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Abstract: Loss of sialic acid from the carbohydrate side chains of platelet glycoproteins can affect
platelet clearance, a proposed mechanism involved in the etiopathogenesis of immune thrombocy-
topaenia (ITP). We aimed to assess whether changes in platelet glycosylation in patients with ITP
affected platelet counts, function, and apoptosis. This observational, prospective, and transversal
study included 82 patients with chronic primary ITP and 115 healthy controls. We measured platelet
activation markers and assayed platelet glycosylation and caspase activity, analysing samples using
flow cytometry. Platelets from patients with ITP with a platelet count <30 × 103/µL presented less
sialic acid. Levels of α1,6-fucose (a glycan residue that can directly regulate antibody-dependent
cellular cytotoxicity) and α-mannose (which can be recognised by mannose-binding-lectin and acti-
vate the complement pathway) were increased in the platelets from these patients. Platelet surface
exposure of other glycoside residues due to sialic acid loss inversely correlated with platelet count
and the ability to be activated. Moreover, loss of sialic acid induced the ingestion of platelets by
human hepatome HepG2 cells. Changes in glycoside composition of glycoproteins on the platelets’
surface impaired their functional capacity and increased their apoptosis. These changes in platelet
glycoside residues appeared to be related to ITP severity.

Keywords: immune thrombocytopaenia; platelet apoptosis; sialic acid; platelet activation markers;
glycoside residues

1. Introduction

Immune thrombocytopaenia (ITP) is an autoimmune disease characterised by a low
platelet count (≤100 × 109/L) due to platelet destruction and insufficient platelet produc-
tion [1]. ITP is considered a rare disease (ORPHA 3002, OMIM 188030) that is diagnosed
by ruling out other causes of thrombocytopaenia.

The initial event leading to antiplatelet autoimmunity remains unclear [2]; however,
there is strong evidence that autoantibodies and autoreactive CD8+ cytotoxic T cells trigger
enhanced platelet destruction and impair platelet production by megakaryocytes in the
bone marrow [3]. ITP has been described as a deterioration of the regulatory compartment
(regulatory T [Treg] and regulatory B [Breg] cells) of these patients’ immune system [4],
along with a polarisation of the response towards T helper 1 (Th1) and Th17 cells. The
abnormal T-cell function leads to the proliferation and differentiation of self-reactive B
cells [5].
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Many human autoimmune diseases are caused by acquired changes in glycanstructure
or in their recognition by specific receptors. Platelets express highly glycosylated proteins
on their surface that are involved in platelet haemostatic function and in the platelets’
interaction with other cells [6].

The role of glycans in platelet glycoproteins is poorly understood. Typically, glycans
affect protein function by (1) guaranteeing proper protein folding, stability and solubility
and (2) constituting key binding sites that are recognised by glycan-binding proteins,
known as lectins. Glycoside residues are main players in cellular adhesion and intercellular
communication [7]. The effects of N-linked and O-linked glycans on the stability of major
platelets surface glycoproteins, including GPIb-IX-V, integrin αIIbβ3 (GPIIbIIIa) and GPVI,
have been studied [8,9]. For example, disruption of the O-linked glycosylation mechanism
in mice led to partial proteolysis of the glycoproteins and decreased GPIb-IX-V and αIIbβ3
functions, causing defective platelet activation and abnormal morphology, as well as
excessive bleeding. The effect of desialylation on the surface glycoproteins of aged and
refrigerated platelets has been more widely studied [10,11]. Loss of sialic acid induces the
exposure of penultimate galactose that is recognised by hepatic Ashwell–Morell receptors,
which leads to platelet clearance and triggers a feedback mechanism to increase platelet
production through the hepatic expression of thrombopoietin [12].

Similarly, it has been reported that platelets from some patients with ITP have less
sialic acid and that the patients’ thrombocytopaenia might improve through treatment with
a neuraminidase inhibitor such as oseltamivir in combination with therapies to increase
platelet production [13–15].

Nevertheless, there have been no in-depth analyses of glycans on the platelets of
patients with ITP. The aim of our study was therefore to perform a comprehensive analysis
of the platelet glycan repertoire to better understand their role in platelet function and in
the development of ITP.

2. Materials and Methods
2.1. Study Design and Participants

This was an observational, prospective and transversal study that included pa-
tients with chronic primary ITP [1], who were stratified according to their platelet count
(>30 × 103/µL [65 patients] and <30 × 103/µL [17 patients]). The study also included
a healthy control group (115 participants) recruited from the blood donor section of the
Haematology Unit of La Paz University Hospital. Inclusion period was from 10 January
2020 to 20 December 2020.

The study excluded patients with uncontrolled hypertension, hyperlipidaemia, pe-
ripheral or coronary artery diseases, abnormal hepatic or renal function, those undergoing
therapy with platelet-active drugs and those who had undergone a transfusion within
15 days of the study. Regarding therapy not related to ITP, 3 patients were on antiretroviral
therapy, 6 on atorvastatin, 1 on levothyroxine plus simvastatin, 3 on amitriptyline, 2 on
lorazepam, 1 on furosemide plus amiodarone, 1 on hidroxicloroquine, 2 on metformin,
5 were receiving iron supplement, and most of the patients were on omeprazol.

The La Paz University Hospital Ethics Committee approved the experimental pro-
tocol (PI-3932), and the research study was conducted in compliance with the Helsinki
Declaration and after receiving signed informed consent from the participants.

2.2. Collection and Preparation of Samples

We collected human peripheral blood samples in 3.8% sodium citrate and performed
blood cell counts with a Coulter Ac.T Diff cell counter (Beckman Coulter, Madrid, Spain).
We obtained platelet-rich plasma (PRP) by centrifuging the whole blood (150 g for 20 min
at 23 ◦C). To obtain washed platelets, we collected the top two-thirds volume of the PRP
and centrifuged it (650× g for 10 min at 23 ◦C) after adding acid-citrate-dextrose (1:10).
The pellet was resuspended in an equal volume of HEPES buffer (10 mM HEPES, 145 mM
sodium chloride, 5 mM potassium chloride and 1 mM magnesium sulfate, pH 7.4).
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For the serum preparation, we collected peripheral blood in serum tubes (BD Vacu-
tainer, Plymouth, UK) and separated it by centrifuging clotted blood (2500× g for 15 min
at 23 ◦C). The plasma and serum aliquots were stored at −80 ◦C until analysis.

2.3. Determination of Platelet Activation Markers

We diluted the PRP 1:5 with HEPES buffer and incubated it with 100 µM of thrombin
receptor-activating peptide 6 (TRAP, Bachem, Switzerland) or 20 µM of adenosine diphos-
phate (ADP, SIGMA, Madrid, Spain) at room temperature. Following incubation, we added
fluorescein-isothiocyanate (FITC)-PAC1 (BD, Madrid, Spain), a monoclonal antibody (mAb)
that recognises activated conformation of fibrinogen receptor, or FITC-labelled anti-human
P-selectin mAb (BD Pharmingen, San Diego, CA, USA) or FITC-anti-CD63 mAb (Becton
Dickinson, Madrid, Spain) for 15 min at room temperature in the dark.

We determined the surface expression of the fibrinogen receptor by labelling diluted
PRP with phycoerythrin (PE)-mAbs against its αIIb (CD41, BioCytex, Marseille, France)
and FITC-mAb against its β3 (Becton Dickinson) subunits. Surface expression of von
Willebrand factor (VWF) receptor was determined using FITC-mAbs against its CD42a and
CD42b subunits (BD Pharmingen, Madrid, Spain).

After incubation, all samples were diluted in PBS buffer for flow cytometry analysis
with a FACScan flow cytometer (BD Biosciences, Madrid, Spain), and 10,000 events in
the platelet region were acquired and analysed with BD CellQuest Pro™ software (BD
Biosciences, Madrid, Spain).

2.4. Lectin Binding Studies

We incubated washed platelets (50 × 103 platelets/µL) with FITC-labelled lectins (10
µg/mL, Vector Laboratories, Barcelona, Spain), as listed in Table 1, for 30 min at 37 ◦C and
analysed them by flow cytometry.

Table 1. Lectins used in flow cytometry experiments and their glycoside binding specificity.

Lectin Aleuria
Aurantia Concavalin A Datura

Stramonium
Ricinus Communis

Agglutinin I
Wheat Germ
Agglutinin

Abbreviation AA C DS RCA WGA

Sugar specificity α1,6-Fucose α-Mannose GalNAc Galactose
GalNAc β-GlcNAc

GalNAc: N-acetylgalactosamine; β-GlcNAc: N-acetylglucosamine.

2.5. Measurement of Apoptosis Markers in Platelets

We assessed the surface exposure of phosphatidylserine in washed platelets by mea-
suring the binding of FITC-labelled annexin V (BD Pharmingen, Madrid, Spain). Briefly,
washed platelets were resuspended in annexin V binding buffer (10 mM HEPES, 10 mM
sodium hydroxide, 140 mM sodium chloride, 2.5 mM calcium chloride, pH 7.4) and la-
belled with FITC-annexin V. After a 15-min incubation period with either buffer or 1 µM
ionomycin (Sigma, Madrid, Spain) at room temperature in the dark, the samples were
analysed by flow cytometry.

To analyse active caspase-3, -8 or -9, we diluted PRP 10-fold with isotonic HEPES
buffered saline with calcium ion (150 mM sodium chloride, 2 mM calcium chloride, 2 mM
magnesium chloride, 2 mM HEPES, pH 7.4), 2 mM Gly-Pro-Arg-Pro (SIGMA, Madrid,
Spain) and either FAM-DEVD-FMK, FAM-LETD-FMK or FAM-LEHD-FMK (Millipore,
Madrid, Spain).

2.6. Neuraminidase Activity

We measured neuraminidase (NEU) activity in plasma and serum from the healthy
controls and patients with ITP according to van der Wal et al. [16]. Briefly, we treated either
plasma or serum with 75 µM of sodium acetate (pH 4.5), 0.1% Triton X-100 and 0.5 mM
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2′-(4-methylumbelliferyl)-α-D-N-acetylneuraminic acid sodium salt hydrate (MUNANA,
Merck, Madrid, Spain) in 96-well plates. We measured the fluorescence at beginning
(time 0) and at 10, 15, 30, and 60 min after initiating the reaction (excitation λex = 365 nm,
emission λem = 450 nm).

2.7. HepG2 Uptake of Platelets

Human HepG2 cells were grown in DMEM (Invitrogen, Madrid, Spain) supple-
mented with 10% heat-inactivated foetal calf serum (Lonza, Madrid, Spain) and peni-
cillin/streptomycin at 37 ◦C and 5% carbon dioxide.

We seeded the HepG2 cells (1× 105/well) onto 24-well plates, allowed them to adhere
for 24 h and then starved them for 30 min with serum-free media. The assay was initiated
by adding platelets from healthy controls or patients with ITP (5 × 107/well) previously
labelled with 100 µM of CMFDA Cell Tracker (ThermoFisher Scientific, Madrid, Spain).
HepG2 cells and platelets were incubated together for 45 min at 37 ◦C with gentle shaking.
We washed the cultures three times and separated the HepG2 cells from the plates and from
the surface-adhered platelets with a solution of trypsin/EDTA. After washing the HepG2
cells, we analysed them by flow cytometry according to their forward and side scatter
features, and those that contained ingested platelets were identified by their fluorescence.

2.8. Statistical Analysis

We employed the Shapiro–Wilk test to assess the data distribution, and the results
are presented as mean ± SD or median (p25–p75) depending on their distribution. We
assessed differences between 2 groups using the 2-tailed unpaired Student’s t-test or the
nonparametric Mann–Whitney U-test, as appropriate. To compare multiple groups, we
performed a one-way analysis of variance or Kruskal–Wallis with Dunn’s multicomparison
tests. The correlation analysis was performed using Pearson’s or Spearman’s test. We
employed GraphPad Prism 5 software (GraphPad Software version 5.03) for all statistical
analyses and set the significance at p ≤ 0.05.

3. Results
3.1. Features of Patients with Immune Thrombocytopaenia

Table 2 lists the characteristics of the patients with ITP.

Table 2. Therapeutic treatments of patients with immune thrombocytopaenia (ITP).

<30,000 Platelets/µL >30,000 Platelets/µL

Gender (%) Age
Mean ± SD

Concomitant
Medication

(Nº Patients)
Gender (%) Age

Mean ± SD

Concomitant
Medication

(Nº Patients)

No treatment M: 2 (50)
F: 2 (50) 49 ± 21.6 - M: 11(34)

F: 21 (66) 56 ± 19 +Anticoagulant: 3

Eltrombopag M: 3 (50)
F: 3 (50) 46 ± 11.8

+IGIV (2)
+Corticosteroids

(1)
+Corticosteroids +

azathioprine (2)

M: 3 (21)
F: 11 (79) 54 ± 21.5 +IGIV: 1

+Anticoagulant: 5

Romiplostim M: 3(50)
F: 3(50) 58 ± 25.9 - M: 9 (56)

F: 7 (44) 57 ± 19.5 +IGIV: 1
+Corticosteroids: 5

IGIV M: 0 (0)
F: 1(100) 62 - - - -

Corticosteroids - - - M: 0
F: 3(100) 51 ± 2.5 +IGIV: 2

+Rituximab: 1

IGIV: intravenous immunoglobulins, M: male, F: female, Nº: the number of patients.
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Figure 1 indicates the platelet counts for the healthy controls and ITP groups, showing
that the platelets from the patients with ITP had a higher mean platelet volume (MPV) than
those from the controls (Figure 1). Moreover, the lowest platelet count was accompanied
by the highest MPV (Spearman ρ = −0.562, p < 0.0001).
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Figure 1. Platelet features in the patients with immune thrombocytopaenia (ITP). (A) Platelet count and (B) mean platelet
volume (MPV). We performed Kruskal–Wallis and Dunn’s multiple comparison tests and considered a p-value of < 0.05
as significant.

3.2. Exposure of Glycoside Residues on the Platelet Surface

Given that the platelets from the patients with ITP had a larger volume than those of
the controls, we expressed the glycoside composition of the platelet surface as the ratio
between the mean fluorescence of the binding of lectins and MPV. Figure 2 shows that the
platelets from the patients with ITP had a different glycosylation pattern on their surface
than the healthy controls, and this difference was more pronounced in the platelets from
the patients with ITP with <30 × 103 platelets/µL.
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Figure 2. Lectin binding was determined in quiescent platelets from the controls and patients with immune thrombocy-
topaenia. Data are expressed as the ratio between the mean fluorescence of positive cells (MF) and mean platelet volume
(MPV). The following lectins were tested: (A) Aleuria aurantia (AA), (B) Concanavalin A, (C) Datura stramonium (DS),
(D) Ricinus communis agglutinin (RCA), and (E) Wheat germ agglutinin (WGA). We performed Kruskal–Wallis and Dunn’s
multiple comparison tests and considered a p-value of <0.05 as significant.
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3.3. Platelet Activation Markers

We determined the platelets’ ability to be activated after agonist stimulation in our
cohorts. Platelets from the patients with ITP with <30 × 103 platelets/µL had a lower
capacity to be activated, as shown through the reduced binding of PAC1 to fibrinogen
receptors (Figure 3A) and the diminished exposure of P-selectin and CD63, released,
respectively, from alpha and dense granules (Figure 3B,C). This impairment in the platelets’
stimulation capacity was not due to a reduced content of fibrinogen receptor (Figure 3D).
Moreover, platelets from ITP patients also exposed similar levels of VWF receptor on their
surface (Figure 3D).
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Figure 3. Platelet activation markers. Platelets from healthy controls and from patients with immune thrombocytopaenia
(ITP) stimulated with thrombin receptor-activating peptide (TRAP) and ADP were incubated with fluorescein isothiocyanate
(FITC)-PAC1 (A), FITC-anti-P-selectin monoclonal antibody (mAb) (B) or FITC-anti-CD63 mAb (C). The data in (A–C) are
expressed as percentage of positive cells. (D) Fibrinogen receptor (subunits CD41 and CD61) and VWF receptor (subunits
CD42a and CD42b) are expressed as the ratio between mean fluorescence (MF) and mean platelet volume (MPV). All
samples were analysed by flow cytometry. We performed Kruskal–Wallis and Dunn’s multiple comparison tests and
considered a p-value < 0.05 as significant.

The patients with the lowest platelet count showed the most pronounced decrease in
platelet activation markers induced by TRAP stimulation (platelet count vs. PAC1 binding:
ρ = 0.392, p <0.001; vs. P-selectin ρ = 0.451, p < 0.001; and vs. CD63 exposure ρ = 0.229,
p < 0.001).
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3.4. Apoptosis Markers of Platelets

Platelets from the patients with ITP and a platelet count <30 × 103/µL showed more
pronounced signs of apoptosis (Figure 4). In another cohort of patients with ITP, we
previously reported an inverse relationship between platelet apoptosis and the platelets’
ability to be activated by agonists [4]. We confirmed that this association was also true
in individuals included in the present study (TRAP-induced PAC binding vs. caspase
3: ρ = −0.262, p < 0.001; vs. caspase 8: ρ = −0.301, p < 0.001; and vs. caspase 9: ρ = −0.228,
p < 0.01).
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isothiocyanate (FITC)-annexin V in platelets incubated with either buffer or ionomycin, and (B) caspase activities in
quiescent platelets from controls and patients with immune thrombocytopaenia (ITP) were determined by flow cytometry
analysis. Data are expressed as percentage of positive cells. We performed Kruskal–Wallis and Dunn’s multiple comparison
tests and considered a p-value < 0.05 as significant.

3.5. Relationship between Glycosylation and Platelet Functional Characteristics

We studied whether there was a relationship between glycosylation on the platelet
surface and platelet functional features. We observed that the platelet count and the
ability to be stimulated were related to glycoside residues on the platelet surface (Table 3).
Particularly, the loss of sialic acid residues (measured indirectly through the RCA binding)
appeared to be a key player in reducing platelet counts (Figure 5A) and the platelets’ ability
to be activated (Figure 5B). Moreover, lower sialic acid exposure on the platelet surface
corresponded to higher activity of platelet caspases (Figure 5C).
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Table 3. Correlation between glycoside exposure and platelet count and ability of fibrinogen receptor to be activated.

Recognised Glycoside Residue
(Lectin)

α-1,6 Fucose
(AA)

α-Mannose
(C)

GalNAc
(DS)

β-GluNAc
(WGA)

Lectin binding vs. Platelet count
(Spearman ρ, p) −0.3946; 0.0002 −0.3964; 0.0002 −0.4091; 0.0001 −0.2868; 0.0177

Lectin binding vs. TRAP-PAC1
binding (Spearman ρ, p) −0.2297; 0.392 −0.2567; 0.040 −0.2581; 0.0185 −0.3737; 0.0007

AA: Aleuria aurantia; C: Concanavalin A; DS: Datura stramonium, GalNAc: N-acetylgalactosamine; WGA: Wheat germ agglutinin;
β-GlcNAc: N-acetylglucosamine. Correlation was determined by Spearman’s test, and a p-value < 0.05 was considered significant.
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3.6. Neuraminidase Activity in Plasma and Serum

Neuraminidase is an enzyme that mediates the release of sialic acid. We therefore
measured its activity and relationship with RCA binding and the platelets’ capacity to
be activated. Neuraminidase activity measured over time was higher in the serum from
the patients with ITP than in the serum from the healthy controls, whereas there was no
difference in plasma neuraminidase activity between these groups (Figure 6A). As expected,
we found a direct relationship between neuraminidase activity in serum and RCA binding
to platelets (ρ = 0.7030, p < 0.001).



J. Clin. Med. 2021, 10, 1661 9 of 13
J. Clin. Med. 2021, 10, x FOR PEER REVIEW 10 of 15 
 

 

 
Figure 6. (A) Neuraminidase activity was measured in either serum (black lines) or plasma (grey lines) from healthy con-
trols (open circles) and patients with immune thrombocytopaenia (closed circles), according to the Methods section. (B) 
HepG2 cell ingestion of human platelets in vitro. Ingestion of CMFDA-labelled platelets was detected by flow cytometry 
as an increase in hepatocyte-associated fluorescence (y-axis, in arbitrary units, AU). Representative flow cytometry histo-
grams are shown. Mann–Whitney test was performed to determine the differences between the control and immune 
thrombocytopaenia groups, and a p-value < 0.05 was considered significant. 

Supporting the involvement of sialic acid in platelet activation capacity, we observed 
an inverse correlation between neuraminidase activity in serum and TRAP-induced PAC 
binding (ρ = −0.453, p < 0.05). 

3.7. HepG2-Based Platelet Ingestion Assay 
We determined the degree of labelled platelets ingested by HepG2 cells by flow cy-

tometry. As shown in Figure 6B, HepG2 cells ingested more platelets isolated from the 
patients with ITP than platelets from the healthy control group. The lower exposure of 
sialic acid induced the highest ingestion of platelets (ρ = 0.5510, p < 0.01). 

4. Discussion 
Our results revealed a close relationship between ITP severity (evaluated through 

platelet counts and the platelets’ ability to be activated) and loss of sialic acid from glyco-
proteins on the platelets’ surface. The three major glycosylated proteins in the platelet 
glycocalyx are P-selectin (13,000 copies per activated platelet), the GPI-IX complex 
(CD42a/CD42b, 25,000 copies per platelet), and the integrin GPIIbIIIa (CD41/CD61; 50,000 
copies per platelet) [17]. 

Loss of sialic acid is responsible for increasing platelet clearance through the hepatic 
Ashwell–Morell receptors present in liver cells [18]. Along these lines, we demonstrated 
that platelets with the lowest exposure of sialic acid were the most ingested by human 

Figure 6. (A) Neuraminidase activity was measured in either serum (black lines) or plasma (grey lines) from healthy
controls (open circles) and patients with immune thrombocytopaenia (closed circles), according to the Methods section.
(B) HepG2 cell ingestion of human platelets in vitro. Ingestion of CMFDA-labelled platelets was detected by flow cytom-
etry as an increase in hepatocyte-associated fluorescence (y-axis, in arbitrary units, AU). Representative flow cytometry
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thrombocytopaenia groups, and a p-value < 0.05 was considered significant.

Supporting the involvement of sialic acid in platelet activation capacity, we observed
an inverse correlation between neuraminidase activity in serum and TRAP-induced PAC
binding (ρ = −0.453, p < 0.05).

3.7. HepG2-Based Platelet Ingestion Assay

We determined the degree of labelled platelets ingested by HepG2 cells by flow
cytometry. As shown in Figure 6B, HepG2 cells ingested more platelets isolated from the
patients with ITP than platelets from the healthy control group. The lower exposure of
sialic acid induced the highest ingestion of platelets (ρ = 0.5510, p < 0.01).

4. Discussion

Our results revealed a close relationship between ITP severity (evaluated through
platelet counts and the platelets’ ability to be activated) and loss of sialic acid from glycopro-
teins on the platelets’ surface. The three major glycosylated proteins in the platelet glycoca-
lyx are P-selectin (13,000 copies per activated platelet), the GPI-IX complex (CD42a/CD42b,
25,000 copies per platelet), and the integrin GPIIbIIIa (CD41/CD61; 50,000 copies per
platelet) [17].

Loss of sialic acid is responsible for increasing platelet clearance through the hepatic
Ashwell–Morell receptors present in liver cells [18]. Along these lines, we demonstrated
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that platelets with the lowest exposure of sialic acid were the most ingested by human
hepatome HepG2 cells. Desialylation of platelet glycoproteins might be due to their
sialidase activity, which relies on 4 sialidases (NEU1-NEU4) that are found at different
locations and have different affinities for their substrates [19,20]. NEU1, NEU2, and
NEU4 are present on the surface of quiescent platelets. Exposure of NEU1 and NEU2 on
the platelet surface increased after specific clustering of GPIb activated by VWF, which
mobilised them from their intracellular stores (mitochondria for NEU1 and α-granules
for NEU2) [16]. Another situation that upregulates NEU1 on the platelet surface is the
presence of anti-GPIbα antibodies, such as those present in some patients with ITP [18,21].
Our data showed that platelets from most of our patients with ITP had less sialic acid
than the platelets from the healthy controls, despite the fact that anti-GPIb antibodies were
detected only in one of the patients whose platelets did not have any singular feature when
compared with those from the patients with ITP with similar platelet counts (134 × 103/µL).
Moreover, the agonists employed in our experiments to stimulate platelets did not induce
NEU1 and NEU2 expression on the platelet surface [16]. We also observed that serum (but
not plasma) from the patients with ITP had an increased neuraminidase activity, suggesting
a cellular source for the enzyme. Taken together, our data suggest that other mechanisms
underlying the changes in platelet surface glycosylation must be at play. For example,
it has been reported that CD8+ T cells from patients with ITP with positive cytotoxicity
induced significant platelet desialylation, NEU1 expression on the platelet surface, and
platelet phagocytosis by hepatocytes in vitro [22].

Studies have reported that desialylated GPIba has an increased ability to be activated
by ristocetin and to bind to VWF [23,24]. Moreover, a study elegantly demonstrated that
NEU1 and NEU2 are specifically translocated to the membrane following VWF-mediated
GPIba-clustering and that this event produces desialylation that potentiates the ability
of αIIbβ3 to bind to fibrinogen [25]. This observation does not contradict our results
(a diminished activation of fibrinogen receptor due to the loss of sialic acid) because
we specifically tested platelet activation through the inside-out stimulation of fibrinogen
receptor with no involvement of the VWF receptor. Another example of thrombocytopaenia
due to desialylation induced by excessive binding of VWF to platelets is that observed in
patients infected by the dengue virus [26]. Further supporting our results, the treatment of
platelets with neuraminidase reduced their aggregation induced by ADP [27]. Moreover,
abnormalities in the N-glycosylation of GPVI could contribute to acquired defects in
GPVI-mediated platelet reactivity to collagen [8,28,29].

The function of platelet receptors that mediate their adhesive and aggregative proper-
ties are strongly reliant upon N-glycosylation to modulate the orientation of glycoproteins
to facilitate interaction between proteins [29]. A mutational study performed on β3 demon-
strated that loss of N-glycoside sites impaired either αIIbβ3 expression or function. The
first possibility does not seem to explain our results because we did not detect a decrease
in the surface expression of fibrinogen receptor [30]. Therefore, the platelets’ diminished
function might be explained by the fact that many of these N-glycan sites lie in the domain
interfaces that are rearranged during integrin activation.

Another cause for the reduced exposure of sialic acid on the platelet surface might
be a decrease in glycosyltransferase activity. Three distinct glycosyltransferase families
were found within and on the surface of platelets [31]. Supporting the importance of sialyl
transferases in the platelets’ lifespan, mice lacking ST3GAL4 (an enzyme that transfers sialic
acid onto β1,4-galactose) develop thrombocytopaenia due to increased platelet clearance
via the hepatic Ashwell–Morell receptor [32]. Moreover, the lack of ST3GAL1 (an enzyme
that caps the Thomsen–Friedenreich antigen with sialic acid) was associated with platelet
counts 50% lower than normal, as observed in ST3GAL1-null mice [33,34].

Platelets from ITP patients showed more signs of apoptosis. The percentage of resting
control platelets positive for annexin V maybe higher than those observed by other authors,
but it has been reported that variations in experimental conditions may explain these
differences [35]. We found a direct correlation between the loss of sialic acid and the activity
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of platelet caspases 3, 8, and 9 (present results and those of Monzon Manzano et al. [4]).
Moreover, it has been reported that ABT-737 (an inhibitor of Bcl-2 family proteins) induced
apoptosis of dog platelets, with the primary platelet clearance site being the liver [10].
Nevertheless, Grodzielski et al. proposed that platelet apoptosis and loss of sialic acid were
not necessarily related [36].

Desialylation was the main focus of this study. However, we also detected changes in
the distribution of other glycoside residues in the platelets from the patients with ITP, as
well as an inverse correlation between α1,6-fucose, α-mannose, GalNAc, and β-GlcNAc
exposure and platelet count and activation capacity of the fibrinogen receptor. Enhanced
exposure of β-GlcNAc was revealed through the increased binding of WGA to platelets
from the patients with ITP and might indicate another mechanism of platelet destruction
given that β-GlcNAc residues can be recognised by the αMβ2 hepatic macrophage receptors
and phagocytosed by these cells [37,38], as was reported for cold-storage platelets [11].
This mechanism for platelet clearance seemed to be independent of that mediated by
Ashwell–Morell receptors, because HepG2 cells express both chains (ASGR1 and ASGR2)
of the Ashwell–Morell receptor but do not express αMβ2. Moreover, Rumjantseva et al. [11]
demonstrated that macrophage-mediated clearance was operative for platelets chilled
for 4 h, whereas refrigeration for a longer period (24 h) induced the removal of platelets
through hepatic Ashwell–Morell receptors.

Changes in glycoside composition on the surface of platelets from patients with
ITP might also have consequences for complement activation. Collectins (e.g.,mannose-
binding lectin) and ficolins are pattern-recognising molecules that are not only reactive
against pathogen-associated molecular patterns but also to aberrantly glycosylated self
cell-surface structures [39]. These lectin pathway-related pattern-recognising molecules
of the complement recognise residues of carbohydrates such as D-mannose, GlcNAc, and
L-fucose, all of which are increased on the surface of platelets from patients with ITP.
Moreover, mannose-binding lectin binds to platelets [40], and sialic acid residues inhibit its
binding to cells [41]. It is therefore tempting to speculate that a complement is involved in
the etiopathogenesis of ITP, as proposed by numerous authors [42,43].

5. Conclusions

Our data suggest the importance of glycoside residues present on the surface of
platelets for determining their count and functionality in patients with ITP. Moreover, the
results of this study encourage future studies to further elucidate the participation of the
platelet glycome in the etiopathogenesis of ITP, given that the presence of sialic acid is a
good sensor for the discrimination of “self” and “non-self” signals to regulate the innate
and adaptive immune system responses [44]. In further support of the glycome in the
immune response, we have previously observed an inverse correlation between loss of
sialic acid and LTreg counts in patients with ITP [4]. Failure of the immune system to
correctly distinguish “self” is one hallmark of autoimmunity [45,46].
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