairment.
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