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Abstract: Hepatocellular carcinoma (HCC) is the most common type of primary hepatic malignancy.
HCC is one of the leading causes of cancer deaths worldwide. The oral multi-tyrosine kinase inhibitor
Sorafenib is the standard first-line therapy in patients with advanced unresectable HCC. Despite
the significant survival benefit in HCC patients post treatment with Sorafenib, many patients had
progressive disease as a result of acquiring drug resistance. Circumventing resistance to Sorafenib by
exploring and targeting possible molecular mechanisms and pathways is an area of active investiga-
tion worldwide. Epithelial-to-mesenchymal transition (EMT) is a cellular process allowing epithelial
cells to assume mesenchymal traits. HCC tumour cells undergo EMT to become immune evasive and
develop resistance to Sorafenib treatment. Immune checkpoint molecules control immune escape in
many tumours, including HCC. The aim of this study is to investigate whether combined inhibition
of EMT and immune checkpoints can re-sensitise HCC to Sorafenib treatment. Post treatment with
Sorafenib, HCC cells PLC/PRF/5 and Hep3B were monitored for induction of EMT and immune
checkpoint molecules using quantitative reverse transcriptase (qRT)- PCR, western blot, immunofluo-
rescence, and motility assays. The effect of combination treatment with SB431542, a specific inhibitor
of the transforming growth factor (TGF)-β receptor kinase, and siRNA mediated knockdown of
programmed cell death protein ligand-1 (PD-L1) on Sorafenib resistance was examined using a cell
viability assay. We found that three days of Sorafenib treatment activated EMT with overexpression
of TGF-β1 in both HCC cell lines. Following Sorafenib exposure, increase in the expression of PD-L1
and other immune checkpoints was observed. SB431542 blocked the TGF-β1-mediated EMT in
HCC cells and also repressed PD-L1 expression. Likewise, knockdown of PD-L1 inhibited EMT.
Moreover, the sensitivity of HCC cells to Sorafenib was enhanced by combining a blockade of EMT
with SB431542 and knockdown of PD-L1 expression. Sorafenib-induced motility was attenuated with
the combined treatment of SB431542 and PD-L1 knockdown. Our findings indicate that treatment
with Sorafenib induces EMT and expression of immune checkpoint molecules, which contributes to
Sorafenib resistance in HCC cells. Thus, the combination treatment strategy of inhibiting EMT and
immune checkpoint molecules can re-sensitise HCC cells to Sorafenib.

Keywords: hepatocellular carcinoma; EMT; immune checkpoint; sorafenib; PD-L1

1. Introduction

Hepatocellular carcinoma (HCC) is the most common form of primary liver malig-
nancy. Globally, HCC is the fourth leading cause of cancer-related deaths, with approx-
imately 782,000 deaths in 2018 [1,2]. The worldwide health burden of this disease is
increasing with minimal survival rates and limited therapeutic alternatives [3].
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Sorafenib, an oral multikinase inhibitor, was approved by the Food and Drug Admin-
istration (FDA) as the first-line treatment in patients with advanced unresectable HCC [4,5].
Although Sorafenib is the standard treatment modality in HCC, the low survival benefit
of three months and acquisition of drug resistance along with adverse effects limits its
therapeutic benefits [4,6–9]. Exploring the process of Sorafenib resistance and identifying
targets to overcome Sorafenib resistance remains a pressing area of need. Several studies
have proposed multiple cellular mechanisms and signaling pathways that result in the de-
velopment of Sorafenib resistance in HCC, including epithelial-to-mesenchymal transition,
cancer stem cells, hypoxia, c-Jun, EGFR and PI3/AKT activation, apoptosis resistance, and
others [5,10–17]. Studies have also suggested several combination therapies with Sorafenib
to improve the therapeutic effectiveness for the treatment of HCC patients [18–21].

Besides Sorafenib, the FDA has approved other drugs either alone or in combination
therapy for HCC patients. Lenvatinib is another FDA-approved first-line treatment for
patients with HCC, whereas Regorafenib, Ramucirab, and Cabozantinib are second-line
therapies in HCC patients following Sorafenib treatment. Immunotherapeutic treatment
approaches based on immune checkpoint inhibition are increasingly being investigated in
HCC, resulting in the approval of immune checkpoint inhibitors (ICIs) against programmed
cell death protein-1 (PD-1) such as Nivolumab and Pembrolizumab [22,23]. In addition,
the FDA has approved the combined treatment of Nivolumab and Ipilimumab as another
second-line therapy for HCC patients previously treated with Sorafenib. Recently, the
FDA has approved the combination ICI against PD-L1, Atezolizumab with Bevacizumab
as a first-line treatment for HCC patients based on the response rates in the IMbrave150
trial [24]. Aberrant expression of immune checkpoints including PD-L1 in HCC patients is
associated with significantly worse clinical outcomes [25,26].

Epithelial-to-mesenchymal transition (EMT) is a multistep biological process regulat-
ing the acquisition of mesenchymal phenotype and function by epithelial cells. Several
studies have implicated the process of EMT in cancer initiation and progression [5,27]. The
process of EMT enables tumour cells to migrate to secondary sites, whereas the reverse pro-
cess of mesenchymal-to-epithelial transition (MET) allows tumour cells to settle, proliferate,
and differentiate, forming secondary tumours [27–29]. EMT is a crucial process utilized
by HCC cells to acquire resistance to Sorafenib treatment [5,30–32]. In HCC patients, the
process of EMT coincides with immune checkpoint expression such as PD-L1, resulting in
poor prognosis for patients with these tumour characteristics [26,33].

Finding additional druggable targets for Sorafenib resistant HCC cells could greatly
enhance the chances for the evolution of efficacious combination therapies. Thus, the aim
of the present research is to facilitate the identification of novel combination therapies by
exploring the relationship between EMT, immune checkpoints, and Sorafenib resistance
in HCC. Changes in EMT features and immune checkpoint expression were monitored
following Sorafenib treatment of HCC cells. We then explored the potential of blocking
both EMT and immune checkpoint molecules to attenuate Sorafenib resistance in HCC.

2. Materials and Methods
2.1. Cell Culture

As previously reported, both human HCC cell lines, Hep3B (obtained from Prof. V.
Nathan Subramaniam, The Queensland University of Technology, Queensland, Australia)
and PLC/PRF/5 (procured from CellBank Australia (85061113)), were mycoplasma-tested
with the MycoAlert test (Abm, Richmond, BC, Canada), as previously described [33]. Dul-
becco’s modified Eagle’s medium (DMEM) (Thermofisher, Victoria, Australia), comprising
10% fetal bovine serum (FBS) (Gibco, Victoria, Australia) and 1% penicillin/streptomycin
(P/S) (Thermofisher, Victoria, Australia), was used to culture both cell lines, as previously
described [34].
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2.2. Reagents

Sorafenib was procured from Selleckchem.com, Australia, and reconstituted as per the
manufacturer’s instructions. The HCC cells were exposed to Sorafenib for three days at con-
centrations ranging from 0–12.5 µM. To induce EMT, the HCC cells were exposed for three
days with 10 ng/mL TGF-β1 (Peprotech, Lonza, Victoria, Australia). TGF-β1 was reconsti-
tuted in 10 mM citric acid, pH 3.0, as per the manufacturer’s protocol. SB431542, a TGF-β
receptor kinase inhibitor (Sigma, New South Wales, Australia), was used at a concentration
of 2 µM. SB431542 was dissolved in DMSO as per the manufacturer’s protocol.

2.3. RNA Extraction and cDNA Synthesis

As previously described, RNA was purified and quantified with Isolate II Bioline RNA
synthesis kit (Bioline, New South Wales, Australia) and Nanodrop 2000c (Thermofisher,
Victoria, Australia), respectively [34]. Bioline SensiFAST cDNA synthesis kit (Bioline, New
South Wales, Australia) was used to reverse transcribe 1 µg RNA to cDNA.

2.4. Quantitative Reverse Transcription-PCR (qRT-PCR)

qRT-PCR was performed on a ViiA7 Applied Biosystems Real-Time PCR system with
Lo-ROX SYBR Green (Bioline, New South Wales, Australia) [34]. Briefly, a three-step cycle
protocol was performed with 40 cycles of the following set-up with temperatures of 95, 63,
and 75 ◦C for 5, 20, and 20 s, respectively. The internal control used was Beta-Actin (ActB).
The primers used were previously reported [33] and listed in Table 1. Expression levels
are shown as copies of the selected gene per 10,000 copies of ActB. The 2∆∆Ct method
was used for data analysis, wherein selected gene expression was normalised to ActB
expression. Data are represented as copies of selected gene per 10,000 copies of ActB.

Table 1. List of primers for quantitative reverse transcription-PCR.

Primers Sequence (5′-3′)

Snai1 forward GCTGCAGGACTCTAATCCAGA

Snai1 reverse ATCTCCGGAGGTGGGATG

TGF-β1 forward TACCTGAACCCGTGTTGCTCTC

TGF-β1 reverse GTTGCTGAGGTATCGCCAGGAA

TNF-α forward CCCAGGGACCTCTCTCTAATC

TNF-α reverse TCTCAGCTCCACGCCATT

TIM-3 reverse GACTCTAGCAGACAGTGGGATC

TIM-3 reverse GGTGGTAAGCATCCTTGGAAAGG

2.5. Western Blot Analysis

Cells were seeded and treated in six-well plates. Total proteins were extracted from the
cells using a RIPA buffer (Thermofisher, Victoria, Australia) with Complete (Roche, New
South Wales, Australia) and phosSTOP (Roche, New South Wales, Australia) protease and
phosphatase inhibitors at 4 ◦C. The total protein was measured with a Pierce BCA protein
assay kit (Thermofisher, Victoria, Australia); 10 µg of protein was used for separation by
electrophoresis (SDS-PAGE) in a polyacrylamide gel in the presence of sodium dodecyl
sulphate (SDS) and transferred to a polyvinylidene difluoride film (PVDF) membrane. The
membranes were blocked with 5% skim milk in Tris-buffered saline containing 0.1% Tween
20 (TBS-T) and incubated overnight with primary antibodies at 4 ◦C. The membranes
were then incubated with HRP-conjugated secondary antibodies and proteins detected
by SuperSignal West Femto Maximum Sensitivity Substrate (Thermofisher, Victoria, Aus-
tralia). Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) or βActin was used as the
housekeeping control. The images were captured and quantified with Image Quant LAS
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500 and Image Studio Lite Ver 5.2 software, respectively. Antibodies used are listed in
Table 2.

Table 2. List of antibodies.

Antibodies Cat. No. Manufacturer Antibody Category Western Blot Immunofluorescence

TGF-β1 MA5-15065 Thermofisher Primary 1:1000
Ki67 ab66155 Abcam Primary 1:200

β-Actin 4967s Cell Signaling Primary 1:2000
Snai1 3879S Cell Signaling Primary 1:1000
Snai2 9585S Cell Signaling Primary 1:1000

VISTA ab235362 Abcam Primary 1:1000
TIM-3 ab241332 Abcam Primary 1:1000

2.6. Immunofluorescence

Cells were plated at a density of 1 × 104 per chamber in eight-well tissue culture
treated chamber slides. After 1XPBS wash, cells were treated with 4% paraformaldehyde
(Fisher scientific, Victoria, Australia) and 0.1% Triton X-100 (Sigma-Aldrich, New South
Wales, Australia). This was followed by blocking with 5% FBS and incubation with
primary antibodies overnight at 4 ◦C. After incubation with secondary antibodies at room
temperature for 30 min, cells were incubated with 4′,6-diamidino-2-phenylindole (DAPI)
(Thermofisher Scientific, Victoria, Australia) for 10 min at room temperature. ProLong
Diamond (Thermofisher Scientific, Victoria, Australia) was used to mount the slides. Nikon
C2 system and NIS-Elements software (Nikon, Australia) were used to capture and analyze
the images. Antibodies used were previously reported [33] and listed in Table 2.

2.7. Wound Healing Assay

Cells were seeded at density of 5 × 104 per well into a 24-well plate. After cells
reached confluency, a scratch or wound was made using a sterile pipette tip and washed
with 1XPBS. Photographs were taken at the indicated time points with an inverted Olympus
DP21 microscope (Olympus, Tokyo, Japan). The relative wound closure was quantified
with the Fiji plug-in for Image J software version 1.53c (National Institutes of Health,
Bethesda, MD, USA).

2.8. Transwell Migration Assay

First, 1 × 105 cells in a serum free DMEM culture medium were seeded into the top
chamber of 8-µm pore sized Transwell chambers (Corning, Rowe Scientific, Queensland,
Australia). The bottom chamber was filled with 500 µL of DMEM culture medium with
10% FBS to serve as the chemoattractant. Cells were incubated for 24 h at 37 ◦C, fixed
with 4% paraformaldehyde (Fisher Scientific, Victoria, Australia) for 15 min, and stained
with 0.1% Crystal Violet (Sigma-Aldrich, New South Wales, Australia). After removing
cells on the top chamber, the migrated cells on the bottom chamber were photographed
with Olympus DP21. For quantification of cell migration, the Crystal Violet staining on the
transwell membrane was extracted using 5% SDS, and a 570 nm wavelength was used to
measure absorbance.

2.9. Cell Viability Assay

Cells were seeded in 96-well plates at a density of 1 × 103 per well and treated as
indicated. Cell proliferation was quantified with the CellTitre 96 Aqueous one solution
cell proliferation assay (MTS) from Promega, Australia, according to the manufacturer’s
instructions.

2.10. PDL-1 Knockdown

Cells were transfected at 50% confluency for transient siRNA transfection. A 10 nM
final concentration of a control siRNA (4390843) (Thermofisher, Victoria, Australia) and
two distinct silencer select siRNAs against PDL-1 (s26547 and s26548) (Thermofisher, Victo-
ria, Australia) were used with Lipofectamin RNAiMAX (Invitrogen, Victoria, Australia)



J. Clin. Med. 2021, 10, 1889 5 of 20

according to the manufacturer’s instructions. Cells were collected for further experiments
72 h after incubation with the siRNA complex.

2.11. Drug Combination Analysis

A web-based application, SynergyFinder 2.0, was utilised to evaluate the synergistic
effect of combination drug treatment [35]. The SynergyFinder 2.0 applies algorithms to
compute synergy scores for dose–response matrix data. We utilised HSA model for synergy
assessment for drug combination in our study [35,36].

2.12. Statistical Analysis

All experiments were repeated in biological triplicates, and representative results are
presented. Prism software version 8.00 (GraphPad Software Inc.) was used to perform
statistical analyses. Student’s t-test was used to analyse the differential gene expression
between the control and cells treated with Sorafenib. A one-way analysis of variance
(ANOVA) followed by Sidak’s multiple comparisons test was used for multiple compar-
isons. A two-way ANOVA and Tukey’s multiple comparisons test were used for statistical
analysis for the cell viability assay. The results are shown as mean ± standard error of
mean (SEM). Statistical significance was set at p < 0.05. Error bars indicate SEM.

3. Results
3.1. HCC Cells Undergo EMT upon Sorafenib Exposure

In order to explore the association with EMT and Sorafenib treatment in HCC,
PLC/PRF/5 and Hep3B cells were treated with their respective IC50 concentration of
Sorafenib for 72 h. The IC50 concentrations of Sorafenib determined with cell viability
assays for PLC/PRF/5 and Hep3B cells were 6.965 and 5.347 µM, respectively (Supple-
mentary Figure S1). qRT-PCR analysis showed that PLC/PRF/5 cells underwent EMT by
reduction in the expression of epithelial makers E-cadherin and Occludin, and concomitant
elevation in the expression of mesenchymal markers N-cadherin, Vimentin, Snai1, and
Snai2 along with induction of TGF-β1 expression following Sorafenib treatment (Figure 1A).
The induction of EMT following Sorafenib treatment in PLC/PRF/5 cells was validated at
the protein level (Figure 1B). Given that EMT marker changes are often associated with
enhanced motile capability, we demonstrated the migratory potential of PLC/PRF/5 cells
was also increased upon Sorafenib treatment, as evaluated by the transwell migration assay
(Figure 1C) and wound healing assay (Figure 1D).

Similarly, Sorafenib treatment in Hep3B cells also resulted in the induction of EMT, as
demonstrated by qRT-PCR, western blot analysis, transwell migration, and wound healing
assays (Supplementary Figure S2A–D).

However, Sorafenib treatment did not upregulate the tumor necrosis factor—α (TNF-
α) expression in either of the cell lines (Supplementary Figure S3A). In addition, we
observed that the cells that migrated through the transwell membrane following Sorafenib
treatment were positive for proliferation marker ki67, as demonstrated by immunofluo-
rescence staining (Supplementary Figure S3B). This observation confirms that the cells
migrating through the transwell membrane are not apoptotic cells, but are cells that have
undergone EMT.
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Figure 1. PLC/PRF/5 cells undergo EMT after Sorafenib treatment. (A) qRT-PCR revealed decrease in E-cadherin and
Occludin and increase in TGF-β1, N-cadherin, Vimentin, Snai1, and Snai2 after treatment with 6.965 µM Sorafenib for 72 h.
(B) Western blot analysis showed downregulation of E-cadherin and Occludin and upregulation of Vimentin, N-cadherin,
Snai1, Snai2, and TGF-β1 upon treatment with Sorafenib. GAPDH and Bactin were used as loading controls. (C) The
migratory capability of PLC/PRF/5 cells was enhanced upon treatment with Sorafenib as revealed by the transwell
migration assay (scale bar = 500 µm). The number of motile cells was directly proportional to the absorbance of Crystal
Violet staining. (D) Wound healing assay (scale bar = 500 µm) showed higher migratory capacity of Sorafenib treated
PLC/PRF/5 cells. Quantitative analysis of the wound area after 24 h Sorafenib treatment relative to the starting wound area
at 0 h (n = 3, * p < 0.05, ** p < 0.01, **** p < 0.001).

3.2. Sorafenib Treatment Induces Immune Checkpoint Molecules Expression in HCC Cells

We also evaluated the effects of Sorafenib treatment on immune checkpoint molecule
expression in HCC cells. In PLC/PRF/5, Sorafenib treatment resulted in upregulation of
immune checkpoints PD-L1 or CD274, CD73 or NT5E, B7-H3 or CD276, VISTA or VSIR,
and TIM-3 or HAVCR2, as demonstrated by qRT-PCR (Figure 2A) and western blot analysis
(Figure 2B). Similarly, Hep3B cells displayed elevated expression of PD-L1, B7-H3, and
VISTA and decreased expression of CD73, as revealed by qRT-PCR (Figure 3C) and western
blot (Figure 3D). However, Hep3B cells did not express TIM-3.
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Figure 2. Sorafenib treatment induces immune checkpoint expression in HCC cells. (A) qRT-PCR demonstrated upregulation
of immune checkpoint molecules PD-L1, CD73, B7-H3, VISTA, and TIM-3 in PLC/PRF/5 cells upon treatment with Sorafenib.
(B) Western blot analysis revealed increased expression of PD-L1, CD73, B7-H3, VISTA, and TIM-3 in PLC/PRF/5 cells
upon treatment with Sorafenib. GAPDH and Bactin were used as loading control. (C) qRT-PCR demonstrated upregulation
of immune checkpoint molecules PD-L1, B7-H3, and VISTA and downregulation of CD73 in Hep3B cells treated with
Sorafenib. (D) Western blot analysis revealed increased expression of PD-L1, B7-H3, and VISTA and decreased expression of
CD73 with minimal expression of TIM-3 in Hep3B cells post Sorafenib treatment. GAPDH and Bactin were used as loading
control (n = 3, * p < 0.05, ** p < 0.01, *** p < 0.005, **** p < 0.001).

3.3. SB431542 Inhibits TGF-β1-Mediated EMT in HCC Cells

We have previously observed that TGF-β1 treatment induces EMT in HCC cells
(manuscript in press). In order to inhibit TGF-β1-driven EMT effects in HCC cells, we
utilised a TGF-β receptor kinases inhibitor, SB431542. We observed that treatment with
SB431542 can effectively block TGF-β1-mediated EMT effects in PLC/PRF/5 cells, as evi-
denced by changes in expression of EMT markers, as demonstrated by qRT-PCR (Figure 3A)
and western blot (Figure 3B). We also observed a similar blockade of TGF-β1-induced EMT
effects in Hep3B cells by both qRT-PCR (Figure 3C) and western blot analysis (Figure 3D).
Furthermore, the results were validated with fluorescence microscopy in both PLC/PRF/5
and Hep3B cells (Figure 3E).

Furthermore, the functional motility assays revealed that SB431542 can effectively
inhibit TGF-β-mediated motility in both HCC cells lines (Figure 4A,B).



J. Clin. Med. 2021, 10, 1889 8 of 20

Figure 3. SB431542 inhibits TGF-β1-mediated EMT in HCC cells. (A) qRT-PCR revealed an increase in E-cadherin and
Occludin and a decrease in N-cadherin and Vimentin expression and (B) western blot showed an increase in E-cadherin
and reduction in Vimentin following TGF-β1 and SB431542 treatments compared with cells treated with TGF-β1 alone in
PLC/PRF/5 cells. GAPDH was used as the loading control. (C) qRT-PCR revealed increased expression of E-cadherin and
Occludin and lower expression of N-cadherin and Vimentin and (D) western blot analysis demonstrated higher expression
of E-cadherin and lower expression of Vimentin following treatment with TGF-β1 and SB431542 in Hep3B cells. GAPDH
was used as the loading control. (E) Fluorescence microscopy demonstrated upregulation of E-cadherin and downregulation
of Vimentin in cells treated with TGF-β1 and SB431542 compared with cells treated with TGF-β1 alone in both PLC/PRF/5
and Hep3B cells (scale bar = 200 µm) (n = 3, ** p < 0.01, *** p < 0.005, **** p < 0.001, ns: not significant).

Figure 4. SB431542 reverses migratory capability of TGF-β1-stimulated HCC cells. (A) Transwell migration assay revealed
reduced migratory capability of PLC/PRF/5 and Hep3B cell lines upon treatment with SB431542 despite stimulation with
TGF-β1 (scale bar = 500 µm). Quantitative analysis of motile cells was determined by measuring the absorbance of Crystal
Violet staining. (B) Wound healing assay confirmed decreased motility of PLC/PRF/5 and Hep3B cells upon treatment
with SB431542 despite stimulation with TGF-β1 (scale bar = 500 µm). Wound area was analysed with TGF-β1, SB431542,
or combination treatment for 24 h relative to the starting wound area at 0 h (n = 3, * p < 0.05, ** p < 0.01, *** p < 0.005,
**** p < 0.001).
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3.4. SB431542 Attenuates TGF-β1-Induced PD-L1 Expression

In our previous study, we observed that TGF-β1 driven EMT coincides with the
upregulation of PD-L1expression in HCC cells (Manuscript in press). We thus utilised
SB431542 treatment to assess whether blocking TGF-β1-induced EMT had any impact
on PD-L1 expression. Reduced expression of PD-L1 was observed following SB431542
treatment in PLC/PRF/5 (Figure 5A,B) and Hep3B (Figure 5C,D) cells exposed to TGF-β1,
as demonstrated by qRT-PCR and western blot analysis. Fluorescence microscopy further
confirmed the downregulation of TGF-β1-mediated PD-L1 expression following treatment
with SB431542 in both PLC/PRF/5 and Hep3B cells (Figure 5E).

Figure 5. SB431542 inhibits TGF-β1-induced expression of PD-L1 in HCC cells. (A) qRT-PCR and (B) western blot analysis
revealed reduced expression of PD-L1 in PLC/PRF/5 cells after treatment with TGF-β1 and SB431542. GAPDH was used as
loading. (C) qRT-PCR and (D) western blot analysis revealed reduced expression of PD-L1 following SB431542 treatment in
Hep3B cells. GAPDH was used as loading control. (E) Fluorescence microscopy revealed reduced expression of PD-L1
following SB431542 treatment in PLC/PRF/5 and Hep3B cells exposed to TGF-β1 (scale bar = 200 µm) (n = 3, * p < 0.05,
** p < 0.01, *** p < 0.005, **** p < 0.001).

3.5. Knockdown of PD-L1 in HCC Cells Can Reverse TGF-β1-Mediated EMT

To further confirm the relationship between TGF-β1-induced EMT and expression of
PD-L1, we knockdown the expression of PD-L1 with two different siRNAs in HCC cells. We
confirmed the effective knockdown of PD-L1 with both the siRNAs tested by qRT-PCR and
western blot analysis in PLC/PRF/5 (Figure 6A,B). Furthermore, we observed the reversal
of TGF-β1-induced EMT following PD-L1 knockdown, evidenced by the reversal of both
epithelial and mesenchymal marker expression in PLC/PRF/5 cells, as demonstrated by
qRT-PCR (Figure 6C), western blot analysis (Figure 6D), and immunofluorescence staining
(Figure 6E) after treatment of TGF-β1 and PD-L1 siRNA in combination.

Similar reversal of TGF-β1-mediated EMT following PD-L1 silencing was also ob-
served in Hep3B cells (Figure 7A–E).

Furthermore, the expression of PD-L1 was also significantly reduced following knock-
down, and notably, the levels remained low following treatment with TGF-β1 in both
PLC/PRF/5 and Hep3B cells (Supplementary Figure S4).
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In addition, the migratory ability of cells was significantly reduced upon knockdown
of PD-L1 in both HCC cell lines treated with TGF-β1 as demonstrated by transwell migra-
tion (Figure 8A) and wound healing assays (Figure 8B).

Figure 6. Silencing of PD-L1 reverses TGF-β1-mediated EMT in PLC/PRF/5 cells. Transfection of HCC cells with
two specific PD-L1 siRNA effectively knockdown PD-L1 expression, as demonstrated by (A) qRT-PCR and (B) western
blot analysis. Bactin was utilised as the loading control. (C) qRT-PCR demonstrated that silencing of PD-L1 resulted in
upregulation of E-cadherin and Occludin along with downregulation of N-cadherin and Vimentin expression in PLC/PRF/5
cells. (D) Western blot analysis showed increase in E-cadherin and decrease in Vimentin upon knockdown of PD-L1 in
PLC/PRF/5 cells. GAPDH was utilised as loading control in western blot analysis. (E) Fluorescence microscopy showed
elevation of E-cadherin and decline of Vimentin following PD-L1 knockdown in PLC/PRF/5 cells (scale bar = 200 µm)
(n = 3, * p < 0.05, ** p < 0.01, *** p < 0.005, **** p < 0.001).
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Figure 7. Silencing of PD-L1 reverses TGF-β1-mediated EMT in Hep3B cells. (A,B) Transfection of Hep3B cells with two
specific PD-L1 siRNA effectively knockdown PD-L1 expression as demonstrated by qRT-PCR and western blot analysis.
Bactin was used as the loading control. Silencing of PD-L1 resulted in increased E-cadherin and Occludin expression along
with reduction in N-cadherin and Vimentin expression in Hep3B cells as assessed by (C) qRT-PCR and (D) western blot
analysis. GAPDH was utilised as the loading control. (E) Fluorescence microscopy showed an increase in E-cadherin and
a decrease in Vimentin following PD-L1 knockdown in Hep3B cells (scale bar = 200 µm). (n = 3, * p < 0.05, ** p < 0.01,
*** p < 0.005, **** p < 0.001).

Figure 8. Silencing of PD-L1 reverses migratory ability of TGF-β1-stimulated HCC cells. (A) Transwell migration assay
revealed reduced migratory capability of PLC/PRF/5 and Hep3B cells following PD-L1 knockdown despite stimulation
with TGF-β1 (scale bar = 500 µm). The number of motile cells was determined by measuring the absorbance of Crystal
Violet staining. (B) Decreased motility of PLC/PRF/5 and Hep3B cells following PD-L1 knockdown despite stimulation
with TGF-β1 was validated by the wound healing assay (scale bar = 500 µm). The analysis of the wound area after 24 h
treatment with siRNA alone or when combined with TGF-β1 relative to the starting wound area at 0 h (n = 3, * p < 0.05,
** p < 0.01, *** p < 0.005, **** p < 0.001).
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3.6. HCC Cells Can Overcome Sorafenib Resistance by Combined Targeting of PD-L1 and
TGF-β1 Signalling

Given that Sorafenib treatment in HCC induces both EMT and immune checkpoint
molecules, we hypothesised that EMT and immune checkpoint expression may contribute
to the development of Sorafenib resistance in HCC, and thus blocking EMT and the
immune checkpoint may re-sensitise Sorafenib resistant cells. In order to confirm the
potential synergistic effect of Sorafenib and SB431542 as combination drug treatment in
our study, we utilised the web application SynergyFinder 2.0 to assess the synergistic effect
of combining Sorafenib and SB431542 based on HSA model. We observed a synergistic
effect of Sorafenib and SB431542 with a HSA synergy score of 10.701 (Supplementary
Figure S5A,B).

Next, we combined PD-L1 silencing and SB431542 along with Sorafenib treatment to
HCC cells to examine if combined targeting of EMT and PD-L1 can overcome resistance
to Sorafenib in HCC cells. At increasing concentrations of Sorafenib, the cell viability
assay demonstrated that combination of knockdown of PD-L1 and SB431542 enhanced the
cytotoxicity of Sorafenib in HCC cells when compared to treatment with Sorafenib alone or
with either SB431542 or PD-L1 siRNA combined with Sorafenib treatment in both HCC
cell lines (Figure 9A,B). This confirmed that combined targeting of EMT and PD-L1 has the
potential to re-sensitise HCC cells to Sorafenib treatment.

Figure 9. Combination treatment of PD-L1 knockdown with SB431542 can overcome Sorafenib resistance in HCC cells.
Cell viability assay revealed that percentage survival of cells significantly reduced with the combination of increasing
concentrations of Sorafenib with knockdown of PD-L1 and SB431542 compared to Sorafenib alone or Sorafenib with either
SB431542 or PD-L1 knockdown or control siRNA treatment (A) PLC/PRF/5 and (B) Hep3B cells (n = 3, * p < 0.05, ** p < 0.01,
*** p < 0.005, **** p < 0.001).
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3.7. Combining PD-L1 Knockdown with SB431542 Can Reverse Sorafenib-Induced EMT in
HCC Cells

To confirm that combining PD-L1 silencing with SB431542 along with Sorafenib can
result in less aggressive HCC cells, we assessed the expression of EMT markers and
PD-L1 following combination treatment. We observed that the Sorafenib-induced EMT
effects on HCC cells are reversed following combination treatment with PD-L1 knockdown
and SB431542, as evidenced by qRT-PCR and western blot in PLC/PRF/5 (Figure 10A,B)
and Hep3B (Figure 10C,D) cells. These results were further confirmed by fluorescence
microscopy in both PLC/PRF/5 and Hep3B cells (Figure 9E).

The expression of PD-L1 also reversed following the combination treatment in both
PLC/PRF/5 and Hep3B, as demonstrated by qRT-PCR (Supplementary Figure S6A) and
fluorescence microscopy (Supplementary Figure S6B).

The migratory ability of HCC cells also reduced following all combination treatments
except with control siRNA and Sorafenib treatment, as demonstrated by the transwell
migration assay (Figure 11). Quantification of motility revealed a trend in reduction of
motility, although it was not significant for combined treatment of PD-L1 knockdown with
SB431542 and Sorafenib compared with control siRNA, SB431542, and Sorafenib treatment
in both cell lines. Quantification of motility revealed that PDL1 siRNA was superior to
control siRNA in blocking Sorafenib induced motility (Figure 11).

Figure 10. Combination treatment of Sorafenib with PD-L1 knockdown and SB431542 can reverse Sorafenib-driven
EMT in HCC cells. Combination treatment of Sorafenib with PD-L1 knockdown and SB431542 elevated E-cadherin and
downregulated Vimentin in PLC/PRF/5 cells, as demonstrated by (A) qRT-PCR and (B) western blot analysis. GAPDH
was used as the loading control. Similar combination treatment of Sorafenib with PD-L1 knockdown and SB431542 resulted
in upregulation of E-cadherin and downregulation of Vimentin in Hep3B cells, as demonstrated by (C) qRT-PCR and (D)
western blot analysis. GAPDH was used as the loading control. (E) Fluorescence microscopy revealed upregulation of
E-cadherin and downregulation of Vimentin in both PLC/PRF/5 and Hep3B cells following combination treatment of
Sorafenib with PD-L1 knockdown and SB431542 (scale bar = 200 µm) (n = 3, ** p < 0.01, *** p < 0.005, **** p < 0.001).
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Figure 11. Combination treatment of Sorafenib with PD-L1 knockdown and SB431542 can reverse Sorafenib-induced
migration in HCC cells. Migratory ability of PLC/PRF/5 and Hep3B cells was attenuated by combination treatment of
Sorafenib with PD-L1 knockdown and SB431542, as revealed by images of the transwell migration assay (scale bar = 500 µm).
The number of motile cells was determined by measuring the absorbance of Crystal Violet staining (n = 3, * p < 0.05,
** p < 0.01, *** p < 0.005).

4. Discussion

Herein, we report that Sorafenib induces both EMT and expression of immune check-
points in human HCC cells, PLC/PRF/5 and Hep3B. We used PLC/PRF/5 and Hep3B
cells for our study as both these cell lines have previously been utilised as experimental
models of Sorafenib resistance [37,38]. We observed increased expression of TGF-β1 fol-
lowing Sorafenib treatment. We demonstrated blockade of TGF-β1-induced EMT with
SB431542, a selective and potent TGF-β receptor kinase inhibitor. In addition, we found that
siRNA-mediated knockdown of PD-L1 reversed TGF-β1-induced EMT. Importantly, we
utilised SB431542 and PD-L1 silencing in combination to overcome resistance to Sorafenib
in HCC cells. We conclude that the combination of TGF-β receptor kinase inhibitor and
immune checkpoint inhibitor can synergistically impede EMT and potentially improve the
sensitivity of HCC cells to Sorafenib.

The oral multi-tyrosine kinase inhibitor, Sorafenib, is approved as a first-line therapy
in patients with advanced unresectable HCC [4]. Despite the significant overall survival
benefit of Sorafenib treatment in HCC patients, many patients had progressive disease due
to the development of therapeutic resistance [9]. Circumventing resistance to Sorafenib
by exploring and targeting possible molecular mechanisms and pathways is an area of
active research.

EMT is a crucial mechanism implicated in the development of Sorafenib resistance in
HCC [9,16,31]. A study demonstrated that long-term exposure of HCC cell lines, HepG2
and HUH7, and human embryonic liver cells WRL-68 to Sorafenib resulted in develop-
ment of Sorafenib resistance along with induction of EMT characterised by reduction in
E-cadherin and enhanced invasive potential [16]. Likewise, other studies have demon-
strated the activation of EMT in Sorafenib-resistant HCC cells with enhanced migratory
potential and cell viability [39,40]. These observations are consistent with our results
demonstrating that Sorafenib treatment induces drug resistance and EMT in human HCC
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cell lines with repression of epithelial markers and induction of mesenchymal markers
along with increased migratory potential.

In contrast, Chung et al. showed that Sorafenib repressed TGF-β responsiveness in
HCC cells through degradation of the cell surface TGF-βRII [41]. The study reported that
Sorafenib blocks TGF-β-mediated signalling and cellular responses in TGF-β-stimulated
hepatoma cells, HepG2, whereas our study reported increased TGF-β1 expression in Hep3B
and PLC/PRF/5 cells without pre-stimulation with TGF-β or similar cytokine. Similarly,
Chen et al. also reported inhibitory effects of Sorafenib on the TGF-β signalling pathway
in mouse hepatocyte cells AML12 stimulated with TGF-β [42]. These differences may be
due to the different cell lines utilised in the studies. Furthermore, it is conceivable that
Sorafenib may suppress TGF-β-mediated effects in pre-stimulated cells, and Sorafenib
may induce upregulation of TGF-β in non-stimulated hepatoma cells. Given that TGF-β1
is a major inducer of EMT and elevated expression is noted after Sorafenib treatment,
we hypothesised that TGF-β1-induced EMT plays a crucial role in inducing Sorafenib
resistance in HCC. An interesting study by Tan W. et al. revealed TNF-α-induced EMT
was responsible for the development of resistance to Sorafenib in HCC [43]. Our study is
the first to examine association between TGF-β1-induced EMT and Sorafenib resistance
in HCC.

Immunotherapy based on ICIs has achieved substantial progress and breakthroughs
in cancer therapeutics [44]. Immune checkpoint blockade therapy in HCC is a potent
therapeutic alternative, as immune activation or suppression determines tumor progression
or eradication in HCC [45]. There are several ongoing studies with ICIs in HCC. In
particular, there are ongoing clinical studies using combination approaches involving ICIs
with either another ICI or other immune and non-immune based treatment modalities [44].

The combination treatment approach with ICIs in HCC can be developed with more
efficacy provided there is association between Sorafenib resistance and immune checkpoint
molecules. Herein, we report that Sorafenib treatment induces upregulation of immune
checkpoints such as PD-L1, CD73, B7-H3, VISTA, and TIM-3 in HCC cells. In line with our
study, Lu et al. demonstrated increased expression of PD-L1 in tumor-infliltrating immune
cells in 23 Sorafenib-treated patients [46]. Another study utilized the GEO data to report that
overexpression of DNA methyltransferases (DNMTs) was associated with upregulation of
PD-L1 expression in HCC mice resistant to Sorafenib treatment [40]. In addition, combined
treatment of Sorafenib and anti-PD-L1 mAb has resulted in a remarkable decrease in
tumour growth in mice [47]. An interesting study by Dong MP et al. reported increased
levels of several soluble checkpoints such as BTLA, LAG-3, CTLA-4, and PD-1 after two
weeks of exposure to Sorafenib in HCC patients [48].

Studies have reported the association of EMT with immune evasion in tumour
cells [27,49]. Furthermore, the EMT score is also known to be associated with the ex-
pression of several checkpoint molecules including PD-L1 [50]. The significant relationship
between EMT and expression of PD-L1 has been demonstrated in several instances in lung
cancer [51–54]. Similar association of EMT and expression of PD-L1 has been reported in
oral squamous cell carcinoma, esophageal cancer, and breast cancer [52,55,56]. In addition,
overexpression of PD-L1 is also known to be influenced by TGF-β1-mediated immunosup-
pression and targeting of both PD-L1 and TGF-β with bifunctional protein M7824 inhibits
tumour mesenchymalisation and PD-L1 mediated immunosuppression [53]. We have
previously reported that immune checkpoint expression is closely correlated with EMT
in HCC and is associated with an aggressive clinical course [26,33]. Our previous study
confirmed that HCC patients with concomitant higher expression of PD-L1 along with
higher expression of mesenchymal marker Vimentin, and lower expression of epithelial
marker E-cadherin had poor clinical outcomes [26]. We have identified that EMT induced
by either TGF-β1 or TNF-α regulates immune checkpoint expression in HCC cells [33]
(data not shown). In addition, we found that Sorafenib treatment enhances expression of
TGF-β1 and not TNF-α. Given the close correlation between EMT and immune escape, we
hypothesised that TGF-β1-induced EMT regulates immune checkpoint expression, thereby
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driving therapy resistance in HCC cells treated with Sorafenib. To confirm the relationship
between TGF-β1-induced EMT and expression of immune checkpoint along with Sorafenib
resistance, we utilised SB431542, a specific TGF-β receptor kinases inhibitor. SB431542 is a
selective small molecular antagonist of TGF-β receptor kinases that specifically binds to
the ATP binding domains of the activating receptor-like kinase receptors, ALK5 (the TGF-β
type I receptor), and other TGF-β family receptors, including ALK4 (activing type I recep-
tor) and ALK7 (nodal type I receptor), resulting in the inhibition of the activation of Smad
2/3 and downstream signalling driven by TGF-β [57]. SB431542 has been successfully
utilised by several studies to block TGF-β driven EMT in HCC [58–60]. Our study also
confirmed that SB431542 can significantly inhibit TGF-β1-mediated EMT in both Hep3B
and PLC/PRF/5 cells through changes in the expression of EMT markers and reduced mi-
gratory capability. Furthermore, we have demonstrated that SB431542 effectively decreased
TGF-β1-induced expression of PD-L1. We have previously shown that reversal of EMT can
reduce EMT induced expression of immune checkpoints such as PD-L1 [33]. To confirm the
link between TGF-β1-induced EMT and PD-L1 expression in HCC, we utilised siRNA to
knockdown the expression of PD-L1 in HCC cells. The loss of PD-L1 expression resulted in
the inhibition of TGF-β1-mediated EMT monitored by reversal of EMT marker expression
along with reduced motility. These findings provide a valuable strategy to potentially
enhance the efficacy of Sorafenib by utilising a combinatorial treatment approach with the
PD-L1 blocker and TGF-β inhibitor. However, the TGF-β inhibitor drug in cancer therapy
can cause side effects in patients based on toxicity in preclinical studies [61–63]. As TGF-β
inhibitors are not potent cytotoxic compounds, the side-effects following treatment can be
minimised or avoided with adjustments such as dose assessment, selection of appropriate
therapeutic combination with either chemotherapy or radiotherapy or immunotherapy,
and using robust biomarkers to select appropriate patients who can benefit from the treat-
ment [62,64–66]. For an instance, Galunisertib, a TGF-β inhibitor drug, caused cardiac
toxicity in preclinical animal models [61,65]. However, the development of an intermittent
dosing schedule by pharmacological, pharmacodynamics, and toxicology modelling was
utilised in glioma patients, leading to no cardiac toxicity [65,67–69]. Not much is known
regarding the possible toxicity of SB431542 in patients with HCC, and thus further studies
to ascertain the adverse effects of the combination treatment involving the TGF-β inhibitor
including SB431542 and means to reduce these adverse effects in HCC experimental models
is warranted.

Ours is the first study to report combined inhibition of the TGF-β1-induced EMT and
immune checkpoint to circumvent resistance to Sorafenib in HCC. We demonstrated a
synergistic effect of Sorafenib and SB431542 as a combination drug treatment with the
web-based application SynergyFinder 2.0. We reported enhanced cytotoxicity of Sorafenib
against HCC cells when combined with EMT inhibitor and PD-L1 inhibition compared with
Sorafenib alone, as demonstrated by the cell viability assay. The IC50 value of Sorafenib was
significantly reduced with the combination approach. The combination treatment approach
also resulted in the reversal of the EMT phenotype along with a trend in reduction of the
migratory ability of HCC cells.

Previous studies have exploited numerous Sorafenib resistance mechanisms in HCC to
develop an effective combination approach to treat Sorafenib refractory HCC. Studies have
reported the use of the anti-epileptic drug Valproic acid (VPA) to overcome resistance to
Sorafenib in HCC [70–72]. Treatment with Ulinastatin, a urinary trypsin inhibitor, inhibited
TNF-α to overcome resistance to Sorafenib in HCC cells [43]. Another study revealed
that the inhibition of macrophage-derived chemokine CCL22 with C-021 when combined
with Sorafenib increased anti-tumour efficacy in vivo [7]. Furthermore, depletion of long
non-coding RNA H19 improved Sorafenib sensitivity in HCC cells by decreasing the
expression of miR-675, resulting in the inhibition of EMT [73]. Our findings also revealed
that TGF-β1-induced EMT may be involved in upregulated immune checkpoint expression,
thus resulting in the development of Sorafenib resistance in HCC cells.
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5. Conclusions

The combined targeting of EMT and PD-L1 can be an efficacious approach to circum-
vent Sorafenib resistance in HCC. Validation of our in-vitro findings in in-vivo settings
to assess whether combination therapy is accompanied by changes in tumor growth and
metastatic capabilities is warranted. The encouraging results presented herein warrant fu-
ture studies for the application of TGF-β and immune checkpoint inhibitors in combination
with Sorafenib to treat Sorafenib reticent HCC.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/jcm10091889/s1: Figure S1: IC50 concentration of Sorafenib in HCC cells. Cell viability
assay demonstrated percentage survival of HCC cells at various dose concentration of Sorafenib
(µM), Figure S2: Sorafenib treatment activates EMT in Hep3B cells, Figure S3: Sorafenib treatment in
HCC cells, Figure S4: Silencing of PD-L1 in HCC cells, Figure S5: Drug combination of Sorafenib and
SB431542 shows synergistic inhibition effect, Figure S6: Combination treatment of Sorafenib with
PD-L1 knockdown and SB431542 reduces expression of PD-L1 in HCC cells.
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