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Abstract: Objectives: We aimed to assess the impact of image context information on the accuracy of
deep learning models for tooth classification on panoramic dental radiographs. Methods: Our dataset
contained 5008 panoramic radiographs with a mean number of 25.2 teeth per image. Teeth were
segmented bounding-box-wise and classified by one expert; this was validated by another expert.
Tooth segments were cropped allowing for different context; the baseline size was 100% of each box
and was scaled up to capture 150%, 200%, 250% and 300% to increase context. On each of the five
generated datasets, ResNet-34 classification models were trained using the Adam optimizer with a
learning rate of 0.001 over 25 epochs with a batch size of 16. A total of 20% of the data was used for
testing; in subgroup analyses, models were tested only on specific tooth types. Feature visualization
using gradient-weighted class activation mapping (Grad-CAM) was employed to visualize salient
areas. Results: F1-scores increased monotonically from 0.77 in the base-case (100%) to 0.93 on the
largest segments (300%; p = 0.0083; Mann-Kendall-test). Gains in accuracy were limited between
200% and 300%. This behavior was found for all tooth types except canines, where accuracy was
much higher even for smaller segments and increasing context yielded only minimal gains. With
increasing context salient areas were more widely distributed over each segment; at maximum seg-
ment size, the models assessed minimum 3—4 teeth as well as the interdental or inter-arch space to
come to a classification. Conclusions: Context matters; classification accuracy increased significantly
with increasing context.

Keywords: artificial intelligence; diagnostics; digital imaging/radiology; mathematical modeling

1. Introduction

Deep learning (DL) is increasingly used for medical image analysis, and also in den-
tistry. Convolutional neural networks (CNNs) are a popular type of a neural network ar-
chitecture that uses convolutions to extract meaningful features, such as edges, textures
and other patterns from images. CNNs and variants thereof are commonly used to detect,
segment and classify anatomic structures (hard or soft tissue landmarks, teeth) or pathol-
ogies (caries, periodontal bone loss, apical lesions, among others) [1]. For tooth classifica-
tion, for example, models with sensitivities and specificities around 95-98% have been
developed [2,3]. CNN learn from pairs of imagery data and labels (e.g., image labels,
boxes encapsulating objects of interest, pixel masks) in a supervised way, eventually es-
tablishing a statistically based mapping of the input image to the output label. Once such
a relationship is found the CNN can be applied on unseen images to classify them, detect
objects on them or segment structures of interest in a pixel-wise manner [4].

One common feature of interest in dental computer vision is the tooth as the unit of
learning. Most dental images contain more than one tooth; in case of peri-apical radio-
graphs, 2-3 teeth; for bitewings 4-10 teeth, for panoramics up to 32 teeth, and for intraoral
photography various numbers depending on magnification etc. In many instances, CNNs
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are trained not on the overall image, but a cropped one, centered around a particular tooth
[5,6]. This increases the number of training units, while care is needed when partitioning
data to not cross-contaminate data from the same patient between splits. Moreover, so far,
to the best of our knowledge the downsides and limitations of training on cropped data
have not yet been systematically evaluated. One may assume that, for example, tooth clas-
sification models may show lower performance when trained on cropped images as they
miss context (e.g., anatomic landmarks, structures, other teeth) allowing to identify the
cropped tooth’s position and class. If this was the case, then researchers should aim to
increase the number of images used for training instead of cropping images to artificially
increase the sample size but potentially decrease the model performance.

In the present study, we aimed to apply deep CNNss to classify individual cropped
teeth from dental panoramic radiographs. We hypothesize that the classification perfor-
mance of CNNss is significantly improved by providing a larger scope of image context
information around the region of interest.

2. Materials and Methods
2.1. Study Design

In the present study, labeled bounding boxes, each encapsulating one tooth, were
used to generate image segments from panoramic radiographs with a varying amount of
context information around the region of inaterest, the centrally located tooth. Residual
CNNs with 34 layers (ResNet-34) were trained, validated and tested on data of varying
extent and context information [7]. The Mann-Kendall (M-K) test was employed to eval-
uate the impact of context information on the classification performance [8]. Reporting of
this study follows the STARD guideline [9] and the Checklist for Artificial Intelligence in
Dental Research [10].

2.2. Performance Metrics

The classification performance of the models was quantified by their accuracy and
Fl1-score. Accuracy captures the proportion of correct classifications over all predictions
of the model, while the F1-score considers the harmonic mean of precision (also referred
to as positive predictive value (PPV)) and recall (also referred to as specificity). Due to a
slight imbalance within the datasets, the F1-score was chosen as a primary metric. Sec-
ondary metrics were the area under the receiver operating characteristic curve (AUC),
sensitivity, specificity, PPV, and negative predictive value (NPV). The model performance
was evaluated on a hold-out test set consisting of 20% of the data.

2.3. Sample Size

A sample of 5008 retrospectively collected data from routine care was available,
hence, no formal sample size estimation was performed.

2.4. Dataset and Reference Test

Our dataset contained 5008 dental panoramic radiographs with a mean number of
25.21 teeth per image. The data was collected between 2016 and 2019 during routine care
at Charité-Universititsmedizin Berlin. The collection of data was ethically approved
(EA4/080/18). Totals of 50.8% and 49% of the panoramics originated from males and fe-
males, respectively (gender information for 0.2% were missing). The age at the time of
visits ranged from 9 to 96 years, with a mean of 51.8 years. The radiographs were gener-
ated by radiographic devices from Sirona Densply (Bensheim, Germany), mainly OR-
THOPHOS XG3D and ORTHOPHOS SL with CCD sensors.

The panoramic images were labeled bounding-box wise by dental experts. In total
more than 50 experts were involved, including dental students, experienced dentist and
researchers. Notably, we observed that labelling teeth is not a complex task and can be
achieved with high accuracies by dental students, too. Each tooth was labeled based on
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the FDI notation. Each image was labelled once and then all labels were doublechecked
by a second independent expert [11]. Each annotator independently assessed each image
under standardized conditions using an in-house custom-built annotation tool as de-
scribed before [12]. Prior to the annotation, the examiners were advised on how to place
bounding boxes, including rotation etc.

2.5. Data Preparation, Model and Training

We utilized bounding box annotations to crop panoramic images, resulting in 124,314
cropped image segments. Naturally, the datasets are imbalanced considering the occur-
rence of different teeth. For example, the prevalence was lowest at 1.57% for tooth 18, 1.6%
(28), 1.85% (38), 1.87% (48), and highest at 3.73% (32), 3.87% (33), 3.71% (42), 3.85% (43).

Cropping was repeated five times, each time with varying regional context infor-
mation: The baseline bounding box size (100%) was scaled up to capture 150%, 200%,
250% and 300% of the baseline bounding box. The original aspect ratio was kept constant
(see Figure 1). Note that the tooth considered for the classification task was consistently
located within the center of each image segment.

150% 200% 250% 300%

Figure 1. Visualization of data preparation steps. (a) Panoramic radiograph with an annotated bounding box around one
tooth. The image is rotated as required by the cropping algorithm, which extracts the image segment captured by the
bounding box. (b) Baseline size (100%) of the image segment covering the area captured of the bounding box. (c) Visuali-
zation of increasing image segment sizes from left to right. 100% captured image segments with the size of the annotation
bounding box. 300% covered image segments with the size of the bounding box upscaled by a factor of 3.

The generated datasets were used to train five ResNet-34 classification models with
the same set of hyperparameters. ResNet-34 has 34 layers and consists of a stack of resid-
ual blocks of CNNs that function as a feature extractor and a fully connected classification
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head (Supplementary Figure S1). The model outputs a score for each possible label for the
tooth located in the center of each input image. The label with the highest score was con-
sidered as the model’s prediction. Training, validation and testing of each model was ex-
clusively performed on the dataset with the dedicated image segment size. Figure 2 pro-
vides a summarizing overview of the workflow.

The model optimization was performed with the adaptive moment estimation
(Adam) optimizer with a learning rate of 0.001 and a categorical cross-entropy loss com-
puted on the one-hot encoded representation of labels. Each model was trained over 25
epochs with a batch size of 16. The hyperparameter search was performed in a manual
manner, as we only aimed at a model comparison and not at a maximal precision of one
neural network. Notably, no image augmentation was used in the experiments as maxim-
izing the generalizability of the models was not the focus of the study. To speed up model
convergence, we applied transfer learning by reusing feature extraction blocks from a pre-
trained model on ImageNet [12].

The model training was performed on 74,855 tooth segments (60%) of available data,
while the remaining 40% (tooth segments) were split into validation (24,643 tooth seg-
ments) and test set (24,816 tooth segments). The split was performed on panoramic level,
i.e., segments from one panoramic were kept in the same split. This also meant that the
class distribution in each split was similar. The validation set was used to evaluate the
model performance during training, while the test set was considered to quantify the
model performance after training.

In a sensitivity analysis the test data set was split into different tooth groups (incisors
(29%), canines (14%), premolars (27%) and molars (30%)) and the model performance on
them was reported. All models were implemented in TensorFlow 2.3 and trained on a
NVIDIA Quadro RTX 8000.

o
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Figure 2. Visualization of workflow. (a) Panoramic radiograph with an annotated bounding box around one tooth. (b)
Extraction of image segments with varying image context information. Training of one ResNet-34 model for each crop
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size. (¢) Collection of the F1-scores based on the performance on the unseen test set. (d) Application of the Mann-Kenndall

test.

2.6. Explainability

Feature visualization was employed to visualize areas within an image that were
particularly relevant for the model’s classification decision. We used the gradient-
weighted class activation mapping (Grad-CAM) for this purpose [13], specifically, the rel-
ative importance, which is based on the gradient of the prediction score for a class with
respect to feature map activations of the last convolutional layer, to generate feature maps.
After a weighted summation of each feature map subset, the resulting maps were rescaled
to allow overlaying it with the raw image data, thereby visualizing salient areas.

2.7. Statistical Analysis

For hypothesis testing, the Mann-Kendall (M-K) test [8], a nonparametric test for
monotonic trends was applied on the series of F1-scores resulting from the trained mod-
els. In this study, a monotonic upward trend was characterized by a consistent increase of
the F1-score through the extending context of the image segments. A significance level of
<0.05 was considered statistically significant.

3. Results

When testing the base-case model, classification accuracy was 0.77, as was the F1-
score, with a sensitivity of 0.74 and specificity of 0.99. Increasing the context, i.e., upscaling
the image segment, increased the accuracy, with the maximum segment size of 300%
yielding an accuracy, a F1 score and a sensitivity of 0.93, at a continuously high specificity
of 0.99 (Tables 1-3). Notably, the improvements flattened with increasing context and
gains in accuracy were limited between 200% and 300%. The increase in F1-score was sta-
tistically significant (p = 0.0083; M-K test).

When subgrouping tooth types, it was apparent that for all tooth types except canines
and molars, a similar behavior was observed; the F1-score increased monotonically i.e.,
consistently increased through the extending context of the image segments. The increase
flattened from 200% onwards. For canines, accuracy was much higher even for smaller
segments and only minimal gains in accuracy reached by increasing context (Figure 3).

When assessing salient areas relevant for the classification (Figure 4), we found that
with increasing context, the focus was removed from one specific spot of the image (for
small segments, this was usually one interdental space or a coronal area of the tooth) and
spread broader; at maximum segment size, the models assessed minimum 3—4 teeth as
well as the interdental or inter-arch space to come to a classification, obviously making
use of the provided context, as hypothesized.



J. Clin. Med. 2021, 10, 1635

6 of 10

Table 1. Mean performance of the models on hold-out test set. Performances of train and validation set are reported in

Tables 2 and 3.

Crop Size Accuracy F1-Score AUC Sensitivity =~ Specificity PPV NPV
100% 0.769 0.773 0.984 0.740 0.994 0.81 0.992
150% 0.862 0.866 0.993 0.846 0.997 0.888 0.995
200% 0.913 0.915 0.996 0.903 0.998 0.928 0.997
250% 0.920 0.923 0.995 0.914 0.998 0.932 0.997
300% 0.931 0.933 0.994 0.927 0.998 0.939 0.998

AUC area-under-the-curve. PPV/NPV positive/negative predictive value.
Table 2. Mean performance of the models on train set.

Crop Size Accuracy F1-Score AUC Sensitivity = Specificity PPV NPV
100% 0.826 0.827 0.992 0.798 0.996 0.860 0.993
150% 0.911 0.912 0.997 0.898 0.998 0.929 0.997
200% 0.958 0.958 0.999 0.951 0.999 0.965 0.998
250% 0.957 0.958 0.999 0.952 0.999 0.964 0.998
300% 0.968 0.968 0.999 0.965 0.999 0.971 0.999

AUC area-under-the-curve. PPV/NPV positive/negative predictive value.
Table 3. Mean performance of the models on validation set.

Crop Size Accuracy F1-Score AUC Sensitivity ~ Specificity PPV NPV
100% 0.767 0.720 0.984 0.738 0.994 0.811 0.992
150% 0.870 0.873 0.993 0.854 0.997 0.894 0.995
200% 0.916 0.918 0.995 0.907 0.998 0.931 0.997
250% 0.923 0.924 0.994 0.916 0.998 0.933 0.997
300% 0.933 0.934 0.993 0.928 0.998 0.940 0.998

AUC area-under-the-curve. PPV/NPV positive/negative predictive value.
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Figure 3. Visualization of F1-score for the test set for each image context size grouped per tooth group and over all tooth

groups. The baseline size of 100% captured image segments with the size of the annotation bounding box; the image
segment size of 300% covered image segments with the size of the bounding box upscaled by a factor of 3.
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Figure 4. Visualization of contributing feature maps for random teeth from the test set. Images of
incisors, canines, premolars and molars (lines) and different crop sizes (columns) are presented.
The original images and the salient areas most relevant for the model’s decision (highlighted in
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yellow to red) are shown. Ground truth labels are shown on the left. Predicted labels and confi-
dence scores (values closer to 1 indicate higher confidence in the model’s classification) are noted
below.

4. Discussion

Deep learning applications are rapidly entering dentistry; one main component for
accurate deep learning models is high accuracy. To improve accuracy on limited available
datasets, cropping dental imagery, for example radiographs, and thereby multiplying the
number of statistical units, is common, making use of the multiplicity of teeth in each
image. Especially on dental panoramics, this approach has been employed.

Notably, cropping imagery around teeth comes with significant information loss,
mainly context but also information on possible association of the units (i.e., clustering
correlation) [14]. In the present study, we evaluated the impact of this information loss on
one particular task, tooth classification on panoramic radiographs. We hypothesized that
with increasing tooth segment size and the resulting increase in context, classification ac-
curacy increases significantly. We accept this hypothesis.

Our findings require a deeper discussion. First, our primary finding can be linked to
the fundamental design of CNNs. Early layers of CNNs have the task to detect low-level
features such as vertical or horizontal edges derived from changes in brightness within
the image. The later layers of CNNs combine these low-level features to detect high-level
shapes or objects. Naturally, images with a larger scope of image context provide more
low-level features that carry rich information of the image content. Consequently, the
model has more possibilities to detect high-level objects, resulting in higher accuracy. Our
experiments on explainability confirmed this; the models indeed used the available con-
text in larger segments to come to their classification decisions.

Second, the resulting gains in accuracy were significant; we observed a 20% increase
in F1-score when enlarging the segment size. Notably, the gain was mainly realized in the
first enlargement steps; increases beyond 200% segment size yielded only limited accu-
racy gains, i.e., the benefit of context saturated. For researchers, this means that segmen-
tation as a strategy remains useful, but should not be performed on tooth level, but allow-
ing 2-3 teeth to remain present on an image, thereby balancing the positive effects of crop-
ping and context.

Third, the tooth type played a relevant role for our particular task, tooth classifica-
tion. While all teeth except canines showed the described behavior, benefitting from con-
text, the classification of canines showed already high accuracy on the baseline image seg-
ments and accuracy did not increase with context. This is likely as only one canine can be
present per segment regardless of the segment size given the availability of only one ca-
nine per quadrant. In this case, misclassification is generally less likely. This highlights
one other finding: Based on our findings it seems that models were able to identify each
tooth type reliably based on their specific anatomic features regardless of the segment size
(e.g., canines seem clearly distinguishable from other tooth types), but that the positioning
of the specific tooth type and hence the subclassification (e.g., first versus second molar)
required context (which for canines, played no role, as no discrimination from other ca-
nines was needed.)

Fourth, the age range of individuals in our sample was large—and with it the number
of teeth (and the teeth present, as outlined in the prevalence data). This was needed to
allow generalizability of the underlying tooth classification models. These should work
on fully dentate or partially dentate radiographs, i.e., different age ranges. Finally, very
similar model performance metrics on the validation and test set confirmed that the model
was not prone to overfitting. This study comes with a number of limitations. First, we
employed only one specific model architecture, ResNet-34, for one specific deep learning
task, tooth classification on panoramics, on data from one center. We hence do not claim
generalizability of our models” performance as well as our findings. It may be that other
models show different behavior, and it is likely that the effect of context on other tasks
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will differ. Second, we did not include any image augmentation methods, since the focus
of this work was on the impact of varying input data on model performance and not on
maximizing the generalizability of the trained models. The rotation before training as-
sured more standardized input image data, as the tooth orientation may be highly varia-
ble, depending on the dental status of the subject (Figure 1).

Furthermore, we did not perform any actions against the class imbalance of the da-
taset. As a result, our subgroup analyses on different tooth groups are based on varying
numbers of images per group, which limits the comparability of accuracies in different
groups. It is however unlikely that the direction of the observed effects will be affected,
but possibly their magnitude. Moreover, implants and restored teeth were included in
this tooth classification task. Implants or crowned teeth provide less distinguishable fea-
tures than natural teeth and thereby may affect the performance magnitude of the models.
Also, the distribution of implants and crowns in-between different tooth groups may dif-
fer and affect the model performance. The decision to include implants and restored teeth
was made given the larger scope of this study; the general detection and classification of
dental units on panoramic radiographs to later on allow associating dental restorations or
pathologies with specific teeth. To achieve this, CNNs must be exposed to the feature
space of healthy and restored teeth and implants during training, irrespective of whether
the model is trained on full-sized or cropped images. A suggestion for the size of cropped
images used for training should therefore be based on an evaluation of healthy and re-
stored teeth and implants. Admittedly, classifying implants is harder given that implant
class is distinguishable from implant position, not their anatomy. Note, that the preva-
lence of implants was low (3.2%), though, and the bias stemming from this aspect should
be limited.

Further studies are needed to explore these effects in more detail.

5. Conclusions

Context matters; classification accuracy increased significantly with increasing con-
text. Cropping imagery during training may hamper deep learning accuracy. Our findings
suggest training models on larger cropped image segments with 2-3 teeth to balance the
positive effects of cropping and context.

Supplementary Materials: The following are available online at www.mdpi.com/2077-
0383/10/8/1635/s1, Figure S1. Architecture of ResNet-34 network with 34 parameter layers. Curved
arrows symbolize identity mapping. Dotted shortcuts represent an increase of the dimensions.
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