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Abstract: (1) Background: Anemia affects about 40% of patients with chronic kidney disease (CKD).
Daprodustat improves serum hemoglobin in anemic patients by inhibiting prolyl hydroxylase of
hypoxia-inducible factor. We conducted a network meta-analysis to investigate the direct and indirect
effects of different doses of daprodustat compared to each other and erythropoietin and placebo.
(2) Methods: We searched PubMed, Cochrane Library, Web of Science, and Scopus, for randomized
clinical trials (RCTs) reporting data about different doses of daprodustat for anemia in nondialysis of
CKDs. (3) Results: We eventually included five RCTs with a total sample size of 4566 patients. We
found that the higher the dose of daprodustat, the greater the change in serum total iron binding
capacity (TIBC), hemoglobin, and ferritin from baseline. Compared to placebo, daprodustat 25–30 mg
was associated with the highest significant increase in serum hemoglobin (MD = 3.27, 95% CI = [1.89;
4.65]), a decrease in serum ferritin (MD = −241.77, 95% CI = [−365.45; −118.09]) and increase in
serum TIBC (MD = 18.52, 95% CI = [12.17; 24.87]). (4) Conclusion: Higher daprodustat doses were
associated with a higher impact on efficacy outcomes as serum total iron-binding capacity (TIBC),
hemoglobin, and ferritin. However, data about the safety profile of different doses of daprodustat is
still missing.
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1. Introduction

Chronic kidney disease (CKD) was considered a major health burden that affected
nearly 697.5 million people in 2017 [1]. Anemia was one of the most common complications
of patients with CKD; 41% were reportedly anemic among 209,311 patients with CKD [2].
CKD anemia is usually caused by multiple factors, including a decreased red blood corpus-
cle (RBCs), an increased level of chronic inflammation-associated hepcidin that sequesters
iron stores, and hypo-responsiveness induced by uremia to erythropoietin (EPO). However,
reduced EPO level is considered the main factor that causes anemia of CKD [3–6]. Thus,
anemia of CKD was treated mainly by recombinant human erythropoietin (rhEPO), EPO
stimulating agents (ESAs), and iron supplements [7,8]. However, rhEPO and ESAs induced
increment of serum hemoglobin over 13 g/dl were reported to be associated with severe
adverse events, including stroke, venous thrombosis, cardiovascular compromises, and
finally death [9–12]. Additionally, subcutaneous and parenteral administration of rhEPO,
ESAs, and iron supplements was uncomfortable for patients.

Daprodustat is an orally administered active molecule that suppresses prolyl hydrox-
ylase of hypoxia-inducible factor (HIF-PH). This stabilizes the HIF-α subunit and grants
dimerization of HIF-α and HIF-β subunits [13,14] and simulates a state of hypoxia [15].
The state of hypoxia drives activation of transcription factors and genes, initiates the syn-
thesis of EPO [16,17] and proteins that uptake, mobilize, and store iron, and modulates
hepcidin [13,14,18,19].

Oral administration of daprodustat was reportedly associated with 12 times less serum
EPO than the injection of rhEPO [20], yielding fewer cardiovascular morbidities and less
need for iron supplementation [20,21].

A previous meta-analysis by Zheng et al. pooled data comparing the effect of dapro-
dustat and control in anemia in patients and found that daprodustat could maintain
hemoglobin with lower adverse events than rhEPO. However, they neither separated data
on dialysis and non-dialysis patients nor accounted for different doses of daprodustat [22].
In addition, the previous meta-analysis compared the direct estimates of effect for only two
arms at a time, in contrast to network meta-analyses that compare the efficacy of study
arms directly and indirectly with no previous network meta-analysis (NMA) synthesized
evidence about the safety and efficacy of all available daprodustat doses for anemia of
CKDs in non-dialysis patients.

Therefore, we aimed to conduct an NMA to pool all analyzable data respecting
the safety and efficacy of daprodustat, accounting for all different doses reported in
the literature.

2. Materials and Methods

We completed this NMA following recommendations of the ‘Cochrane handbook’ [23]
and reported it in accordance with the latest version of the preferred NMA reporting items
of NMA [24,25].

2.1. Search Strategy and Data Collection

We executed a broad search in the subsequent databases: Scopus, PubMed, Cochrane
Library, and Web of Science, using these search terms: ((Anemia OR erythrocytopenia) AND
(non-dialysis) AND (Daprodustat OR Duvroq OR “GSK-1278863” OR “GSK1278863”)).
Our search was updated in January 2022; the search term was modified respecting the
recommendation of each database.

Retrieved records were gathered and searched for duplicates using EndNote. Two inde-
pendent authors selected titles and full texts; disagreements were resolved by a third author.

2.2. Selection Criteria

We included studies that satisfied the subsequent criteria: (1) population: non-dialysis
anemic patients with CKD; (2) intervention: daprodustat; (3) comparison: any conventional
treatment for anemia of CKDs or placebo; (4) outcomes: serum hemoglobin (Hb), ferritin,
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total iron-binding capacity (TIBC), and serum iron; and (5) study designs were restricted to
randomized clinical trials (RCTs) that reported data for each dose alone.

2.3. Data Extraction

We extracted data on:

1. Characteristics of the enrolled population at the baseline and summary of the eligible
trials including study ID (last name of first author/publication year), study arms,
mean age, percentage of females, mean body mass index (BMI), hemoglobin, TIBC,
ferritin, transferrin saturation (TSAT), hepcidin, race, baseline epoetin alfa dose, prior
diseases, baseline eGFR, stage of CKDs, inclusion and exclusion criteria of eligible
studies, time of follow-up, primary endpoints, and conclusions;

2. Outcomes: serum HB, ferritin, TIBC, and serum iron;
3. Domains of risk of the bias assessment tool.

2.4. Quality Assessment

We appraised the quality of the eligible studies by the Cochrane risk-of-bias tool (ver-
sion one) that included the subsequent domains: sequence generated randomly, concealed
allocation (blinded participants and personnel), blinded assessors of outcomes, incomplete
data, selective reporting, and others [26]. Each domain was judged by two independent
authors; any discrepancies were resolved by a third one.

2.5. Statistical Analysis

We used the netmeta package through RStudio to analyze this frequentist NMA.
Continuous data were analyzed using mean difference (MD) and 95% confidence intervals
(CI). We assessed substantial heterogeneity using the Chi-squared (Q2) test and quantified
it using the I-squared test. Substantial heterogeneity was considered significant if the I2 test
was valued more than 50% or the Q2 p-value was less than 0.1. Significant heterogeneity
was treated by the random-effects model. The efficacy of the investigated study arms was
sorted from highest to lowest in league tables.

3. Results
3.1. Literature Search Results

Our preliminary search retrieved 223 records; omission of duplicates resulted in
145 unique records that entered title and abstract screening. After the screening, five
unique RCTs were eventually included [20,27–30]. The flow chart regarding the search
strategy is shown in Figure 1.

3.2. Characteristics of the Enrolled Population at the Baseline and Summary of the Eligible Trials

This systematic review and NMA included five multicenter RCTs with a total sample
size of 4566 patients that reported data about different doses of daprodustat and controls in
anemic, non-dialysis dependent patients with CKDs. The included studies classified arms
in which the mean age ranged from 54.8 to 71.3 years and the female percentage ranged
from 36% to 84%. The range of follow-up duration widely from 4 to 52 weeks among the
included RCTs. More information is exhibited in Supplementary Tables S1 and S2.

We judge the bias risk in all included studies as low to moderate. All studies were
reported with low bias in respect of selection, attrition, and reporting biases, with a higher
risk in respect of other sources of bias domain. The summary of the risk of bias is presented
in Figure 2.

3.3. Efficacy Outcomes
3.3.1. Serum HB

We found that the change of HB from baseline was dose-dependent, the higher the
dose, the higher the change. Compared to placebo, daprodustat 25–30 mg was associated
with the highest significant change in serum HB (MD = 3.27, 95% CI = [1.89; 4.65]), followed
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by daprodustat 8–12 mg (MD = 2.48, 95% CI = [1.50; 3.46]) and daprodustat 5–6 mg
(MD = 1.18, 95% CI = [0.51; 1.85]).

Furthermore, daprodustat 25–30 mg was associated with a significant higher change in
serum HB than daprodustat 5–6 mg (MD = 2.09, 95% CI = [0.56; 3.62]), rhEPO (MD = 2.79,
95% CI = [1.23; 4.34]) and daprodustat 2–4 mg (MD = 2.92, 95% CI = [1.40; 4.44]).

Furthermore, daprodustat 8–12 mg was associated with a significant higher change in
serum HB than daprodustat 5–6 mg (MD = 1.30, 95% CI = [0.12; 2.48]) rhEPO (MD = 2.00,
95% CI = [0.78; 3.21]) and daprodustat 2–4 mg (MD = 2.13, 95% CI = [0.96; 3.30]); and
daprodustat 5–6 mg was significantly associated with a higher increase in serum HB than
daprodustat 2–4 mg (MD = 0.83, 95% CI = [0.16; 1.50]) (Figure 3).

Figure 1. PRISMA flow diagram, which summarizes the literature search and the number of the
obtained records.

3.3.2. Serum Ferritin

We found that the higher the daprodustat dose, the lower the serum ferritin from
base line. Compared to placebo, daprodustat 25–30 mg was associated with the high-
est significant change in serum ferritin (MD = −241.77, 95% CI = [−365.45; −118.09]),
followed by daprodustat 8–12 mg (MD = −92.30, 95% CI = [−154.42; −30.18]) and dapro-
dustat 5–6 mg (MD = −77.50, 95% CI = [−125.01; −29.99]). Furthermore, daprodustat
25–30 mg was associated with a more significant change in serum ferritin than daprodustat
8–12 mg (MD = −149.47, 95% CI = [−265.71; −33.23]), daprodustat 5–6 mg (MD = −164.27,
95% CI = [−296.76; −31.78]), daprodustat 2–4 mg (MD = −257.87, 95% CI = [−436.77;
−78.97]), and rhEPO (MD = -270.25, 95% CI = [−449.94; −90.56]) (Figure 4).



J. Clin. Med. 2022, 11, 2722 5 of 13

3.3.3. Total Iron-Binding Capacity (TIBC)

We found that the higher the dose of daprodustat, the higher the change of TIBC from
the baseline.

Compared to placebo, daprodustat 25–30 mg was associated with the highest signifi-
cant change in TIBC (MD = 18.52, 95% CI = [12.17; 24.87]), followed by daprodustat 8–12 mg
(MD = 16.20, 95% CI = [9.85; 22.55]), daprodustat 5–6 mg (MD = 8.80, 95% CI = [3.18; 14.42]),
and daprodustat 2–4 mg (MD = 5.60, 95% CI = [0.26; 10.94]).

In addition, daprodustat 25–30 mg was significantly associated with higher change
in TIBC than daprodustat 5–6 mg (MD = 9.72, 95% CI = [1.24; 18.20]), daprodustat 2–4 mg
(MD = 12.92, 95% CI = [4.62; 21.22]), and rhEPO (MD = 17.79, 95% CI = [8.73; 26.86]); dapro-
dustat 8–12 mg was associated with a significant higher change in TIBC than daprodustat
2–4 mg (MD = 10.60, 95% CI = [2.30; 18.90]) and rhEPO (MD = 15.47, 95% CI = [6.41; 24.53]);
daprodustat 5–6 mg and daprodustat 2–4 mg was associated with a significant higher
change in TIBC than rhEPO ((MD = 8.07, 95% CI = [1.35; 14.79]), (MD = 4.87, 95% CI = [1.22;
8.52]), respectively) (Figure 5).

Figure 2. Risk of bias summary of the included studies.

3.3.4. Serum Iron

We found that rhEPO was numerically but not significantly associated with a higher change
in serum iron from the base line than daprodustat 5–6 mg (MD = −1.05, 95% CI = [−4.57;
2.46]), daprodustat 2–4 mg (MD = −1.05, 95% CI = [−2.26; 0.15]) and placebo (MD = −2.05,
95% CI = [−4.49; 0.38]) (Figure 6).
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Figure 3. Network meta-analysis results of serum HB. (a) Network graph showing direct evidence between the assessed interventions. (b) A forest plot was
generated by comparing all interventions with “placebo”; P-score was used for ranking. (c) The league table represents the network meta-analysis estimates for all
interventions comparisons; the results are the mean difference (MD) with 95% CI, bold items are statistically significant.
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Figure 4. Network meta-analysis results of rate of serum ferritin. (a) Network graph showing direct evidence between the assessed interventions. (b) A forest plot
was generated by comparing all interventions with “placebo”; P-score was used for ranking. (c) The league table represents the network meta-analysis estimates for
all interventions comparisons; the results are the mean difference (MD) with 95% CI, bold items are statistically significant.
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Figure 5. Network meta-analysis results of total iron-binding capacity (TIBC). (a) Network graph showing direct evidence between the assessed interventions. (b) A
forest plot was generated by comparing all interventions with “placebo”; P-score was used for ranking. (c) The league table represents the network meta-analysis
estimates for all interventions comparisons; the results are the mean difference (MD) with 95% CI, bold items are statistically significant.
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Figure 6. Network meta-analysis results of serum iron. (a) Network graph showing direct evidence between the assessed interventions. (b) A forest plot was
generated by comparing all interventions with “placebo”; P-score was used for ranking. (c) The league table represents the network meta-analysis estimates for all
interventions comparisons; the results are the mean difference (MD) with 95% CI, bold items are statistically significant.
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3.3.5. Lipid Level

Three studies have examined the effect of daprodustat on lipid levels [20,28,30]. Nan-
gaku et al. reported minor changes in lipid parameters after daprodustat with 61% hy-
perlipidemic patients in the daprodustat group compared with 70% in the continuous
erythropoietin receptor activator (CERA) group. In the daprodustat group, a slight de-
crease in total cholesterol, LDL cholesterol, and HDL cholesterol levels was detected. At the
same time, HDL increased with little change in total, and LDL cholesterol was observed in
the CERA group. Holdstock et al. 2016 reported slightly similar results with 76% hyperlipi-
demic patients in the daprodustat group compared with 78% in the placebo group. While
in 2019, Holdstock et al. stated that 3% were hyperlipidemic in both groups; daprodustat
and control.

3.3.6. Cardiovascular (CV) Outcomes

Two included studies reported the effect of daprodustat on CV outcomes, especially
major adverse cardiovascular events (MACE), such as all-cause mortality, non-fatal stroke,
or non-fatal myocardial infarction [28,29]. Singh 2021 reported that 378 of 1937 patients
(19.5%) in the daprodustat group and 371 of 1935 patients (19.2%) in the darbepoetin alfa
group had MACE with a hazard ratio of 1.03; 95% CI, 0.89 to 1.19 without increased risk.
Moreover, Holdstock 2019 stated that five (3%) of 170 patients in the daprodustat group had
MACE compared with only one (1%) of 80 patients in the control group without sufficient
data for comparison.

3.4. Safety Outcomes

Brigandi et al. reported adverse events (AE) among 57% of non-dialysis dependent
patients with stages 3-5 of CKD. Nausea, the most common adverse event, was reported in
21% and 40% of patients administered 25 mg and 100 mg of daprodustat, respectively. The
higher doses of 50 and 100 mg produced an excessive erythropoietin response. So, the Hb
response was also high, leading to AEs or drug discontinuation [27]. Similarly, the Hold-
stock 2016 study found that nausea was the most common adverse event associated with
daprodustat, reported with two patients administered 0.5 mg and one patient-administered
5 mg doses [20].

Another study by Holdstock et al. found that the most common SAEs associated with
daprodustat were nasopharyngitis, diarrhea, and nausea, without accounting for different
doses of daprodustat [28]. A study by Singh et al. found that more than 43% of patients
with CKD reported SAEs after initiation of daprodustat. However, SAEs were comparable
between the daprodustat and control groups except for cancer and esophageal erosions,
significantly higher in the daprodustat than in control groups [29]. Nangaku 2021 reported
that after the 52-week treatment period, 92% of patients experienced ≥1 AE in the dapro-
dustat group and 89% in the CERA group. The most common AE was nasopharyngitis
and constipation. Serious AEs have appeared in 23% of patients with daprodustat and
29% with CERA. No significant difference between the treatment groups in AEs of special
interest [30].

4. Discussion

Overall, daprodustat was associated with a significant increment of serum HB and
TIBC, and a significant reduction of serum ferritin compared to placebo and rhEPO; the
higher the dose of daprodustat, the higher the change of serum HB, TIBC, and ferritin
from the baseline. However, we found no significant difference between the doses of
daprodustat, rhEPO, and placebo regarding the change of serum iron from the baseline.

Although we pooled data about non-dialysis dependent patients, our results were
consistent with what was reported by a previous meta-analysis by Zheng et al. that pooled
data about both dialysis and non-dialysis dependent patients [22].

Daprodustat is a small active molecule administered orally, once daily, and in a dose
dependent on the severity of anemia (baseline HB). Daprodustat inhibits hypoxia-inducible
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factor (HIF-PH) prolyl hydroxylase and mimics a hypoxic state. Inhibition of HIF-PH
stabilizes HIF-α that dimerizes with HIF-β, eventually entering the nucleus to activate the
EPO gene and stimulate erythropoiesis [31,32]. Among the isoforms of HIF-α, HIF-1α and
HIF-2α are the most directly related to iron metabolism [33]; HIF-2α is the primary regulator
of genes for iron metabolism in the liver [34]. HIF-2α was reported to be associated with
the up-regulation of essential genes for iron absorption in the intestine that incorporates
duodenal cytochrome-b and divalent transporters [34]. HIF-1α was reportedly associated
with upregulation transferrin, which drives iron to the tissue [18,34]. Treatment with
daprodustat is associated with the accumulation of both HIF1α and HIF2α subunits.

Furthermore, HIF-1 was reported to upregulate vascular endothelial growth factor
(VEGF) that stimulates angiogenesis and was associated with proliferative retinopathy and
enhanced tumor growth [35,36]. However, Tsubakihara et al. followed patients who were
administered daprodustat for 24 weeks and found no significant changes during fundus
examination [37]; five studies supported these results [20,27,28,38,39].

Additionally, daprodustat mimicked hypoxia keeps the level of EPO in the physio-
logical range, up to 17 times less than the level induced by rhEPO and ESA [20,40]. This
might decrease cardiovascular compromises associated with supraphysiologic levels of
EPO [41,42]. Brigandi et al. reported that the increment in serum EPO was proportional to
the administered dose of daprodustat. But the high withdrawal rate associated with a high
daprodustat dose resulted in a paradoxical lower response in the daprodustat group despite
higher EPO levels [27]. Holdstock et al. also reported the dose-dependent relationship
between daprodustat and serum EPO [20].

To our knowledge, we conducted the first network meta-analysis investigating direct
and indirect comparisons of daprodustat, EPO, and placebo regarding the efficacy outcomes.
Additionally, we pooled data exclusive for non-dialysis dependent patients and accounted
for different doses of daprodustat reported in the literature. Our study included the most
recent RCTs found in the literature with a combined largest sample size (4566 patients),
approximately triple the number enrolled in the latest meta-analysis (1514 patients) [22].

Our study has some limitations. We did not pool data regarding safety outcomes and
hepcidin levels due to missing data taking into account the different doses of daprodustat.
The eligible studies generally enrolled a small sample size; more than 80% of the total
study size was enrolled by one of the included studies [29]. Furthermore, the duration of
follow-up in three of the included studies ranged from 4 to 24 weeks [20,27,28], which was
not sufficient to observe long-term efficacy outcomes. All included studies were funded
by GlaxoSmithKline (GSK) with a highly possible conflict of interest, yielding them all to
be high in the other bias domain. Furthermore, the effect of daprodustat on oral/IV iron
use was not reported by most of the included studies and could not be analyzed. Finally,
our results are based only on a small sample size reported only by one study with short
follow-up duration.

5. Conclusions

We found that daprodustat had a significant effect on elevating serum HB and TIBC
and decreasing serum ferritin. Increased daprodustat dose (up to 25–30 mg) may be
associated with increased effect. Due to lacking studies considering doses of daprodustat
while reporting safety outcomes, we could not investigate the association between higher
doses of daprodustat and safety parameters.

We recommend conducting high-quality multi-center RCTs by enrolling a large pop-
ulation number and considering different doses of daprodustat, especially larger doses.
This will help synthesize more generalizable and trustable evidence about dose-dependent
safety and efficacy parameters.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/jcm11102722/s1, Table S1: Summary of the included studies; Table S2:
Baseline characteristics of patients in the included studies.

https://www.mdpi.com/article/10.3390/jcm11102722/s1
https://www.mdpi.com/article/10.3390/jcm11102722/s1
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