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Abstract: Infective endocarditis, osteomyelitis, and osteosynthesis-associated infections are mostly
caused by Gram-positive bacteria. They are often difficult to treat and are associated with a poor
prognosis. In the past 20 years, nine antibiotic drugs with predominant activity against Gram-
positive bacteria have been introduced and approved by the Food and Drug Administration or
the European Medicines Agency: ceftaroline, daptomycin, telavancin, dalbavancin, oritavancin,
linezolid, tedizolid, delafloxacin, and omadacycline. This narrative review aims to provide an
overview on these antibiotics with a special focus on their use in infective endocarditis, osteomyelitis,
and osteosynthesis-associated infections. Although some of these approved antibiotics are promising,
they should not be used as first- or second-line therapy, awaiting more clinical data.

Keywords: endocarditis; osteomyelitis; prosthetic joint infection; Gram-positive; new-generation
antibiotics

1. Introduction

Infective endocarditis (IE), osteomyelitis, and osteosynthesis-associated infections
(OAI) are infectious diseases that are difficult to treat and associated with a poor progno-
sis [1,2]. The majority of these infections are caused by Gram-positive micro-organisms,
including methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant
Enterococcus faecium (VRE). To treat these infections, usually a combination of surgery and
antibiotic treatment is needed. However, antibiotic treatment may be challenging due to
high bacterial loads, difficulty of antibiotics to achieve adequate drug concentrations at the
site of infection, and biofilm formation [3,4].

In the past 20 years, several antibiotics with predominant activity against Gram-
positive bacteria have been developed and approved by the Food and Drug Administration
(FDA) or the European Medicines Agency (EMA). Although most of these antibiotics are
not approved for these indications, they might also be used to treat IE, osteomyelitis, and
osteosynthesis-associated infections. Previous reviews have been published on the use of
just a few of these novel antibiotics in complicated infections [5,6]. Other reviews focused
on the use of these novel antibiotics for approved indications [7–11]. Instead, the aim of
this review is to provide an overview of nine of these new antibiotics with a special focus
on their use in the treatment of IE, osteomyelitis, and osteosynthesis-associated infections.

2. Materials and Methods

We first identified antibiotics with predominant activity against Gram-positive cocci
that were approved by the FDA and/or EMA after 2000. Next, we performed a liter-
ature search in MEDLINE to identify (preferably clinical or, if not available, animal or
in vitro) studies published or accepted for publication since 2000 on the use of these antibi-
otics for the indications as mentioned above. As such, the search term of each antibiotic
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agent was combined with “endocarditis”, “osteomyelitis”, “prosthetic joint infection”,
and “bacteremia”. Studies were selected on the basis of title and abstract, only articles
published in English were reviewed. Published studies on pediatric patients (<18 years)
were not included.

3. Results
3.1. Ceftaroline

Ceftaroline is the only FDA and EMA approved beta-lactam antibiotic with activity
against methicillin-resistant Staphylococcus aureus (MRSA), which is due to its high affinity
for PBP2a [12]. Next to its in vitro activity against S. aureus, ceftaroline is active in vitro
against coagulase-negative staphylococci (CoNS) and streptococci but shows no activity
against E. faecium. The activity of ceftaroline against Enterococcus faecalis varies, with
minimum inhibitory concentrations (MICs) between 0.12 and 32 mg/L [13,14].

Ceftaroline is approved by the FDA and EMA for acute bacterial skin and skin struc-
ture infection (ABSSSI) and community-acquired pneumonia (CAP) with an approved
dose of 600 mg b.i.d. (bis in die/twice daily) IV (intravenous) (Table 1). Several studies
showed that increasing the dose to 600 mg t.i.d. (ter in die/thrice daily), which can be
used to treat infections due to S. aureus with ceftaroline MICs of ≥2 mg/L [15,16], is safe
and well tolerated [17,18]. The clearance is predominantly renal and dose adjustment is
required when creatinine clearance is below 50 mL/min (Table 1).

Ceftaroline in Infective Endocarditis and Osteomyelitis

A phase IV registry (CAPTURE) included 55 patients with proven IE (26 right sided,
25 left sided, 4 bilateral) of which 80% was caused by MRSA [19]. Patients were treated
for a median of 11 days (range 2–45 days). During this time, 41.8% of patients received
ceftaroline monotherapy and 58.2% received ceftaroline with concurrent antibiotics (34.5%
daptomycin, 16.4% vancomycin, and 12.7% rifampin). In all, 70.9% of the cases showed
clinical cure or improvement (80.8% in right-sided IE, 68.0% in left-sided IE, but only 25%
in bilateral IE). The monotherapy group improved in 82.6% of cases, whereas 62.5% of
patients receiving combination therapy showed improvement. However, this could be
due to the selection of patients. Of the 44 cases caused by MRSA, 77.3% achieved clinical
success. No difference in success rate was observed between patients receiving 600 mg
b.i.d. or t.i.d.

The same registry evaluated 150 patients with osteomyelitis (62% caused by MRSA,
21.3% had osteosynthesis-associated infections) of whom 14.7% underwent surgery [20].
The majority (76%) of these patients received other antibiotics prior to ceftaroline (of which
54% received vancomycin). Moreover, 66.7% of patients (100/150) received ceftaroline
monotherapy, and the rest of the patients received concurrent therapy (of which 36% were
on metronidazole). Median treatment duration was 6 days (range 2–45 days). In this
study, clinical success (i.e., cure or improvement based on individual physician assessment)
was achieved in 92.7% of the patients. No data were presented on the subgroup with
osteosynthesis-associated infections.

For both indications, it is important to note the short duration of ceftaroline treatment
in these studies. This could be partly explained by the fact that it was often used as second-
line or rescue treatment. This makes it very complicated to draw conclusions on the
efficacy of ceftaroline for these indications. The same applies for a retrospective analysis
of 29 patients with MRSA bloodstream infections (BSIs), of whom 15 cases had IE (four
right sided, 11 left sided), three cases had cardiac device infections, and nine cases had soft
tissue or bone infection [21]. These patients received ceftaroline for a minimum of three
days, and all patients received prior antibiotic treatment. No sub-analysis was performed
for IE or osteomyelitis. Overall, in nine patients, treatment was considered successful, four
patients were considered as treatment failures, and seven patients were lost to follow-up.
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Table 1. General features of nine Food and Drug Administration (FDA)- or European Medicines Agency (EMA)- approved antibiotic drugs with Gram-positive activity discussed in
this paper.

Cephalosporins Lipopeptides Lipoglycopeptides Oxazolidinones Fluoroquinolones Tetracyclines

Ceftaroline Daptomycin Telavancin Dalbavancin Oritavancin Linezolid Tedizolid Delafloxacin Omadacycline

In vitro activity

MSSA, MRSA,
CoNS,

streptococci,
some

Enterococcus
faecalis isolates

MSSA, MRSA,
CoNS,

streptococci,
enterococci

including VRE
vanA, vanB

MSSA, MRSA,
CoNS,

streptococci,
enterococci

including VRE
vanB

MSSA, MRSA,
CoNS,

streptococci,
enterococci

including VRE
vanB

MSSA, MRSA,
CoNS,

streptococci,
enterococci

including VRE
vanA, vanB

MSSA, MRSA,
CoNS,

streptococci,
enterococci

including VRE
vanA, vanB

MSSA, MRSA,
CoNS,

streptococci,
enterococci

including VRE
vanA, vanB

MSSA, MRSA,
CoNS,

streptococci, E.
faecalis

MSSA, MRSA,
CoNS,

streptococci,
enterococci

including VRE
vanA, vanB

No activity
Enterococcus
faecium, VRE
vanA, vanB

VRE vanA VRE vanA E. faecium, VRE
vanA, vanB

Drug target Cell wall
synthesis

Cell wall
synthesis

Cell wall
synthesis

Cell wall
synthesis

Cell wall
synthesis

Protein
synthesis

Protein
synthesis DNA replication Protein

synthesis

FDA/EMA
approved

dosing regimen
(for ABSSSI,

unless otherwise
mentioned)

600 mg b.i.d. IV

ABSSSI
4 mg/kg/day

IVBSI/IE
6 mg/kg/day

IV

10 mg/kg/day
IV

1500 mg IV
single

doseAlternative:
1000 mg IV

single dose at
day 1, followed

by 500 mg IV
single dose at

day 8

1200 mg IV
single dose

600 mg b.i.d. IV
/ PO

200 mg q.d. IV /
PO

300 mg b.i.d. IV
OR450 mg b.i.d.

PO

Loading dose: -
IV: 200 mg q.d.

on day 1 OR 100
mg b.i.d on day

1- PO (for
ABSSSI only):

450 mg q.d. on
day 1 and 2.

Maintenance: -
IV: 100 mg q.d.

OR- PO: 300 mg
q.d.

Recommended
dosing regimen

for IE and
OSM/PJI

600 mg b.i.d. -
t.i.d. IV (15-18)

6-12
mg/kg/day IV

(34, 37, 46)
No data No data No data No data No data No data No data



J. Clin. Med. 2021, 10, 1743 4 of 20

Table 1. Cont.

Cephalosporins Lipopeptides Lipoglycopeptides Oxazolidinones Fluoroquinolones Tetracyclines

Ceftaroline Daptomycin Telavancin Dalbavancin Oritavancin Linezolid Tedizolid Delafloxacin Omadacycline

Dose
adjustments

Creatinine
clearance:

30–50
mL/min: 400
mg b.i.d. IV;

15–30 mL/min
300 mg b.i.d.;
- ESRD/HD:
200 mg b.i.d.

Creatinine
clearance <30
mL/min, HD,

CAPD:
6 mg/kg IV
every 48 h

Creatinine
clearance:-

30-50 mL/min
7.5 mg/kg/day
- < 30 mL/min

10 mg/kg
every 48 h

Creatinine
clearance < 30

mL/min:
750 mg IV

single dose at
day 1, followed
by 375 mg IV at

day 8

Not
recommended in
mild or moderate

impairment,
pharmacokinet-
ics in patients

with severe renal
impairment has

not been
evaluated

None None

Creatinine
clearance 15–29

mL/min:
200 mg b.i.d. IV.

No dose
adjustment PO.

None

Points of
interest

Only
approved

cephalosporin
active against

MRSA

Not indicated
for pneumoni-
aMonitor CPK

and renal
function once

weekly

Renal
dysfunction

observed more
often compared

with
vancomycin

Single dose
therapy

Single dose
therapy

Oral formulation
available with 100%

oral bioavailabilityRisk
of myelosuppression

after prolonged use >14
days, monitoring

recommended

Oral
formulation

available with
91% oral

bioavailability

Oral
formulation

available with
58.8% oral

bioavailability

Oral
formulation

availableAde-
quate oral

bioavailability
only in fasted

state (≥4 h
before and 2 h

after dose)

FDA approval
(year, brand
name, and

indications)

2010, Teflaro®,
ABSSSI, CAP

2003,
Cubicin®,
ABSSSI,

right-sided
infective

endocarditis
SA,

bacteremia SA

2009, Vibativ®,
ABSSSI, HAP,

VAP

2014, Xydalba®,
ABSSSI

2014, Orbactiv®,
ABSSSI

2000, Zyvox®, - ABSSSI
(including diabetic foot

infection, without
osteomyelitis) caused

by MSSA, MRSA,
Streptococcus pyogenes,

Streptococcus agalactiae=
HAP caused by MSSA,

MRSA, Streptococcus
pneumoniae- CAP

caused by S. pneumoniae
(incl. BSI), MSSA- VRE

infections incl. BSI

2014, Sivextro®,
ABSSSI

2017 and 2019,
Baxdela®

ABSSSI (2017),
CAP (2019)

2018, Nuzyra®,
ABSSSI, CAP
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Table 1. Cont.

Cephalosporins Lipopeptides Lipoglycopeptides Oxazolidinones Fluoroquinolones Tetracyclines

Ceftaroline Daptomycin Telavancin Dalbavancin Oritavancin Linezolid Tedizolid Delafloxacin Omadacycline

EMA approval
(year, brand
name, and

indications)

2012,
Zinforo®,

ABSSSI, CAP

2006,
Cubicin®,

ABSSI,
right-sided

infective
endocarditis

SA,
bacteremia SA

Not EMA
approved

2015, Xydalba®,
ABSSSI

2015, Orbactiv®,
ABSSSI

2001, Zyvox®, ABSSSI,
HAP, CAP

2015, Sivextro®,
ABSSSI

2019,
Quofenix®,

ABSSSI

Not EMA
approved

Abbreviations: MSSA, methicillin-sensitive Staphylococcus aureus; MRSA, methicillin-resistant S. aureus; CoNS, coagulase-negative staphylococci; VRE, vancomycin-resistant E. faecium; ABSSSI, acute bacterial
skin and skin structure infections; BSI, bloodstream infections; IE, infective endocarditis; CAP, community-acquired pneumonia; HAP, hospital-acquired pneumonia; VAP, ventilator-assisted pneumonia. IV,
intravenous; PO, per os; OSM; osteomyelitis; PJI, prosthetic joint infection; q.d., quaque die/once daily; b.i.d., bis in die/twice daily; t.i.d., ter in die/three times daily; CAPD, continuous ambulatory peritoneal
dialysis; ESRD, end-stage renal disease; HD, hemodialysis; CPK, creatinine phosphokinase; FDA, Food and Drug Administration; EMA, European Medicines Agency; SA, S. aureus.
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Several studies have been published on the use of ceftaroline in bacteremia, whether
or not in combination with other antimicrobial agents. Some of these studies also included
IE and osteomyelitis cases.

In a retrospective study on 141 patients with BSI, the clinical success rate of ceftaroline
therapy was 79% [22]. Part of these patients (approximately 30%) were treated with
ceftaroline 600 mg t.i.d. Seventy-five patients with bone and joint infections were included,
with an observed success rate in this group of 95%. No further information about this
subgroup is provided.

A retrospective case control study on 32 patients with MRSA bacteremia showed
higher microbiological and clinical success of ceftaroline compared to vancomycin, al-
though not statistically significant [23]. A retrospective comparative study on MRSA BSI
(among which there were seven IE and eight osteomyelitis cases) showed similar clinical
success for ceftaroline monotherapy (n = 30) compared to daptomycin or vancomycin in
terms of relapse, readmission, and 30 day mortality [24].

As for combination therapy with ceftaroline, evidence from in vitro studies indicates
synergism between ceftaroline and daptomycin [25–28], which was retained in daptomycin-
resistant isolates [28]. However, clinical studies are inconclusive. A multicenter observa-
tional study that included 211 patients with MRSA BSI showed a similar success rate for
ceftaroline monotherapy compared to combination therapy (71.7% with daptomycin) [29].
A retrospective review described 11 patients with complicated MRSA BSI, treated with
either ceftaroline and daptomycin or ceftaroline and vancomycin [30]. The microbiological
cure was 100% for both treatment options, and there were no relapses at 30 or 60 days. A
retrospective matched cohort study on MRSA BSI included 58 patients who were treated
with daptomycin and ceftaroline and compared these with 113 patients who received stan-
dard of care (96% vancomycin) [31]. A lower mortality, a faster clearance of bacteremia and
a lower rate of relapse and recurrence were observed with combination treatment, albeit
not statistically significant. One open-label randomized controlled trial (RCT) in patients
with MRSA BSI compared the duration of bacteremia with ceftaroline and daptomycin
combination therapy to vancomycin or daptomycin monotherapy [32]. This study was
terminated prematurely due to an unexpected observed in-hospital mortality difference of
0% (0/17) versus 26% (6/23) in favor of combination therapy with no difference in duration
of bacteremia between the (small) groups. Larger prospective trials are needed in order to
draw more solid conclusions on the role of ceftaroline–daptomycin combination therapy in
this setting.

3.2. Daptomycin

Daptomycin is a cyclic lipopeptide antibiotic with bactericidal activity against staphy-
lococci, streptococci, and enterococci including VRE and MRSA [33]. It has different
mechanisms of action including disruption of cell membrane function and inhibition of
protein, DNA, and RNA synthesis.

Daptomycin is approved by the FDA and EMA for ABSSSI at a dose of 4 mg/kg/day
IV and for S. aureus BSI and right-sided IE due to S. aureus at a dose of 6 mg/kg/day IV.
Increasing the dose up to 10 mg/kg q.d. (quaque die/once daily) seemed to be tolerated
well [34]. An important adverse event of daptomycin is elevation of creatine phosphokinase
(CPK), which can be accompanied by rhabdomyolysis [35]. Therefore, at least once-weekly
CPK monitoring is required. Clearance of daptomycin is predominantly renal, and dosage
adjustment is required when creatinine clearance is <30 mL/min [33,36].

Daptomycin in Infective Endocarditis and Osteomyelitis

A study in predominately streptococcal native valve IE (NVIE) that compared 84 pa-
tients with a daptomycin-containing regimen (DCR, either monotherapy or in combination
with other antibiotics) to 140 patients with non-daptomycin-containing regimens (non-
DCR), showed that the 30 day mortality in patients with a DCR was higher than in the
patients with a non-DCR (27.4% vs. 19.3%), albeit not significant [37]. In the same study,
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61 patients with predominately staphylococcal prosthetic valve IE treated with daptomycin-
containing regimens had significant lower 30 day mortality than those without daptomycin
(6.5% vs. 38%, p < 0.001). This study also reported that the group of NVIE patients receiving
a standard dose of daptomycin (4–6 mg/kg/day) showed a two times higher mortality
risk (odds ratio 2.2, 95% CI 1.91–4.56, p = 0.02) compared to the group receiving a higher
dose of daptomycin (>8 mg/kg/day).

The efficacy of daptomycin seems to be highly dose dependent. One systematic
review and meta-analysis on daptomycin use in VRE bacteremia showed a significantly
higher 30 day mortality for daptomycin compared to linezolid [38]. However, in this
study, no doses higher than 6 mg/kg/day were reported. Another systematic review
and meta-analysis on this topic also showed a significantly higher 30 day mortality for
daptomycin standard dose (6 mg/kg/day) compared to linezolid [39]. A subset analysis
on high-dose daptomycin showed no difference in mortality compared to linezolid. Sim-
ilarly, several publications on VRE and MRSA BSI and IE showed a survival benefit for
daptomycin dosages of ≥7, 8, 9, or 10 mg/kg/day [40] compared to standard dose [41–43]
or vancomycin [44].

The European Cubicin® Outcomes Registry and Experience (EU-CORE) study investi-
gated daptomycin treatment in 638 patients with osteomyelitis (224 cases of non-prosthetic
osteomyelitis, 208 cases of osteomyelitis related to permanent or temporary orthopedic de-
vices, and 206 cases with orthopedic device infections) [45,46]. A majority of the infections
were caused by S. aureus (49.1% of the cases, of which half was MRSA), followed by CoNS
(35.1%), streptococci, and enterococci. In this study, cure or improvement was shown in
81.8% of the patients (80.3% for osteomyelitis and 85% in prosthetic- or osteosynthesis-
material-related infection). The majority (61.9%) of the patients also underwent surgical
intervention and 71.3% received prior antibiotic treatment.

A systematic review that summarized the outcome of 233 osteomyelitis patients (of
which 184 were associated with osteosynthesis material and 115 with septic arthritis or
osteomyelitis) treated with daptomycin confirmed the high clinical cure rate [46]. The
clinical cure rate was 70% in patients with orthopedic device infections and 78% in os-
teomyelitis and septic arthritis cases. This study also showed that clinical cure rate (defined
as total resolution of signs and symptoms or improvement to such an extent that no further
antibiotic treatment was necessary) depends on the dose. Clinical cure rate was 85% in
patients who received a dose of 10 mg/kg/day (interquartile range (IQR) 67–92), 85% for
6–8 mg/kg/day (IQR 63–95), and 71% for 4–6 mg/kg/day (IQR 58–80).

As for daptomycin combination therapy, several studies have been published. For dap-
tomycin in combination with rifampin, in vitro models show diverse results from possible
antagonism in an experimental endocarditis model [47] to increased efficacy [48] and bacte-
ricidal activity in biofilm-embedded bacteria in S. aureus biofilms [49]. Increased efficacy
was also shown for combination therapy in an experimental MRSA foreign-body-infection
model [50]. In response to the experimental endocarditis study [47] with possible antago-
nism, in vitro checkerboard assays were performed, which did not show antagonism [51].

In an experimental endocarditis model in rabbits, daptomycin and fosfomycin showed
synergy and rapid bactericidal activity [52]. In an RCT on MRSA BSI and IE with 155 pa-
tients, treatment success rate was 12% higher for daptomycin in combination with fos-
fomycin compared to daptomycin monotherapy, albeit not statistically significant [53].

As discussed in the ceftaroline section, daptomycin and ceftaroline combination
therapy might have a positive effect on clinical outcome [32].

3.3. Telavancin

Telavancin is a semisynthetic lipoglycopeptide antibiotic engineered to be an improved
alternative to the available glycopeptides, vancomycin and teicoplanin. It shows in vitro
activity against methicillin-sensitive S. aureus (MSSA), MRSA, CoNS, streptococci, and
VRE vanB but not vanA [54].
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Telavancin is FDA approved for ABSSSI, hospital acquired pneumonia (HAP), and
ventilator-assisted pneumonia (VAP) in a dosing regimen of 10 mg/kg/day. It was initially
EMA approved for use in nosocomial pneumonia and VAP caused by MRSA but was
withdrawn in 2018 because of commercial reasons [55]. Clearance is predominantly renal,
and dose adjustment is needed when creatinine clearance is <50 mL/min [56]. Telavancin
is associated with increased creatinine levels more often than vancomycin [57]. Moreover,
adverse drug reactions led to the discontinuation of therapy more often in the telavancin-
treated patients (8%) than in the vancomycin-treated patients (5%).

The FDA required a Risk Evaluation and Mitigation Strategy (REMS), as part of the
drug safety program, because an increased mortality rate was observed in telavancin-
treated patients with HAP/VAP with a pre-existing creatinine clearance of ≤50 mL/min,
and also fetal toxicity was observed in animal models [58,59]. Since 2017, a REMS is no
longer required [60].

Telavancin in Infective Endocarditis and Osteomyelitis

Published data on the use of telavancin in IE is limited and mostly concerns case
reports [61–63]. One case series that included 14 cases treated with telavancin for refractory
MRSA bacteremia after antibiotic treatment with vancomycin or daptomycin showed that
8 of 14 patients (57%) survived inpatient admission and were eligible for follow-up [64].
Four of them underwent surgery. Patients who died all had mitral valve IE. Among the
six patients who died, one underwent valve replacement and the other five cases were not
considered surgical candidates. The median duration of bacteremia was 12 days (range
3–26 days). Patients received vancomycin and, in some cases, daptomycin. Median time to
achieve sterilization (in 10 patients) was 1 day (1–3 days) following initiation of telavancin.

In a large observational study, 151 patients with bacteremia (13 with IE) were treated
with telavancin (57.6% MRSA) [65]. The overall median treatment duration was 9 days
but was not specified for IE. Among the 11 IE patients for whom follow-up data were
available, eight patients had a positive outcome (seven were cured and one improved;
three patients failed) at end of telavancin therapy [65]. In this study, overall, 74.2% had a
positive outcome, defined as either cure or partial response (with possible further need for
telavancin therapy).

Three observational studies have been published regarding telavancin for the treat-
ment of osteomyelitis and osteosynthesis-associated infections. These studies included
14 [66], 60 [67], and 32 [68] patients with osteomyelitis, of which 64%, 37%, and 15% had
osteosynthesis material, respectively. In the first study, surgery was performed in 57% of
patients (8/14), but this was not specified in the latter two. Clinical success, defined as
resolved or improved infection, was 78%, 73%, and 92% with a median treatment duration
of 58 days (9–66), 41 days (3–179), and 31.5 days (6–94), respectively. MRSA was the most
frequently isolated pathogen (100%, 67%, and 57%, respectively) [66–68].

For uncomplicated MRSA bacteremia, telavancin has been proven to be equally or
more effective compared to vancomycin [69,70]. A large observational study described
1065 patients who were treated with telavancin for a median treatment duration of 10 days
(range 5 – 26 days) [71]. Positive clinical outcome, either cure (defined as resolution of signs
and symptoms and no need for additional therapy) or improvement to stepdown therapy,
was reached in 77.7%. Of these 1065 cases, 27.4% concerned bone and joint infections and
14.2% IE, a positive outcome was reported in 74.2% and 78.7% of the cases, respectively.
No further information on these subgroups was reported.

3.4. Dalbavancin

Dalbavancin is a semisynthetic lipoglycopeptide antibiotic, with a half-life of approxi-
mately 8.5 days, enabling weekly dosing regimens or single-dose therapy in the treatment of
ABSSSI. It shows in vitro activity against MSSA, MRSA, CoNS, and streptococci, E. faecalis
and E. faecium, including VRE vanB but not vanA [72].
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Dalbavancin is approved by the FDA and EMA for ABSSSI in a dosing regimen of
1500 mg IV as a single dose or alternatively 1000 mg IV on day 1, followed by 500 mg
IV on day 8. Both regiments have similar rates of adverse events [73,74]. Dalbavancin is
predominately excreted via the urine. Dosage adjustment is recommended when renal
clearance is <30 mL/min [72].

Dalbavancin in Infective Endocarditis and Osteomyelitis

A retrospective multicenter study on off-label use of dalbavancin for IE (n = 25),
osteomyelitis (n = 30), OAI (n = 32), ABSSSI, and catheter-related BSI showed promising
results, with an 89% overall success rate (defined as no clinical, microbiological, or labora-
tory evidence of persistent or recurring infection at 90 days), with particular good results
for IE (91.3%) and OAI (92.7%) [75]. Different dosing regimens were used, and the median
number of administrations was three. No information was provided on whether or not
surgery is performed.

A clinical cure rate (i.e., no BSI recurrence or IE relapse/reinfection, no mortality)
of 85.3% was observed during a 12 month follow-up in an observational study assessing
dalbavancin efficacy in 83 patients with BSI, of whom 34 had proven IE (20.6% MSSA,
8.8% MRSA, 44.1% coagulase-negative staphylococci (CoNS), 20.6% streptococci, and 8.8%
E. faecalis) [76]. All patients received prior antibiotics, and surgery was performed in 10
of 15 patients with prosthetic valve IE, 7 of 8 pacemaker lead IE, and 5 out of 11 native
valve IE.

A high proportion of clinical cure (92.6%) was also observed in an observational
study of 27 patients with proven IE, of which there were 16 native valve, 6 prosthetic
valve, and 5 cardiac device-related IE, caused by CoNS (76.7%) and S. aureus (33.3%) [77].
Patients were treated with dalbavancin with a median treatment duration of six weeks
(range 1–30 weeks) and combined with surgery in 11 patients. In this study, failures were
observed in two patients only (one due to non-infective postoperative complications and
one due to incomplete surgical source control). However, the majority of the patients
(24 of 27) received other antibiotics and already had microbiological clearance prior to
dalbavancin; so, it was not clear whether the clinical success was attributable to dalbavancin.
The three patients who received dalbavancin as primary therapy showed no relapse at six
months follow-up.

One RCT has been published on dalbavancin treatment for osteomyelitis. In this RCT,
which did not include patients with osteosynthesis-associated infections, patients were
randomized to a two-dose regimen of dalbavancin 1500 mg on day 1 and 8 (n = 70), or
standard-of-care (n = 10, n = 3 vancomycin monotherapy, n = 7 vancomycin combined
with either linezolid or levofloxacin) [78]. All patients underwent baseline debridement.
In this study, MSSA and MRSA were causative pathogens in 54.3% and 5.7% of cases,
respectively. The primary endpoint, defined as recovery without the need for additional
antibiotic treatment at day 42, was reached in 97% in the dalbavancin group and 88% in
the comparator group. Clinical significance was not reported, probably due to the small
comparator group.

In an observational study with prolonged use of dalbavancin (median five doses),
64 patients with osteomyelitis and septic arthritis (45 with osteosynthesis-associated in-
fections) were included [79]. In the patients with osteosynthesis material, S. epidermidis
was the most common causative pathogen, in the rest of the patients the most common
causative pathogen was S. aureus (93.9% MRSA). Clinical cure (i.e., absence of clinical
signs of infection at the latest medical visit, without the need for additional surgery or
antibiotic treatment) was reached in 68.8% of patients with osteosynthesis-associated in-
fections (65.2% with implant retention and 76.1% with implant removal) and 73.6% in the
remaining patients.

For catheter-related BSI, in a phase 2 study with 75 patients, dalbavancin therapy
showed a significantly higher success rate than vancomycin (87% vs. 50%) [80]. Further-
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more, dalbavancin seems to be a promising option for outpatient parenteral antibiotic
therapy [81] or long-term suppression therapy [82].

As for dalbavancin combination therapy, an MRSA foreign-body-infection model
with infected cages in guinea pigs was used to determine the efficacy of dalbavancin in
combination with rifampin [83]. Dalbavancin in combination with rifampin cured 36% of
the infected cages. A similar cure rate was observed with rifampin monotherapy. During
rifampin monotherapy, rifampin resistance was observed in 38% of the treatment failures.
In combination therapy, rifampin resistance was reduced from 25% to 0% by increasing
dalbavancin dosages from 40 up to 80 mg/kg. No dalbavancin resistance was observed.

3.5. Oritavancin

Oritavancin is another semisynthetic lipoglycopeptide antibiotic with a long half-life,
providing the opportunity of weekly dosing. The spectrum of activity is largely similar to
that of dalbavancin but with additional activity against VRE vanA [84,85].

Oritavancin is approved by the FDA and EMA for ABSSSI as a single dose of
1200 mg IV. Its clearance is predominantly renal, but dose adjustment is not recommended
in mild-to-moderate renal impairment. No pharmacokinetic data are available for severe
renal impairment [84,86]. In contrast to dalbavancin, oritavancin is a weak inhibitor of
certain cytochrome P450 enzymes [84,87,88]. Oritavancin also interacts with several labora-
tory tests due to its ability to bind to the phospholipid reagent, preventing the activation of
coagulation in commonly used laboratory coagulation tests, among which were activated
Partial Thromboplastin Time (aPTT) and Prothrombin Time (PT) [89].

Oritavancin in Infective Endocarditis and Osteomyelitis

The long half-life of oritavancin provides clear practical advantages in the treatment
of infections that need long-term antibiotic treatment such as IE and osteomyelitis. Weekly
dosing can improve compliance. However, only a limited number of papers (case reports)
have been published on the use of oritavancin, especially for IE.

In a case report, a patient with recurrent VRE bacteremia due to native aortic and
mitral valve IE was successfully treated with 10 weeks of oritavancin treatment (1200 mg,
twice weekly) in combination with valve replacement surgery [90].

A recent, multicenter, retrospective descriptive study described 134 patients with
acute osteomyelitis [91]. They received four or five doses of oritavancin (1200 mg, followed
by 800 mg weekly). MRSA was the cause for 71.9%, while 6.7% had concurrent MRSA BSI.
Clinical success (defined as resolution of symptoms or improvement of symptoms and
no further need for treatment) was achieved in 88.1%. Debridement was performed in
90.3% of the cases. Another retrospective observational program described 438 patients
who received at least one dose of oritavancin [92]. Among them, 32 cases were consid-
ered complicated infections, of which 18 cases concerned osteomyelitis, three concerned
osteosynthesis-associated infections, and seven patients had BSI. Clinical success (defined
as cure or improvement after 30 days) was achieved in 93.8% of the complicated infections.
For the patients who received one single dose, clinical success was 87.7% and for multiple
dosages it was 93.7%. Prior antibiotics were administered in 71.4% of the cases.

3.6. Linezolid

Linezolid is a synthetic bacteriostatic agent of the oxazolidinone class of antibiotics
and selectively inhibits bacterial protein synthesis. Linezolid is the only antibiotic drug
mentioned in this review that is approved for the treatment of VRE infections, including
bacteremia, and is available both in IV and PO formulation. Linezolid shows in vitro
activity against MSSA, MRSA, CoNS, streptococci, and enterococci, including vanA and
vanB VRE [93].

Linezolid is approved by the FDA and EMA for ABSSSI, HAP, and CAP. The FDA
also approved linezolid for infections due to VRE, including VRE bacteremia. Its approved
dosing regimen is 600 mg b.i.d. IV/PO. Linezolid has an oral bioavailability of 100%
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with or without food [94,95]. Linezolid is predominantly excreted (partly unchanged) in
urine. No dose adjustment is needed in renal failure [93,96]. When the treatment duration
is shorter than two weeks, linezolid is generally well tolerated, but longer treatment
duration is associated with an increased risk of myelosuppression, in particular reversible
thrombocytopenia [97,98]. Therefore, patients with (prolonged) linezolid treatment should
be monitored for myelosuppression, particularly in patients with renal impairment [99].

Linezolid in Infective Endocarditis and Osteomyelitis

In a systematic review of published case reports, cure (defined as clinical improvement,
negative blood cultures, and no evidence of persistent vegetation on echocardiography)
was investigated in 33 IE patients. Of the patients, 66.7% received linezolid monotherapy,
84.8% received prior antibiotic treatment, and 24% underwent surgical intervention [100].
MRSA and vancomycin-intermediate S. aureus were the most commonly isolated cocci
(24.2% and 30.3% of cases, respectively). Cure was shown in 63.6% of the patients. Higher
success rates were reported in two small observational studies. In a study of 14 patients,
in which linezolid was used as follow-up therapy for 3 weeks and all patients underwent
valve replacement surgery and prior vancomycin treatment, a 100% success rate (i.e.,
clearance of symptoms and the absence of persistent bacteremia) was found [101]. Another
study that included nine patients (<50% underwent surgery, 44.4% was caused by MSSA,
and 22.2% by MRSA and all received prior antibiotics for a median length of 22 days)
showed a clinical cure rate of 100%, with no relapses during follow-up (mean follow-up
duration of 8.5 months) [102].

A study that assessed linezolid efficacy in 55 patients with osteomyelitis (70.9% with-
out prosthetic material, 16.4% with prosthetic material removed, and 12.7% without pros-
thetic material removal), showed clinical cure, defined as the resolution of signs and
symptoms, in 81.8% after a median of 189 days [103]. Subgroup analysis in patients with
osteomyelitis caused by VRE showed a 93.9% cure rate at short-term follow-up (7 to 10 days
after discontinuation of linezolid). One patient with VRE infection was available for long-
term follow-up (one month after discontinuation of linezolid), and this patient was cured.
Smaller studies also show high cure rates. As such, a 100% cure rate (i.e., clinical recovery,
normalization of inflammatory markers, and no need for reoperation or rehospitalization)
was shown in a study in 22 patients with chronic osteosynthesis-associated infection (18 as-
sociated with fracture fixation and four with arthroplasties), with 14 patients available for
follow-up after 6 months [104]. All patients underwent surgery (debridement and removal
of all implants), and 45% of the infections were caused by MRSA. Use of antibiotics other
than linezolid was not specified. Another study in 11 patients with osteomyelitis (45%
of the infections were caused by MRSA, all patients underwent surgery), of which two
were implant-related, also showed 100% remission according to clinical, laboratory, and
radiographic criteria [105].

Linezolid is approved by the FDA for the treatment of VRE BSI. Comparative studies
of linezolid and daptomycin are discussed in the daptomycin section.

In the case of persistent MRSA bacteremia (≥7 days), linezolid proved to be statistically
more effective than vancomycin in terms of early microbiological response, success rate,
and mortality rate [106]. However, statistical significance for better outcome was not
confirmed by another study on the same topic [107].

As for linezolid combination therapy, an in vitro model for staphylococcal biofilm
showed significantly increased biofilm activity of linezolid in combination with rifampin
compared to that of linezolid monotherapy [108]. This combination did not lead to rifampin
resistance. However, levofloxacin with or without rifampin was still more effective. A
retrospective study compared linezolid in combination with rifampin to cotrimoxazole
in combination with rifampin in 56 bone and joint infections [109]. No difference was
observed in either efficacy or tolerance.
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3.7. Tedizolid

Like linezolid, tedizolid belongs to the oxazolidinone class of drugs and is available
in an oral formulation with the same spectrum of activity, including activity against
VRE [110,111].

Tedizolid is approved for ABSSSI by the FDA and EMA in a dosing regimen of
200 mg q.d. PO or IV. Oral bioavailability is 91% and independent of food intake [112].
Clearance is predominantly hepatic, but dose adjustment is not required in both hepatic
and renal impairment [113]. Treatment duration of 6 days for ABSSI was shown to be
non-inferior to 10 days of linezolid therapy [114,115]. Like linezolid, tedizolid is associated
with thrombocytopenia, albeit with lower frequency than linezolid [116], which might be
partly explained by the shorter treatment duration of tedizolid (6 days) compared to that of
linezolid (10 days). Similar to linezolid, the proportion of patients with thrombocytopenia
has been shown to increase when the treatment duration is prolonged and in patients with
chronic renal failure.

Tedizolid in Infective Endocarditis and Osteomyelitis

To the best of our knowledge, no clinical data on tedizolid efficacy in patients with IE
and osteomyelitis have been published. An in vitro study in a biofilm model showed that
tedizolid was not effective in eradicating mature S. aureus and S. epidermidis biofilms [117].

A rabbit model of MRSA aortic valve IE showed that tedizolid and vancomycin
were less effective than daptomycin after 4 days of treatment [118]. However, in a rat
endocarditis model, the efficacy of 2 days of tedizolid step-down therapy after 3 days of
daptomycin administration was similar to that of daptomycin for 5 days, which might
suggest a role for tedizolid step-down therapy [119]. Caution is needed in extrapolating
these results to humans.

In a rat model of MRSA and methicillin resistant Staphylococcus epidermidis (MRSE)
osteosynthesis-associated infections, tedizolid for 21 days, either alone or in combination
with rifampin, reduced bacterial counts [120,121]. This was comparable to vancomycin
with or without rifampin, and bacterial counts were significantly lower than in the non-
treatment group.

As for combination therapy, in an in vitro model of endocardial vegetations, antago-
nism was observed when tedizolid was combined with daptomycin [122].

3.8. Delafloxacin

Delafloxacin belongs to the fluoroquinolone class of drugs and is active in vitro against
MSSA, MRSA, CoNS, and streptococci. Interestingly, delafloxacin retains activity against
fluoroquinolone-resistant S. aureus strains [123–126]. Specific features in the delafloxacin
molecule lead to enhanced activity in acidic environment due to its anionic character, which
eventually leads to improved activity [127,128]. According to EUCAST, there is insufficient
evidence that enterococci are a good target for therapy with delafloxacin.

Delafloxacin was approved by the FDA and EMA for ABSSSI and additionally for
CAP by the FDA. The approved dose is 300 mg b.i.d. IV and 450 mg b.i.d. PO. Oral
bioavailability is approximately 58–70% [129,130]. The oral dose of 450 mg leads to a
similar total exposure to that of 300 mg IV and is not affected by food intake [129,131].
Clearance is predominantly renal, and dose adjustment for the IV formulation is required
when creatinine clearance is below 30 mL/min. No adjustment is needed either for the oral
formulation or in hepatic impairment [132]. Like other fluoroquinolones, delafloxacin may
be associated with increased risk of serious adverse events, such as tendon ruptures and
tendinitis, and aneurysmatic and neurological complications, for which the FDA issued a
fluoroquinolone box warning [133]. Since specific data on delafloxacin are still limited, the
occurrence of side effects should be monitored closely [134].
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Delafloxacin in Infective Endocarditis and Osteomyelitis

No clinical data have been published on the use of delafloxacin for IE and osteomyelitis.
In general, other fluoroquinolones such as ciprofloxacin, levofloxacin, and moxifloxacin
are known to be efficacious in treating osteomyelitis, including osteosynthesis-associated
infections, due to their ability to eradicate biofilm formation on osteosynthesis material
surface [123]. An in vitro study using biofilm models with 96-wells plates confirms the
ability of delafloxacin to reduce S. aureus biofilm viability and depth [135,136]. In this
study, its biofilm penetration was also deeper in comparison to that of daptomycin and
vancomycin, perhaps due to its smaller molecular mass and increased activity in an acidic
environment [127,136].

3.9. Omadacycline

Omadacycline is a member of a new subclass of tetracyclines. It shows in vitro activity
against MSSA, MRSA CoNS, streptococci, and enterococci including VRE [137,138].

Omadacycline is FDA approved for the treatment of ABSSSI and CAP and is available
both in IV and oral formulation. The approved dosing regimen for ABSSSI requires a
loading dose of 200 mg q.d. IV or 100 mg b.i.d. IV on day 1, or 450 mg q.d. PO on day
1 and 2. The maintenance dose is 100 mg q.d. IV or 300 mg q.d. PO. Despite limited
oral bioavailability (34.5%), similar exposure can be achieved with 300 mg PO as with
100 mg IV [139]. Adequate oral bioavailability can only be achieved in the fasted state
≥4 h before and 2 h after intake. EMA approval of omadacycline was withdrawn in
2019 by the authorization holder because, according to EMA, the benefits of the drug
did not outweigh the risks. Although omadacycline treatment in patients with CAP was
non-inferior compared to moxifloxacin treatment, an unexplained imbalance in mortality
rate was noticed at the expense of omadacycline [140]. Although this could not be solely
attributed to omadacycline, it did lead to a negative benefit-to-risk ratio according to the
EMA [141]. Approval for ABSSSI only was not considered advantageous from a commercial
point of view. Omadacycline is primarily excreted unchanged in feces and secondarily
excreted in urine [139], but no dose adjustment is needed in impaired renal or hepatic
function [142]. Omadacycline has comparable adverse events to other tetracyclines such
as tooth discoloration, enamel hypoplasia, and inhibition of bone growth. However, no
cases of photosensitivity were observed in the phase III registration studies that included
1073 patients [143].

Omadacycline in Infective Endocarditis and Osteomyelitis

No clinical data or case reports are available on omadacycline use in IE or OSM/
prosthetic joint infection (PJI). Omadacycline distributes extensively throughout the body,
and excellent bone tissue penetration has been shown in animal models [138,139].

4. Discussion and Concluding Remarks

We reviewed nine antibiotics with predominant Gram-positive activity and focused on
the treatment of IE and osteomyelitis (including osteosynthesis-associated infections). For
some antibiotics such as ceftaroline, daptomycin, and linezolid, a number of clinical studies
are available. For most of the described antibiotics, however, clinical data are limited. It is
difficult to assess the efficacy because the evidence is mostly observational, and patients
often received prior or concurrent antibiotics. Dosing regimens are quite diverse, and
in some studies patients, were included after receiving only one dose of the study drug.
Furthermore, for IE and OAI, surgical intervention is frequently necessary, and whether or
not this is performed might have significantly impacted treatment results.

Another limitation of this narrative review is the risk of bias, particularly selection
bias, with incomplete retrieval of publications as a result. However, the main goal of
this narrative review was to assess the most important data on the efficacy of these novel
antibiotics in order to provide some guidance on their application in clinical practice. As
such, this review is considered appropriate for this purpose.
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For most antibiotics, studies have been published about combination therapy in
in vitro models or animal studies. Although results might seem promising, in most cases,
results have not been confirmed in human studies yet. Caution is needed in extrapolating
these findings to the clinical setting, even more because of possible antagonism as might
have been observed in the preclinical setting.

In order to use these new-generation antibiotics, antimicrobial susceptibility tests
and breakpoints should be available in the microbiology laboratories. For all antibiotics
reviewed here, except for omadacycline, EUCAST breakpoints for staphylococci are avail-
able (EUCAST version 10.0). For streptococci, EUCAST breakpoints are available for all
agents except for telavancin and omadacycline. For enterococci, only linezolid EUCAST
breakpoints are available. Clinical and Laboratory Standards Institute breakpoints may be
used to overcome this problem.

In conclusion, promising antibiotics for the treatment of Gram-positive infections
have been approved in the last 20 years. However, these new antibiotics should not be
used as first-line therapy as clinical data are limited. Only in case of resistance to first-
and second-line agents, allergy, or in clinical and/or microbiological failure should these
antibiotics be considered. In these cases, the practical approach in this review, including
the summary table, could be helpful to determine which of these antibiotics would be the
preferable agent to use.
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