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Abstract: Despite advancing technology, right heart failure after left ventricular assist device im-
plantation remains a significant source of morbidity and mortality. With the UNOS allocation policy
change, a larger proportion of patients proceeding to LVAD are destination therapy and consist of an
overall sicker population. Thus, a comprehensive understanding of right heart failure is critical for
ensuring the ongoing success of durable LVADs. The purpose of this review is to describe the effect
of LVAD implantation on right heart function, review the diagnostic and predictive criteria related to
right heart failure, and discuss the current evidence for management and treatment of post-LVAD
right heart failure.
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1. Introduction

Durable left ventricular assist device (LVAD) technology has advanced considerably
over the past 20 years, such that current third-generation devices (HeartMate 3, Abbott,
Chicago, IL, USA) have an event-free survival rate of nearly 80% at two years [1,2]. How-
ever, despite improved outcomes and technology, early right heart failure (RHF) continues
to be a familiar complication, with incidence estimates as high as 40% [3–6] in second-
generation devices (HeartMate II and HeartWare) and 34% in current third-generation
devices [2]. RHF remains a significant source of morbidity and mortality, leading to hypop-
erfusion, end-organ dysfunction, prolonged ICU and hospital length of stay, and increased
mortality [6–10]. For those patients with severe RHF requiring temporary right ventricular
assist device (RVAD) placement, one-year mortality is as high as 41% [6].

Historically, implantable LVADs were utilized for shorter periods of time while pa-
tients awaited availability of a donor organ (i.e., bridge-to-transplantation, BTT). Since the
UNOS allocation policy changed in 2018, higher acuity patients tend to proceed directly
to transplant, and stable LVAD patients have significantly longer wait times [11,12]. As
a result, the phenotype of patients receiving LVADs seems to have shifted, with a larger
proportion of destination therapy (DT) implants and an overall sicker population. In this
sicker contemporary population, RHF will continue to pose a significant obstacle despite
technological innovation, and a comprehensive understanding of the timing, predictors,
and treatment of RHF will be critically important in the ongoing success of LVADs.

We aimed to describe the interplay of right ventricular function with LVADs; review
the diagnostic criteria as well as clinical, imaging, and hemodynamic factors related to
RHF; discuss the current evidence for management and treatment strategies to handle this
challenging entity.
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2. Right Heart Function in LVADs
2.1. Anatomy and Function of the Right Heart

The right ventricle (RV) is distinct from its left ventricular (LV) counterpart as a
thin-walled and heavily trabeculated triangular structure. Within the RV sits the crista
supraventricularis, a muscle bridge dividing the tricuspid valve inflow from the pulmonic
valve outflow. The crista supraventricularis plays a crucial anatomic role in RV function, as
its muscle fibers interlace with the interventricular septum (and thus, the LV) and the RV
free wall; during systole it acts to narrow the tricuspid orifice and contract the RV free wall
towards the interventricular septum [13,14].

The purpose of the RV is threefold: (1) to preserve low systemic venous pressures
to avoid liver and kidney dysfunction, (2) to maintain forward momentum of blood flow
to the pulmonary circulation, and (3) to provide oxygenated preload to the left heart in
order to maintain adequate perfusion [14–16]. In contrast to the LV, the RV pumps to a low-
impedance and highly compliant pulmonary circulation, which is reflected in the absence
of isovolumic phases of contraction and relaxation in RV pressure-volume loops [14,16,17].

The RV is influenced by multiple factors including systemic venous return (preload),
pulmonary resistance (afterload), and intrinsic contractility. Under optimal conditions,
the RV cardiac output approximates that of the LV; this is also affected by ventricular
interdependence, with the LV contributing to RV output via the septum. Importantly,
RV function is sensitive to afterload, which can be defined as the RV wall stress during
systole as estimated by a combination of attributes (resistance, compliance, arterial wave
reflections, inertance of blood) during systolic ejection [14,18]. As afterload increases, RV
stroke volume declines resulting in greater energy expenditure. This phenomenon of
decreased mechanical efficiency and increased oxygen consumption to maintain adequate
RV output is termed right ventricular-pulmonary artery (RV-PA) uncoupling and can be a
harbinger for adverse outcomes [19,20].

2.2. Influence of VAD on Right Heart Function

LVAD implantation results in an immediate and dramatic shift in hemodynamics
and physiology. As the LVAD decompresses the LV, there is an improvement in upstream
pressures (reduction in left atrial and pulmonary artery pressures) and mitral regurgitation.
This results in decreased RV afterload due to the improved LV filling pressures and the
theoretical expectation of improved RV function. However, there are multiple forces at play
that may, in fact, lead to RV dysfunction and subsequent failure (Figure 1). While cardiac
output normalizes with LVAD implantation, there is acutely increased venous return to the
right heart compared to pre-LVAD implantation, and the RV must match the cardiac output
generated by the LVAD which may exacerbate pre-existing RV dysfunction [15,21,22].
RV dilatation due to the increased preload may worsen preexisting tricuspid regurgitation.
LVAD flow may also lead to leftward shift of the interventricular septum with subsequent
compromise of RV contraction due to the changes in RV shape (more spherical) and reduced
contribution of septal contraction. Moreover, contractile properties of the RV change following
median sternotomy, with a shift from longitudinal to transverse shortening [23–25].

Intraoperative factors also have a significant impact on RV function and particularly
early RHF [24]. Cardiopulmonary bypass runs challenge the RV, hypotension may result in
RV ischemia, and coronary artery bypass grafts or collaterals can be injured. Blood products
given during the implant can further increase the risk of early RHF [26], and volume resus-
citation can result in major fluid shifts and worsen RV dilatation, wall stress, and tricuspid
regurgitation. Vasoplegia in the postoperative period may require the use of inotropes or
vasopressors, thereby increasing myocardial demand and potentially exceeding the RV’s
ability to compensate.
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Figure 1. Influence of left ventricular assist device and perioperative factors on right heart function.
CABG = coronary artery bypass graft; LVAD = left ventricular assist device; RV = right ventricle;
TR = tricuspid regurgitation; ↑ = increased; ↓ = decreased. Created with BioRender.com, accessed on
22 April 2022.

Studies analyzing the effects of LVAD implantation on RV hemodynamics have demon-
strated that pulmonary vascular resistance (PVR) decreases dramatically in the first three
months post-VAD implantation [25,27]. This is an expected hemodynamic effect early after
acutely unloading the left side of the heart. Beyond three months, however, there is a
smaller and more modest decrease in PVR long term. [27,28]. Unfortunately, RV adaptation
to load worsens after LVAD implantation, and this remains constant over time, suggesting
increased afterload sensitivity of the RV following LVAD implantation [25]. However,
RV load can improve with more prolonged support and, thus, RV performance may still
improve over time.

3. Diagnosis and Recognition of Right Heart Failure
3.1. Definitions of Early and Late Right Heart Failure

Definitions for post-LVAD right heart failure vary significantly in clinical criteria
and time frame but generally include the need for intravenous inotropes, pulmonary
vasodilators, and/or right-sided circulatory support [3,4,6,29–34] (Table 1). Some early
studies investigating RHF in pulsatile-flow and axial-flow devices tended towards more
narrow criteria requiring the need for RVAD implantation [30,32,33]; others were more
inclusive, defining RHF as the need for postoperative inotropic support for >14 days,
pulmonary vasodilators for ≥48 h, and/or need for right-sided circulatory support [29,31].
Kormos et al. described RHF as early and late, and differentiated the two due to the
ostensibly different pathophysiologic mechanisms; early RHF was defined by the need for
RVAD and/or continuous inotropic support for ≥14 days post-implantation, while late
RHF was defined as the need for inotropic support starting 14 days after implantation [6].
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Table 1. Varying definitions of early and late right heart failure following LVAD implantation.

Author Year Definition Severity Distinction

Early Right Heart Failure

Matthews et al. [29] 2008
Need for IV inotropes >14 days, inhaled nitric oxide ≥48 h,
right-sided circulatory support (ECMO or RVAD) or
hospital discharge with IV inotrope

Fitzpatrick et al. [30] 2008 Need for RVAD support

Kormos et al. [6] 2010 Need for RVAD or continuous inotropic support ≥14 days
following implantation

Drakos et al. [31] 2010 Need for RVAD implantation, inhaled nitric oxide ≥48 h, or
need for IV inotropes >14 consecutive days

Wang et al. [32] 2012 Need for RVAD support

Atluri et al. [33] 2013 Need for RVAD support

INTERMACS [35] 2014

Elevated CVP (RAP > 16 mmHg, dilated IVC on
echocardiogram, or elevated jugular venous pulse) +
manifestations of elevated CVP (peripheral edema,
ascites/hepatomegaly, lab evidence of worsening hepatic or
renal dysfunction)

Mild: within 7 days
Moderate: 7–14 days
Severe: >14 days or need for
RVAD

Soliman et al. [3] 2018
Short- or long-term right-sided circulatory support,
continuous inotropic support ≥14 days, or inhaled nitric
oxide ventilation ≥48 h

Severe

Rich et al. [8] 2017

RV dysfunction associated with signs/symptoms of RHF *
that warrant RVAD, use of inotropes >14 consecutive days,
or need to reinitiate inotropes between 14 and 30 days
post-implant

Mehra et al.
(MOMENTUM 3) [34] 2019

Signs/symptoms of persistent RV dysfunction * requiring
RVAD, inhaled nitric oxide, or inotropes >7 days anytime
following LVAD implantation

Late Right Heart Failure

Kormos et al. [6] 2010 Inotropic support starting >14 days post-implantation

Takeda et al. [10] 2015

Right heart failure requiring rehospitalization following
index hospitalization in addition to medical/surgical
management (i.e., augmented diuretics, inotropes, and
RVAD implantation)

Rich et al. [8] 2017
RV dysfunction associated with signs/symptoms of RHF *
that warrant readmission with initiation of inotropes >30
days following discharge from index hospitalization

* Signs/symptoms of RV dysfunction or right heart failure include peripheral edema, ascites/hepatomegaly, and
lab evidence of worsening hepatic or renal dysfunction. CVP = central venous pressure; ECMO = extracorporeal
membrane oxygenation; IV = intravenous; RAP = right atrial pressure; RVAD = right ventricular assist device.

In 2014, the Interagency Registry for Mechanically Assisted Circulatory Support (IN-
TERMACS) proposed a more granular definition of post-LVAD RHF using hemodynamics
and clinical findings [35]. RHF was defined as elevated central venous pressure (right
atrial pressure > 16 mmHg, dilated inferior vena cava on echocardiography, or elevated
jugular venous pressure) along with manifestations of elevated central venous pressure
(i.e., peripheral edema, ascites or hepatomegaly, and laboratory evidence of worsening
hepatic or renal dysfunction). It was further divided by severity based on duration of
inotropes, inhaled nitric oxide, or intravenous vasodilators: mild—weaned within 7 days;
moderate—weaned within 7–14 days; severe—surpassing 14 days or need for RVAD. How-
ever, this definition has not become universally accepted as subsequent risk scores, and
clinical trials continue to utilize variations of this definition. In 2017, the EUROMACS
Right Heart Failure Risk Score defined RHF as receiving short- or long-term right-sided
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circulatory support, continuous inotropic support for ≥14 days, or nitric oxide ventilation
for ≥48 h [3]. Different still, the MOMENTUM 3 clinical trial of HeartMate 3 LVAD de-
fined RHF as the need for RVAD implantation, inhaled nitric oxide, or inotropic agents for
>7 days at any time following LVAD implantation [34].

Late RHF is even less well defined, as many definitions combine early and late RHF
into one category. However, late RHF is generally determined to occur after initial hospital
discharge [14,24] (Table 1). Kormos et al. and Loghmanpour et al. defined the time frame
as occurring 14 days after LVAD implantation, but Takeda et al. differed by extending
the time frame and defining late RHF as the need for rehospitalization following index
hospitalization [4,6,10]. Rich et al. defined it as occurring >30 days after discharge from the
index hospitalization [8].

The lack of standardized definitions for early and late RHF is problematic as repro-
ducibility is limited, valid comparisons of incidence rates are challenging, and prediction
models demonstrate significant variability [36]. Utilization of a universally accepted defini-
tion will allow a more accurate understanding of incidence rates and risk factors, validation
of prediction risk scores, and ability to better phenotype this patient population.

3.2. Risk Models

Numerous risk scores and predictive models have been created to better identify
patients at risk for post-LVAD RHF. The goals of these models are to gain insight into patient
prognosis, improve risk stratification and patient selection, and allow for implementation
of treatment strategies to avoid poor outcomes [15,22,36]. Models able to distinguish low-
versus high-risk patients will therefore be especially valuable and affect patient outcomes.
However, all models have inherent limitations making accurate identification of this patient
population challenging.

Many existing risk score models were derived from single-center cohorts [29–33],
some without validation in external cohorts therefore limiting the generalizability of these
models. Furthermore, risk scores were studied in patients implanted with pulsatile or
early-generation continuous flow devices, thus limiting applicability. Critical appraisal of
these risk models show that discrimination in validation cohorts is modest at best with a
C-statistic reaching only 0.65 [36]. As discussed above, the lack of a universally accepted
definition for RHF led to variability in the prediction models; particularly problematic is
the arbitrary use of time duration. Moreover, wide variation in institutional thresholds for
early versus delayed RVAD use may introduce significant unwanted bias [22]. As a result,
uptake and application of these risk scores in clinical practice has been limited. However, a
comprehensive understanding of the factors incorporated into risk models is nonetheless
necessary.

3.3. Risk Factors

There are a host of clinical characteristics, laboratory values, imaging data, and hemo-
dynamic parameters associated with post-LVAD RHF (Figure 2). In a large meta-analysis,
female gender, use of intra-aortic balloon pump, mechanical ventilatory support, and
use of renal replacement therapy were all found to be independent predictors of early
RHF with odds ratios (OR) ranging 1.59–4.61 [21]. Inotrope or vasopressor requirement,
particularly dependency and number of inotropic agents, are also utilized in multiple
risk prediction scores [3,29,31,32]; it has been shown that longer duration of milrinone
infusion has been associated with higher prevalence of RHF with an odds ratio of 6.3 [37].
Laboratory markers of end organ damage are also frequently implicated as risk markers for
RHF, especially renal (i.e., serum blood urea nitrogen and creatinine) and hepatic function
(i.e., transaminases, bilirubin and international normalized ratio) [21,29,30,32]. However, it
is important to note that poor preoperative renal and hepatic function is not necessarily
specific to RHF and may also reflect overall end-stage or critical illness [36]. NT-proBNP
was observed to be higher in patients with RHF, though it was highly heterogenous [21,38].
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Echocardiography is an enticing modality to determine both accurate preoperative
RV function and factors that may predict post-LVAD RHF. However, technical challenges
(i.e., LVAD-related artifact), poor reproducibility, and low interobserver correlation make
reliance on echocardiography more challenging. Interestingly, only the Penn RVAD, CRITT,
and EUROMACS-RHF risk scores utilize preoperative RV dysfunction on echocardiography
in their models [3,30,33]. Meta-analysis did show that moderate to severe RV dysfunction
(assessed qualitatively) was associated with higher risk of RHF (OR 2.82) [21], though
performance of these specific models was still modest at best [36]. Tricuspid annular plane
systolic excursion (TAPSE) has not borne out as a predictive factor due to the fact of its
heterogeneity and dependence on loading conditions [39–41]; it also does not account for
the septal contribution to RV function. Tissue doppler imaging for the systolic velocity
(S’) of the tricuspid annulus could pose an alternative to TAPSE, with a small study
showing lower preoperative S’ in LVAD patients who developed RHF [42]. However,
this measure is still dependent on insonation angle and loading conditions, and may
not be representative if regional abnormalities are present [22]. The more quantitative
measure of RV/LV diameter ratio, a surrogate for RV function, has been demonstrated in
multiple studies to be predictive of RHF [21,43,44]. Specifically, an RV/LV ratio ≥ 0.75 was
independently associated with RHF and 30 day mortality and was additive for existing risk
scores [43,44]. RV fractional area change (RVFAC) is another quantitative measurement
that could be useful, with a cutoff of <35% considered abnormal. However, utility of this
measure in predicting RHF is unclear, and reproducibility and availability of the software
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package are known challenges [22,40]. RV free wall strain has been predictive of RHF
following LVAD implantation [38,41,45,46] and is a promising marker for clinical use.

Invasive hemodynamics are crucial in the assessment of RV function and proper risk
stratification prior to LVAD implantation. A large study of 475 LVAD patients showed that
elevated central venous pressure (CVP) was an independent predictor of postoperative
RHF [47], with the largest effect size in patients with continuous flow devices [21]. Elevated
CVP > 15 mmHg and increased ratio of CVP to pulmonary capillary wedge pressure
(PCWP) > 0.63 have been identified as risk factors in multiple predictive models [3,6,32,33].
Kormos et al. showed that a CVP/PCWP ratio of >0.63 was associated with an OR of 2.5
and helped differentiate those needing RVAD support from those requiring prolonged
inotropic support. The calculated pulmonary artery pulsatility index (PAPi) has also been
shown as a robust predictor of postoperative RHF, as it combines the pulmonary artery
pulsatility in the numerator and the right atrial pressure in the denominator to gain insights
on RV loading conditions [38,48,49]. Morine et al. found a PAPi < 1.85 resulted in an area-
under-the-curve of 0.942, surpassing the test characteristics of other hemodynamic markers
mentioned above [48]. Kang et al. demonstrated that higher PAPi, and therefore more
robust RV function, was associated with lower rates of RVAD implantation (OR 0.31) [49].
Pulmonary arterial compliance combined with CVP:PCWP ratio has also been shown to
identify patients at high risk for RHF and 6 month mortality [50]. Another calculated
variable, RV stroke work index (RVSWI), is a load-dependent contractile index that is a
significant determinant of postoperative RHF, particularly when RVSWI < 300 mmHg ×
mL × m−2 [6]. Notably, RVSWI was a powerful discriminator in pulsatile devices [21],
though this has not been consistent for continuous flow devices [48].

Risk factors for late RHF differ slightly from those mentioned above. Two large
single-center studies examined predictors for late RHF and found that typical clinical char-
acteristics for early RHF, such as intra-aortic balloon pump use, mechanical ventilatory use,
or use of vasopressors or inotropic support, were, in fact, not predictive of late RHF. Pump
speed and even the occurrence of early RHF were not predictors. Rich et al. found that
elevated preoperative BUN and increased CVP:PCWP ratio were independent predictors
of late RHF, while Takeda et al. found that diabetes, BMI > 29, and elevated BUN were
univariate predictors for late RHF [8,10].

4. Management of Right Heart Failure
4.1. Preoperative Medical Management

Management of RHF preoperatively should utilize a multifaceted approach aimed
at addressing RV preload, afterload, and contractility. RV preload should be optimized
aggressively, understanding that the patient will likely undergo multiple blood product
transfusions intraoperatively. While there is no standard CVP target used, ideally the CVP
goal should be <15 mmHg given that a CVP > 15 mmHg is associated with post-LVAD
early RHF [21,49]. Hemodynamic monitoring with a central venous catheter is encouraged
if the patient’s volume status is uncertain. Ultrafiltration can be considered if refractory to
high-dose diuretics [14].

Mitigating causes of elevated PVR is also an important goal given that the RV is
particularly sensitive to afterload. Use of inhaled pulmonary vasodilators like epoprostenol
and nitric oxide are advantageous in selected patients as it avoids systemic hypotension and
has beneficial short-term effects in lowering PVR and improving RV cardiac output [51,52].
Sildenafil, a phosphodiesterase-5 inhibitor (PDE5i), is used not infrequently as an off-
label medication to alleviate secondary pulmonary hypertension in end-stage heart failure
patients awaiting LVAD implantation [53]. However, a retrospective multicenter study of
LVAD recipients found that preoperative PDE5i use was associated with adverse outcomes
including increased incidence of severe early RHF and increased risk of major postoperative
bleeding [54].

It is also crucial to enhance forward flow and augment RV perfusion. If inotropes are
used, milrinone and dobutamine are the preferred agents given their combined inotropic
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and vasodilator properties. Milrinone results in both pulmonary and systemic vasodilation
with increased myocardial inotropy, ultimately serving to reduce both RV and LV end-
diastolic pressures; thus, milrinone is the preferred agent over dobutamine in appropriate
situations [14]. However, it must be noted that milrinone may trigger hypotension, has a
longer half-life, and is partially renally cleared.

4.2. Intraoperative Management

There are a number of perioperative factors that can impact RV function postopera-
tively including cardiopulmonary bypass time, perioperative bleeding, volume loading
with blood product transfusions, interventricular septal shift once the LVAD is implanted,
and disruption or injury of blood flow to the right coronary artery (bypass grafts or col-
laterals) [15,24,55]. Minimizing bypass time, bleeding, blood product transfusions, and
optimizing pump speed to avoid septal shift are all critical interventions that may mitigate
the incidence of early RHF.

Median sternotomy has been the standard surgical approach for LVAD implantation,
with obvious advantages including full visualization and ability to perform other inter-
ventions and place central RV support if necessary. An alternative lateral thoracotomy
approach was first studied in the HeartWare LVAD, and showed that it was a safe and
effective alternative in selected patients [56]. Advantages included maintaining chest
stability, decreased bleeding and need for blood product transfusions, and earlier recov-
ery. Currently, the SWIFT trial is actively enrolling patients to investigate implantation
of the HeartMate 3 LVAD by thoracotomy, and it is expected to complete enrollment by
mid-2022 [57].

There is lack of consensus regarding the utility and efficacy of concurrent tricuspid
valve repair (TVr) for functional tricuspid regurgitation. Early observational studies sug-
gested that concomitant TVr improved early clinical outcomes, reduced incidence of early
RHF, and was a durable adjuvant procedure [58–60]. However, more contemporary studies
of larger cohorts showed that concomitant TVr did not confer any survival benefit and in
fact, failed with a recurrence rate of 38% at two years follow up [61–65]. Moreover, Barac
et al. found that concomitant TVr was an independent risk factor for the development of
late RHF in their larger single-center study [63]. Thus, it appears that concomitant TVr has
limited durability and centers should be cautioned against routine use of this procedure.

4.3. Postoperative Management

Recognition of RHF in the immediate postoperative period can be tricky, as the clin-
ical presentation mimics that of cardiac tamponade. Oftentimes, patients return from
the operating room on multiple vasopressors for vasoplegia-mediated hypotension, and
echocardiography may not be informative given technical limitations in a postoperative
patient. Ultimately, there are five main aspects to consider when managing the RV postoper-
atively: (1) preload optimization, (2) inotropy, (3) chronotropy, (4) pulmonary vasodilation
and management of the PVR, and (5) optimization of the systemic mean arterial pressure
and pump speed to support the septum. Goals are to support the patient to preserve
euvolemia with an approximate CVP < 12 mmHg, maintain perfusion with a mean ar-
terial pressure > 70 mmHg and cardiac index > 2.2 L/min/m2, and ensure adequate LV
unloading via the device [15,24]. Adjustment of pacemakers when available may also
help support the RV. Early recognition of bleeding and the need to return to the operating
room for a washout are crucial as well. Close monitoring of end organ function, urine
output, and lactate production will allow for timely intervention and escalation of therapies
as necessary. Notably, however, data for treatment and management of RHF is limited,
and there are no randomized trials that show benefit for the various perioperative and
postoperative therapies.

In contrast to outcomes associated with preoperative PDE5i use, postoperative PDE5i
use may in fact be beneficial with lower all-cause mortality and fewer ischemic strokes in
an observational study of patients implanted with centrifugal flow LVADs; however, the
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mechanism by which this occurs is unclear [66]. Furthermore, identification of decoupling
between diastolic pulmonary artery pressure and pulmonary capillary wedge pressure
(i.e., an index of pulmonary vascular damage) may be useful in prediction of outcomes.
Imamura et al. found that decoupling of the diastolic pulmonary artery pressure gradient
is a strong predictor of death or heart failure readmission, in addition to worsening of right
heart function [67,68].

4.4. Mechanical Support

Early consideration and institution of mechanical RV support confers survival benefit
and helps to prevent potentially irreversible multiorgan failure [9,69,70]. In a large single
center study, unplanned RVAD support resulted in high rates of mortality, with even poorer
outcomes in those patients unable to be weaned from RVAD support [9]. Thus, appropriate
preoperative patient selection may help to identify patients who would benefit from planned
or early institution of biventricular support.

Options for mechanical RV support include both temporary and intermediate de-
vices [14,71,72]. Temporary device options include: (1) Impella RP (Abiomed Inc., Danvers,
MA, USA), (2) PROTEK Duo (LivaNova, London, UK), and (3) veno-arterial extracorporeal
membrane oxygenation (VA-ECMO). The Impella RP is a recently FDA-approved (for right
heart support) microaxial device that is placed percutaneously via the femoral vein to
pump blood from the right atrium (RA) through to the PA [73]. However, challenges exist
with this device including postoperative bleeding and malposition. The PROTEK Duo is
a dual-lumen cannula placed percutaneously via the internal jugular vein to drain blood
from the RA and shuttle it to the PA [74]. Advantages include ease of insertion and ability
for patients to ambulate.

Intermediate options for mechanical RV support involve surgical implantation of an
RVAD with central cannulation of the RA or RV for venous inflow and the PA for arterial
outflow. The cannulas are connected to centrifugal flow pumps such as CentriMag Pump
(Abbott), RotaFlow (Macquet CP), and TandemHeart (LivaNova). Unfortunately, long-term
options for durable RVADs do not exist and remain a thorn that limits the success of durable
LVADs.

5. Future Directions and Conclusions

Despite an improvement in our understanding of RHF over the years, this common
complication continues to present a considerable challenge in the overall success of durable
LVADs. A basic and necessary step moving forward will be to agree on a standardized defi-
nition of RHF. In our opinion, early RHF may be best defined by the MOMENTUM criteria,
as this will be most relevant for third-generation devices. For late RHF, we agree with the
definition, set forth by Takeda et al., as rehospitalization following index admission [10].
Much like the universal definition of heart failure [75], a universally accepted definition for
RHF would be specific yet clinically relevant and allow for improvements in clinical care,
registry research, and clinical trials.

As the landscape of referrals to durable LVAD change following the 2018 UNOS
allocation policy change, we must also enhance our approach to patient selection. Registry
data show that patients with INTERMACS profile 3+ tend to fare better than those classified
as INTERMACS 1 or 2 [76,77]. Strategies to optimize patients preoperatively and determine
appropriate timing to go to LVAD will be the holy grail in our ability to improve patients’
quality of life and survival.

We will need to continue to push the boundaries of therapies in the management of
RHF following LVAD implantation. While we highlight a systematic strategy to approach
the postoperative LVAD patient (Figure 3), we will need to be creative in affecting existing
pathophysiological processes for new therapeutics. For example, Uriel et al. tested the
use of CRD-102 (novel oral extended release formulation of milrinone) in the treatment of
chronic RHF in LVAD patients with successful proof-of-concept results [78]. Innovations
on existing surgical techniques and perioperative management will be intriguing, and
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we eagerly await the results of the SWIFT trial in the future. Lastly, despite our rapid
technological advances over the past 20 years, there remains a large unmet need for
biventricular device support, particularly durable right-sided support. Further studies
are needed to succeed in the recognition, prediction, and treatment of RHF in the LVAD
population.
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