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Abstract: Nafamostat mesylate may be effective against coronavirus disease 2019 (COVID-19). How-
ever, it is not known whether its use is associated with reduced in-hospital mortality in clinical
practice. We conducted a retrospective observational study to evaluate the effect of nafamostat
mesylate in patients with COVID-19 using the Medical Data Vision Co. Ltd. hospital-based database
in Japan. We compared patients with COVID-19 who were (n = 121) and were not (n = 15,738)
administered nafamostat mesylate within 2 days of admission between January and December 2020.
We conducted a 1:4 propensity score matching with multiple imputations for smoking status and
body mass index and combined the 20 imputed propensity score-matched datasets to obtain the
adjusted odds ratio for in-hospital mortality. Crude in-hospital mortality was 13.2% (16/121) and
5.0% (790/15,738), respectively. In the propensity score-matched analysis with multiple imputations,
the adjusted odds ratio (use vs. no use of nafamostat mesylate) for in-hospital mortality was 1.27
(95% confidence interval: 0.61–2.64; p = 0.52). Sensitivity analyses showed similar results. The results
of this retrospective observational study did not support an association between nafamostat mesylate
and improved in-hospital outcomes in patients with COVID-19, although further studies with larger
sample sizes are warranted to assess the generalizability of our findings.

Keywords: coronavirus disease 2019; in-hospital mortality; nafamostat mesylate

1. Introduction

The coronavirus disease 2019 (COVID-19) pandemic is caused by severe acute respira-
tory syndrome coronavirus 2 (SARS-CoV-2) infection. Although worldwide vaccination
against SARS-CoV-2 is underway [1], it is imperative that researchers quickly identify
suitable drugs for repurposing as COVID-19-specific therapies.

Nafamostat mesylate (NM) is a serine proteinase inhibitor that has been used in
Japan for over 30 years to treat disseminated intravascular coagulation and pancreatitis [2].
Experimental studies have shown that SARS-CoV-2 exerts an effect on human angiotensin-
converting enzyme 2, enabling it to invade cells and establish infection [3]. In 293FT cells
(derived from human fetal kidneys) that ectopically express angiotensin-converting enzyme
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2, NM prevents SARS-CoV-2 spike protein-initiated fusion by inhibiting protease [4]. Thus,
it can be hypothesized that NM is effective against COVID-19.

Recent previous basic experimental [5] and case reports or series [2,6–8] have sug-
gested the potential effectiveness of NM against COVID-19. However, to our knowledge,
neither clinical trials nor observational studies, except for a recent small phase 2 open-label,
randomized controlled trial (RCT) [9] have demonstrated an association between NM
and reduced mortality. Therefore, we aimed to evaluate the effect of NM in patients with
COVID-19 using a large-scale in-patient database in Japan.

2. Materials and Methods
2.1. Data Source

We conducted a retrospective observational cohort study using the Medical Data
Vision (MDV) Co., Ltd. (Tokyo, Japan) hospital-based database. The MDV is a private
database that has been used to compile data on healthcare resource consumption at partici-
pating hospitals since 2008, based on information from the Japanese Diagnosis Procedure
Combination (DPC) fixed-payment reimbursement system. The MDV database currently
covers over 350 facilities in Japan, accounting for more than 20% of acute-care hospitals
that use the DPC, and includes data on 32 million patients of all ages. The MDV database
contains the following information: age; sex; height; body weight; admission and discharge
dates; discharge status; level of consciousness; comorbidities on admission; smoking sta-
tus; primary admission diagnosis according to the International Classification of Diseases,
Tenth Revision (ICD-10) codes; and daily records of drugs, blood products, and procedures
(including noninvasive positive-pressure ventilation [NPPV], mechanical ventilation, re-
nal replacement therapy [RRT], and extracorporeal membrane oxygenation [ECMO]). A
previous validation study of DPC data [10] suggested high sensitivity and specificity for
procedural records, but high or moderate sensitivity for most diagnoses.

2.2. Study Participants and Exposure Variable

We included patients ≥18 years of age who met the following criteria: (1) admission
diagnosis of COVID-19 in accordance with ICD-10 code U071 and (2) discharged between
1 January 2020 and 31 December 2020. We excluded patients discharged on the day of
admission to avoid immortal time bias [11], meaning that patients needed to survive to
receive NM. Additionally, only initial hospitalizations were included for each patient;
readmissions were excluded from the study. We compared the outcomes of patients who
were administered NM within 2 days after admission (NM group) to the outcomes of those
who were not administered NM (control group).

2.3. Outcome and Covariates

The primary outcome was in-hospital mortality. Covariates included age; sex; prior
diagnoses of diabetes mellitus, cardiac disease, cerebral infarction, liver disease, chronic
lung disease, cancer, and chronic kidney disease; Charlson comorbidity index [12]; body
mass index (BMI); smoking status; level of consciousness at the time of admission; use
of antiplatelet or anticoagulant drugs (including vitamin K antagonists and direct oral
anticoagulants) at the time of admission; transfer from another hospital; and admission
to the intensive care unit (ICU) (ICD-10 codes are shown in Table S1). For the purpose of
analysis, we categorized levels of consciousness, according to the Japan Coma Scale (JCS),
as follows: alert, JCS 0; awake without stimulation, JCS 1–3; arousable with stimulation,
JCS 10–30; and unarousable, JCS 100–300. The JCS is widely used in Japan and correlates
well with the Glasgow Coma Scale [13]. In addition, we identified patients who received
the following treatments within 2 days of admission: NPPV, mechanical ventilation, RRT,
ECMO, transfusion (including red blood cell concentrates, fresh frozen plasma, and platelet
concentrates), vasoactive agents (including norepinephrine, dobutamine, and vasopressin),
intravenous antibiotics, anticoagulants (including heparin and daluteparin), and steroids
(including dexamethasone and other oral and intravenous steroids).



J. Clin. Med. 2022, 11, 116 3 of 9

2.4. Statistical Analysis

Baseline characteristics that were measured as continuous or categorical variables were
summarized. Categorical data are expressed as percentages. Normally and non-normally
distributed variables are expressed as mean (standard deviation) and median (interquartile
range), respectively. The chi-square test was used to compare categorical data, except when
the expected cell counts were five or fewer, in which case Fisher’s exact test was used.
Continuous variables were compared using Welch’s t-test or the Mann–Whitney U test,
depending on the distribution of the data.

For our study population, we grouped patients based on the presence or absence of
each diagnostic or procedural code, assuming that patients without a code did not have the
corresponding condition. Therefore, no covariate data were missing, except for smoking
status and BMI. There were missing values for BMI and smoking status on admission,
which may have affected the results. Therefore, before propensity score matching, we
replaced each missing value with a set of substituted plausible values using a multistep ap-
proach. First, we performed multiple imputations to account for missing data on smoking
status and BMI [14]. We replaced each missing value with a set of substituted plausible
values by creating 20 filled-in complete datasets, with 10 iterations per dataset, using the
multiple imputations by chained equations method [15]. The following covariates were
used in the imputation model: age, sex, Charlson comorbidity index, level of consciousness,
use of antiplatelet or anticoagulant drugs, ICU admission, transfer from another hospital,
comorbidities, treatments performed within 2 days of admission, and in-hospital mortality.
Second, to estimate the propensity score, we fitted a logistic regression model for NM use
as a function of the patient and hospital factors (i.e., age, sex, comorbidities, BMI, smoking
status, level of consciousness, use of antiplatelet or anticoagulant drugs, ICU admission,
transfer from another hospital, and the number of beds) and treatments performed within
2 days of admission (i.e., NPPV, mechanical ventilation, RRT, ECMO, transfusion [including
red blood cell concentrates, fresh frozen plasma, and platelet concentrates], vasoactive
agents [including norepinephrine, dobutamine, and vasopressin], intravenous antibiotics,
and anticoagulants [including unfractionated or low-molecular-weight heparin, dexam-
ethasone, and other steroids]). We selected these covariates based on clinical importance
to calculate the propensity score [16]. Third, propensity score matching was performed
for each imputed dataset using 1:4 nearest-neighbor matching based on the estimated
propensity score of each patient. A match occurred when a patient in the NM-user group
had an estimated propensity score within 0.2 standard deviations of that of a patient in the
non-user group [17,18]. Balance was determined using standardized mean differences. To
assess balance after matching, we calculated the standardized mean difference for each
dataset and considered values <0.1 to be acceptable [19]. Fourth, effect estimates were
determined and the results were pooled using Rubin’s rules [20]. Effect estimates are
presented as odds ratios (ORs) for binary outcome data with corresponding 95% confidence
intervals. Imputed and matched data are presented as pooled data.

A two-sided p < 0.05 was considered statistically significant. We conducted sensitivity
analyses to test the robustness of our findings. First, we excluded patients who had
undergone intermittent or continuous RRT from the study population, as NM is sometimes
used for this purpose in Japan [21]. Second, we analyzed the outcomes using complete
cases for BMI and smoking status.

Data were analyzed using JMP 15.1 (SAS Institute Inc., Cary, NC, USA), Stata MP15.1
(STATA Corp., College Station, TX, USA), and R version 4.1.1 (R Foundation for Statistical
Computing, Vienna, Austria) with the mice, MatchThem, and cobalt survey packages.

3. Results

We included 15,859 patients after applying the inclusion and exclusion criteria (Figure 1).
Of these, 2378 (15.1%) and 2784 (17.6%) patients from the NM and non-NM groups had
missing data on BMI and smoking status, respectively.
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Figure 1. Flow chart of the patient selection process. COVID-19, coronavirus disease 2019.

Tables 1 and 2 show the baseline characteristics of the unmatched groups after mul-
tiple imputations. The unmatched data indicated that patients administered NM were
more likely to be older males; have the comorbidities of diabetes mellitus and chronic
kidney disease; have a high BMI; be in a comatose state; use antiplatelet drugs; have been
transferred from another hospital; be admitted to a large-scale hospital or the ICU; be
administered antibiotics, heparin, vasopressors, steroids, or transfusions; and require me-
chanical ventilation, RRT, or ECMO within 2 days of admission. Propensity score matching
produced balanced, well-matched treatment groups for each set of imputed and pooled
data (Figure 2 and Table S2).

Table 1. Unmatched patient characteristics categorized according to nafamostat mesylate use.

Unmatched Group

Nafamostat Mesylate Control

Number of patients 121 15,738
Age (years), mean ± SD 1 69.9 ± 15.0 61.8 ± 22.2

Male (%) 68.6 57.1
Charlson comorbidity index (%)

0 43.8 52.1
1 9.9 9.1
2 25.6 16.4
3 8.3 5.8
≥4 12.4 16.6

Diabetes mellitus (%) 40.5 22.5
Ischemic heart disease (%) 5.8 7.7

Cirrhosis (%) 0.8 1.4
Chronic lung disease (%) 18.2 17.9

Cancer (%) 12.4 13.5
Chronic kidney disease (%) 24.8 6.4

Body mass index (%)
<18.5 10.4 16.3

18.5–25.0 59.1 58.0
25–30 20.0 19.1
≥30 10.4 6.6

Smoking (%) 35.9 34.1
Japan Coma Scale (%)

0 (clear) 66.1 83.9
1–3 (delirium) 22.3 12.7

10–30 (somnolence) 4.1 2.3
100–300 (coma) 7.4 1.1

VKA 2 (%) 1.7 1.5
DOAC 3 (%) 4.1 4.3

Antiplatelet (%) 9.1 6.1
Interhospital transfer (%) 16.5 5.9
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Table 1. Cont.

Unmatched Group

Nafamostat Mesylate Control

Number of beds (%)
<200 2.5 6.5

200–400 33.9 56.6
≥400 63.6 36.9

ICU 4 admission (%) 37.2 4.6
1 SD, standard deviation; 2 VKA, vitamin K antagonist; 3 DOAC, direct oral anticoagulant; 4 ICU, intensive care unit.

Table 2. Treatment within 2 days of admission in the unmatched cohort.

Nafamostat Mesylate Control

Initial antibiotics (%) 25.6 7.8
Heparin (%) 14.0 2.6

Daluteparin (%) 0.8 0.1
Dobutamine (%) 2.5 0.2
Noradrenalin (%) 14.9 1.0
Vasopressin (%) 4.1 0.1

Steroids
Dexamethasone (%) 19.0 4.9
Other steroids (%) 19.8 6.1

Blood transfusion (%)
Red blood cells (%) 4.1 0.9

Platelets (%) 1.7 0.1
Fresh frozen plasma (%) 2.5 0.0

Oxygen therapy (%) 47.9 26.3
NPPV 1 (%) 1.7 0.3

Mechanical ventilation (%) 19.8 1.7
IRRT 2 (%) 17.4 1.3
CRRT 3 (%) 10.7 0.1
ECMO 4 (%) 2.5 0.1

1 NPPV, noninvasive positive-pressure ventilation; 2 IRRT, intermittent renal replacement therapy; 3 CRRT,
continuous renal replacement therapy; 4 ECMO, extracorporeal membrane oxygenation.

In the unmatched cohort, in-hospital mortality was 5.1% (806/15,859), and that of
patients with or without NM was 13.2% (16/121) and 5.0% (790/15,738), respectively
(p < 0.001). After propensity score matching, in-hospital mortality did not differ signifi-
cantly between patients with or without NM (odds ratio, 1.27; 95% confidence interval:
0.61–2.64; p = 0.52) (Table 3). The results of sensitivity analyses (1) excluding patients who
had undergone intermittent or continuous RRT and (2) using complete cases for BMI and
smoking status, were similar to those of our main analysis, which did not suggest that NM
had a statistically significant survival benefit among patients with COVID-19 (Table 3).

Table 3. Study outcomes after propensity score matching.

Effect Estimate p-Value

In-hospital mortality
No nafamostat mesylate 1 (Reference)
Nafamostat mesylate 1.27 (0.61–2.64) 0.52

Sensitivity analyses (in-hospital mortality)
No nafamostat mesylate 1 (Reference)
Nafamostat mesylate
Exclusion of patients undergoing IRRT 1 or

CRRT 2 1.03 (0.39–2.71) 0.94

Complete cases 1.32 (0.62–2.82) 0.46
1 IRRT, intermittent renal replacement therapy; 2 CRRT, continuous renal replacement therapy.



J. Clin. Med. 2022, 11, 116 6 of 9J. Clin. Med. 2022, 11, x FOR PEER REVIEW 7 of 10 
 

 

 
Figure 2. A summary plot of covariate balance before and after matching. BMI, body mass index; 
CCI, Charlson comorbidity index; CRRT, continuous renal replacement therapy; DOAC, direct oral 
anticoagulant; ECMO, extracorporeal membrane oxygenation; ICU, intensive care unit; IRRT, inter-
mittent renal replacement therapy; JCS, Japan Coma Scale; NPPV, noninvasive positive-pressure 
ventilation; VKA, vitamin K antagonist. 

In the unmatched cohort, in-hospital mortality was 5.1% (806/15,859), and that of pa-
tients with or without NM was 13.2% (16/121) and 5.0% (790/15,738), respectively (p < 
0.001). After propensity score matching, in-hospital mortality did not differ significantly 
between patients with or without NM (odds ratio, 1.27; 95% confidence interval: 0.61–2.64; 
p = 0.52) (Table 3). The results of sensitivity analyses (1) excluding patients who had un-
dergone intermittent or continuous RRT and (2) using complete cases for BMI and smok-
ing status, were similar to those of our main analysis, which did not suggest that NM had 
a statistically significant survival benefit among patients with COVID-19 (Table 3). 

  

Figure 2. A summary plot of covariate balance before and after matching. BMI, body mass index;
CCI, Charlson comorbidity index; CRRT, continuous renal replacement therapy; DOAC, direct
oral anticoagulant; ECMO, extracorporeal membrane oxygenation; ICU, intensive care unit; IRRT,
intermittent renal replacement therapy; JCS, Japan Coma Scale; NPPV, noninvasive positive-pressure
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4. Discussion

In the present observational study, which used a large-scale in-patient database, we
compared in-hospital mortality between patients with COVID-19 who had and had not
been administered NM. The results of propensity score matching after multiple imputations
indicated no statistically significant differences in the outcomes of the two groups. Several
subsequent sensitivity analyses also yielded the same conclusion.

Drug repurposing, that is, the use of existing commercially available drugs as an
alternative treatment for a novel disease, is often attempted, and is a measure that greatly
reduces the cost of drug development [22,23]. The adverse effects of repurposed drugs
have often been studied previously. However, the current World Health Organization
guidelines on drugs for COVID-19 only strongly recommend two drugs (corticosteroids and
interleukin-6 receptor blockers) as a treatment for patients with severe or critical COVID-
19 [24]. Thus, verifying that existing commercial drugs are effective against COVID-19 by
using a large-scale in-patient database is crucial.

We initially hypothesized that NM may improve patient outcomes, as experimental
studies recently reported that NM inhibits the entry of SARS-CoV-2 into human epithelial



J. Clin. Med. 2022, 11, 116 7 of 9

cells [5,25], and several case reports have demonstrated the potential clinical benefits of
NM [2,6–8]; however, we found no statistically significant association between NM and
improvements in in-hospital mortality.

Our crude overall in-hospital mortality was 5.1%, which is lower than a large study
previously conducted in Japan (in-hospital mortality rate, 11.6%), and the results showed
lower mortality compared to other countries [26]. The reason may be few patients with
severe COVID-19 were included (e.g., those admitted to the ICU and those requiring RRT
or ECMO) in this study. We adjusted the severity by using propensity score matching;
however, low in-hospital mortality and severity might affect our results.

Recently, a phase 2 open-label RCT in patients requiring nasal high-flow oxygen
therapy and/or non-invasive mechanical ventilation with COVID-19 showed NM did not
shorten the time to clinical improvement [9]. The result of the study supports our findings
but further validation may be needed by larger RCTs.

This study has several limitations. First, it was a nonrandomized observational study.
Therefore, the database did not include detailed clinical information on factors, such as
symptoms, vital signs, and laboratory data. However, we included data from previous
studies, which have associated advanced age, male sex, obesity, smoking, cardiovascular
disease, diabetes mellitus, chronic lung disease, and cancer with increased COVID-19
mortality [27,28], and considered those factors in our study. In addition, key factors
forming part of the Acute Physiologic and Chronic Health Evaluation scoring system and
severity of pneumonia (e.g., A-DROP score) that are widely used for predicting mortality
or adjusting severity were assessed in our study (such as the use of vasopressors instead
of mean arterial pressure, mechanical ventilation instead of oxygenation, RRT instead of
renal function, and JCS instead of mental status). Second, we could not obtain data on
newly approved COVID-19 drugs, such as remdesivir and ciclesonide, as they had not
yet been assigned drug codes. Third, we were unable to adjust for the number of patients
with COVID-19 seen at each facility during the study period, which may have affected the
outcomes. Lastly, we were unable to assess long-term outcomes post-hospital discharge.

5. Conclusions

Despite using the current largest available sample size that we know of to date, we
found no statistically significant association between NM administration and improvements
in the incidence of in-hospital mortality in patients with COVID-19. Thus, administering
NM to improve the aforementioned outcomes may not yet be justified. Further studies
elucidating the benefits and disadvantages of administering NM to patients with COVID-19
are warranted.
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