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Abstract: Background: The aim of this study was to develop and evaluate a machine learning (ML)
model to predict invasive bacterial infections (IBIs) in young febrile infants visiting the emergency
department (ED). Methods: This retrospective study was conducted in the EDs of three medical
centers across Taiwan from 2011 to 2018. We included patients age in 0–60 days who were visiting
the ED with clinical symptoms of fever. We developed three different ML algorithms, including
logistic regression (LR), supportive vector machine (SVM), and extreme gradient boosting (XGboost),
comparing their performance at predicting IBIs to a previous validated score system (IBI score).
Results: During the study period, 4211 patients were included, where 126 (3.1%) had IBI. A total of
eight, five, and seven features were used in the LR, SVM, and XGboost through the feature selection
process, respectively. The ML models can achieve a better AUROC value when predicting IBIs
in young infants compared with the IBI score (LR: 0.85 vs. SVM: 0.84 vs. XGBoost: 0.85 vs. IBI
score: 0.70, p-value < 0.001). Using a cost sensitive learning algorithm, all ML models showed better
specificity in predicting IBIs at a 90% sensitivity level compared to an IBI score > 2 (LR: 0.59 vs. SVM:
0.60 vs. XGBoost: 0.57 vs. IBI score >2: 0.43, p-value < 0.001). Conclusions: All ML models developed
in this study outperformed the traditional scoring system in stratifying low-risk febrile infants after
the standardized sensitivity level.

Keywords: machine learning; invasive bacterial infection; young infant fever; emergency department

1. Introduction

Febrile infants ≤ 60 days of age are prone to contracting serious bacterial infections
(SBIs). However, no reliable physical examination findings or specialized routine laboratory
investigations exist that can aid a clinician in differentiating an SBI from benign viral
infections. Although several criteria (Boston, Philadelphia, and Rochester) proposed
to stratify low-risk patients [1–3] are regarded as commonly used assessment tools, the
development of novel diagnostic tools and changes in epidemiology [4] have led to a
decrease in the adherence to these guidelines by clinical physicians [5–7]. This issue urged
the formulation of a new management guideline to effectuate improvements on the several
protocols proposed earlier [8,9].

Urinary tract infections (UTIs) constitute the majority of SBIs in febrile infants [10–12].
Urinalysis is a highly noninvasive and sensitive method that facilitates diagnosis for UTI
and is performed in an emergency department (ED) [13]. Therefore, focusing on the specific
type of infection was more important to ED physicians than the generalized concept of
SBIs, in terms of evaluation and management. Consequently, the term “invasive bacterial
infection (IBI)”, including bacteremia and bacterial meningitis, which were more likely to
result in adverse outcomes [14], gained more popularity [15–17].
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Several studies focusing on developing prediction models for identifying young
infants at low-risk for IBIs have been reported over the past few years [18,19]. In 2014,
Mintegi et al. adopted various parameters, including clinical appearance, age, urinalysis
results, and laboratory examinations such as white blood cell (WBC) count, c-reactive
protein (CRP), and procalcitonin tests, to achieve better prediction performance than that
of existing protocols [19]. As procalcitonin and CRP levels are not routinely obtained in
general practice, Aronson et al. further proposed a prediction model called “IBI score”
that employed only four characteristics (age, temperature, urinalysis results, and absolute
neutrophil count) to enhance the generalizability of the model [20].

Machine learning (ML), as an application of artificial intelligence using computer-
based algorithms that can directly learn and identify trends from a dataset, has exhibited
promising results on the diagnosis of sepsis and predicted clinical outcomes in adult
patients in the ED [21–24]. However, to the best of our knowledge, a study on the prediction
of IBIs in young infants based on ML algorithms has not been conducted. Thus, the objective
of this study was to develop and validate an ML model to predict the possibility of IBIs
among young febrile infants based on certain clinical parameters.

2. Materials and Methods
2.1. Study Design

This paper details a retrospective study conducted in the EDs of three medical centers
across Taiwan, from 1 January 2011 to 31 December 2018. All three hospitals are branches
of the same healthcare system and are geographically well dispersed. The three hospitals
were located in northern, middle east, and southern Taiwan with annual pediatric ED visit
of 30,000, 10,000, and 20,000, respectively. The study was approved by the institutional
review board of the Chang Gung Medical Foundation (IRB number: 202001949B0, Date of
Approval: 24 November 2020). The patient and physician records and information were
anonymized and deidentified prior to the analysis.

2.2. Patient Population and Data Collection

All patients aged 0–60 days visiting the ED with clinical symptoms of fever in the
period mentioned above were included as subjects in this study. Patients with subjectively
described fever or elevated body temperature noted at ED admission were both included.
Patients with missing laboratory data, uncertain test results (due to the inability to obtain
blood or cerebral spinal fluid (CSF) culture reports), or complex chronic conditions were
excluded from the study population, along with transfers from other hospitals and prema-
ture infants [25]. The parameters collected were age, sex, vital signs during the ED visit,
and laboratory test results. In this study, the growth of a pathogen observed in the blood
and CSF cultures was considered to be an IBI [16].

2.3. Feature Selection

Previous statistical analyses focused on the association between features and out-
comes, in which p-values were used as a measure of association [26,27]. In contrast, we
determined the order of importance among the features, using a forward stepwise method
to control overfitting, and included the most suitable subsets of these features. This method
used a sequence of steps so that only one feature can enter at a time. In most cases, the
process converged to a subset of features that helped the ML model yield the best pre-
diction performance, which typically used the value of area under the receiver-operating
characteristic curve [AUROC] [28] as an evaluation tool in an imbalanced dataset. The best
feature subset of the AUROC value was used for ML training.

2.4. Machine Learning Models

We developed and trained three ML algorithms in this study, i.e., logistic regression
(LR), support vector machine (SVM), and extreme gradient boosting (XGBoost), using the
TensorFlow 2.3 package. LR is a predictive analysis algorithm based on the concept of
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probability, which uses the sigmoid function to derive the predicted output for classification.
SVM is another ML model commonly used for solving classification problems. The SVM
constructs a set of hyperplanes in a higher-dimensional space to obtain the largest distance
to the nearest training data point of any class. The larger the distance of this margin
achieved, the lower the generalization error [29]. This method usually performed better
than LR. In contrast, XGBoost is an ensemble learning algorithm proposed for sparse data
and weighted quantile sketch. XGBoost was developed to solve real-world imbalanced
data problems using the stacking of decision trees [30].

As the probability of IBI was low in the general population visiting the ED, IBI
prediction was considered as an imbalanced class problem. In this study, we replaced the
loss function of the cross entropy, typically used in ML classification problem, with the cost
sensitive matrix. The essence of the cost sensitive method helps the ML model make the
optimal decision while accounting for the cost of the prediction error during training to
avoid deviations in the prediction performance to the non-IBI group [31].

2.5. Model Evaluation and Statistical Analysis

All included patients were randomly assigned into five groups which contained 20%
of patients, and the developed ML models were assessed using 5-fold cross validation,
which means one group was regarded as a validation set and the other four were regarded
as training sets each time. The result of model performance was then compared to the IBI
score devised by Aronson et al. [20] to predict IBIs in young febrile infants ≤ 60 days old.
The IBI score were developed statistically and ranged from 0–10, the higher scores indicated
higher risk of IBIs (Table 1). Other statistically derived scoring systems in previous studies,
such as the step-by-step method [19] and lab-score [18], were not included for comparison,
as the procalcitonin test was not conducted for most of the patients in this study.

Table 1. Invasive bacterial infection (IBI) score.

Predictor Points a

Age < 21 days old 1
Highest temperature in the ED 38.0–38.4 ◦C 2

Highest temperature in the ED ≥ 38.4 ◦C 4
Abnormal urinalysis result b 3

ANC ≥ 5185 cells per µL 2
a Total possible scores ranged from 0 to 10. b Urine dipstick with positive leukocyte esterase or positive nitrites or
urine microscopy with >5 WBCs per high-power field or >5 WBCs per mm3 on enhanced urinalysis.

We estimated the AUROC curve with sensitivity and specificity as the performance
parameters. For each model, we adjusted the class weight on the outcome prediction to
prioritize sensitivity at a level of 90% and compared the predicted results with the IBI score
at the same level (IBI score ≥ 2). The above statistical analyses were performed using
Python 3.8 with the Scikit-learn 0.22.2 package [32].

3. Results

In the study period, 4211 patients were included for analysis. Patients’ distribution
and demographics in three hospitals were shown in Table 2. A total of 126 (3.1%) patients
had IBI; among them, 117 (2.8%) and 18 (0.4%) patients had bacteremia and bacterial
meningitis, respectively. The clinical characteristics of the patients with and without IBI
are demonstrated in Table 3. The factors significantly associated with IBI were age (31
(20–43) vs. 36 (23–50) days, p = 0.001), temperature at triage (38.4 (37.9–38.9) vs. 37.7
(37.1–38.3) ◦C, p < 0.001), heart rate (177 (161–189) vs. 159 (143–175) per minute, p < 0.001),
and laboratory tests, namely hemoglobin, platelet, C-reactive protein, differential count
of WBC, including neutrophil, band, eosinophil, lymphocyte, and abnormal urine tests.
The IBI score was significantly higher in patients with IBI than that of those without IBI (4
(2–6) vs. 2 (0–4), p < 0.001).
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Table 2. Distribution and demographics of patients in three examined hospitals.

Northern Hospital
Mean (SD)/n(%)

Middle West Hospital
Mean (SD)/n(%)

Southern Hospital
Mean (SD)/n(%) p-Value

Total number of patients 2653 168 1390
Age, days-old 32 (18.0) 31 (17.5) 32 (18.1) 0.504

Male 1552 (58.5) 91 (54.2) 819 (58.9) 0.497
IBI 82 (3.1) 3 (1.8) 41 (2.9) 0.625

Bacteremia 76 (2.9) 2 (1.2) 39 (2.8) 0.439
Bacterial Meningitis 14 (0.5) 1 (0.6) 3 (0.2) 0.333

Table 3. Demographic and clinical characteristic comparison between patients with and without
invasive bacterial infections.

With IBI (n = 126) Without IBI
(n = 4085) p-Value

Age, d, median (IQR) 31 (20–43) 36 (23–50) 0.001
Male sex, n (%) 78 (61.9) 2384 (58.4) 0.463

Vital signs
Triage temperature, median (IQR) 38.4 (37.9–38.9) 37.7 (37.1–38.3) <0.001

Highest ED temperature, median (IQR) 38.6 (38.0–39.1) 37.8 (37.2–38.4) <0.001
Triage HR, median (IQR) 177 (161–189) 159 (143–175) <0.001

Laboratory test
WBC, median (IQR) 10.9 (6.4–14.1) 11.2 (8.2–13.4) 0.462
Hb, median (IQR) 11.6 (9.8–12.8) 12.3 (10.2–14.2) <0.001

Platelet, median (IQR) 365 (285–441) 389 (302–458) 0.027
Neutrophil, median (IQR) 55.7 (43.7–69.1) 37.1 (24–49) <0.001

Band, mean 0 (0–1.5) 0 (0) <0.001
Eosinophil, median (IQR) 0.8 (0–2.0) 2 (1–4) <0.001

Lymphocyte, median (IQR) 33.9 (22.8–45.1) 47.5 (35.2–60.0) <0.001
ANC, median (IQR) 6397 (2828–8795) 4368 (2112–5546) <0.001
CRP, median (IQR) 35.2 (2.4–47.6) 0.8 (0–5.7) <0.001

Abnormal urine test, n (%) 61 (48.6) 740 (18.2) <0.001
IBI score, median (IQR) 4 (2–6) 2 (0–4) <0.001

IBI ≥ 2, n (%) 110 (87.3) 2345 (57.4) <0.001

The results of the forward stepwise feature selection method performed for each of
the ML models are described in Table 4. Among the three models, SVM used the least
number of features to achieve the highest AUROC value (0.84 ± 0.03). Among these, the
common shared features were CRP and band. The neutrophil count and heart rate were
also adopted in two out of three models.

Table 4. Adopted features in the developed machine learning (ML) models using the stepwise feature
selection method.

Logistic Regression SVM XGBoost

1st Neutrophil CRP Eosinophil
2nd CRP Heart Rate Band
3rd Lymphocyte Neutrophil WBC
4th Basophil Basophil CRP
5th Band Band Heart Rate
6th Platelet ANC
7th Age Monocyte
8th Temperature

Analysis of variance (ANOVA) was performed to compare the performance of the
ML models with the IBI score (Table 5). All the ML models outperformed the IBI score
in the prediction of IBI in young febrile infants based on the AUROC level. The receiver
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operating characteristic curves of all the evaluated models are illustrated in Figure 1. There
was no significant difference in the AUROC value among the selected ML models in the
post-hoc test. After class-weight adjustment, the ML models demonstrated no statistical
difference in sensitivity of IBI prediction compared with using an IBI score of ≥2 as a
predictor. In contrast, the ML models displayed better specificity levels than those of the
IBI score. Among the three models, the specificity for IBI prediction was slightly better in
LR and SVM than XGBoost, with significant differences in post-hoc analysis.

Table 5. ANOVA analysis of outcome prediction using the IBI score and developed ML models.

Outcome, Mean (SD) IBI Score LR SVM XGBoost p-Value

AUROC 0.70 (0.03) * 0.85 (0.04) 0.84 (0.03) 0.84 (0.03) <0.001
IBI score ≥ 2
Sensitivity 0.85 (0.06) 0.90 (0.07) 0.91 (0.07) 0.90 (0.08) 0.219
Specificity 0.43(0.01) * 0.59 (0.02) ** 0.60 (0.03) ** 0.57 (0.02) <0.001

* significantly lower than the outcomes of other models in the post-hoc test. ** significantly higher than the
outcomes of other models in the post-hoc test.
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4. Discussion

Ramgopal et al. [33] developed various ML models, including the LR, SVM, RF, and
single-layer neural networks, to predict SBIs in young febrile infants. With a 9.3% incidence
of SBIs in the included patients, the ML techniques were able to produce better results
than those of previous scoring systems. In this study, we extended the above-mentioned
study to predict IBIs in young febrile infants visiting the ED, as bacteremia and bacterial
meningitis are difficult to diagnose in EDs, and UTIs can usually be diagnosed with a
urinalysis. This finding showed that urinalysis is the most important feature for prediction
of SBI in that study, while UTIs account for 88.4% in all SBI patients. Our study focused on
predicting IBIs and showed that ML was still able to achieve better AUROC values when
predicting IBIs compared to the IBI score.

Another difference between our study and Ramgopal et al. is that we did not include
procalcitonin as a feature in developing ML models. We also did not exclude patients of
critical appearance. The major reason for the design is we tend to keep as many patients as
possible to avoid model bias on clinical application. The difference can be noticed as only
20.0% patients encountered were included in Ramgopal’s study, and most of the patients
encountered were included in our study.
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In this study, we used a cost sensitive technique to manage the imbalanced data
problem. Cost-sensitive algorithms are a subfield of ML and are commonly adopted
during the training of ML models as imbalanced data is frequently observed in real-world
scenarios. In basic supervised ML models, the algorithm tends to lean toward the majority
of the population, which affects the application of the model. For example, if disease X
occurred in only 1% of the study population, the model can easily predict that no one
in the population has disease X as this would be true in 99% of the cases. Cost-sensitive
methods were hence developed to solve this problem by assigning more cost when the
model predicted trends in the minority population inaccurately during training [34,35].

With aid from practical ML applications, the result of this study can reduce unnec-
essary admissions and prolonged antibiotic use in low-risk patients. In clinical practices,
physicians can prioritize high sensitivity to differentiate IBIs from benign viral infections
in young febrile infants. With the low prevalence of IBIs among young infants, previous
models can only achieve a 46.9–52.0% specificity in the prediction of IBIs at a 90% sensitivity
level [9,20]. Using the cost sensitive algorithm, we were able to set the sensitivity of the
prediction models to 90% and evaluate their performance on the specificity at a similar
standard. The results showed that all three models outperformed the IBI score at stratifying
low-risk patients (Table 5).

A total of eight, five, and seven features were used in the LR, SVM, and XGboost,
respectively, to achieve optimal AUROC levels during training through the stepwise fea-
ture selection method (Table 4). The common features extracted in the ML models based
on the adopted parameters were of reasonable relevance, as CRP, neutrophil, and band
counts were reported to have a positive correlation with bacterial infections in young
infants [17,36]. Compared to the IBI score, which consisted of four different parameters to
predict IBI, commonly shared parameters in ML models were ANC and neutrophil. Age
and temperature were only adopted in LR. SVM and XGBoost did not acquire these two fea-
tures and were still able to achieve similar AUC values as LR. Increase of temperature was
one of the vital signs that correlated with pediatric sepsis. However, a recent study showed
that although IBI was more likely with higher temperatures, degree of fever should not
be used in the risk stratification of febrile infants [37]. On the other hand, bacteremia was
associated with UTIs in 4–10% of febrile infants [38]. It was reasonable to include abnormal
urinalysis in ML models to predict IBIs in febrile infants. One possible cause that all of
the ML models did not use abnormal urinalysis as a ML feature is that we adopted CRP
as one of the features, which was proved to be able to stratify risk in febrile infants with
leukocyturia in multiple studies [39,40].

A multicenter study conducted in 2017 discovered that none of the parameters in a
complete blood cell count were able to efficiently predict IBIs in young infants [16]. In
this study, we used the stepwise feature-selection method not only to demonstrate the
real-world applicability of the extracted features, but also to attempt to obtain the highest
possible accuracy for each of the N-feature choices among all of the feature sets. The
idea behind deploying a forward stepwise regression for feature selection, instead of a
regression analysis, was to achieve better performance from the ML models using feature
combinations, rather than combining statistically significant features. Consequently, we
were also able to enumerate the selected features in an orderly manner based on their level
of importance to the model.

Although ML models can directly learn from the dataset and improve the diagnosis
and outcome prediction in several areas across medicine, the black-box nature of each
network can present challenges when applying or extending the proposed models to
clinical practice. In this study, we attempted to overcome this problem using the stepwise
feature-selection method and selecting features with better generalizability, such as age,
sex, vital signs, and laboratory test results. We speculate that the results of our study can
provide a reference for the application of ML models across various healthcare systems.
However, we observed a limitation. As this is a retrospective study, data could only be
collected based on past medical records. More recent laboratory tests that may have direct
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links to pediatric sepsis, such as procalcitonin or lactate [41,42], could not be included as
a large amount of data was not obtained during the ED visit. This situation limited the
comparison of the developed ML models with other recently reported prediction models.

5. Conclusions

In this study, we developed and evaluated the performance of three ML models,
including LR, SVM, and XGBoost, to predict IBIs in young febrile infants in the ED. All the
ML models outperformed traditional scoring systems in stratifying low-risk febrile infants
after standardized sensitivity level. Among the three, the SVM algorithm exploited the
least number of features to achieve the optimal result.
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