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Abstract: Neurological disorders are a leading cause of death and disability worldwide. Can virtual
reality (VR) based intervention, a novel technology-driven change of paradigm in rehabilitation,
reduce impairments, activity limitations, and participation restrictions? This question is directly
addressed here for the first time using an umbrella review that assessed the effectiveness and quality
of evidence of VR interventions in the physical and cognitive rehabilitation of patients with stroke,
traumatic brain injury and cerebral palsy, identified factors that can enhance rehabilitation outcomes
and addressed safety concerns. Forty-one meta-analyses were included. The data synthesis found
mostly low- or very low-quality evidence that supports the effectiveness of VR interventions. Only
a limited number of comparisons were rated as having moderate and high quality of evidence,
but overall, results highlight potential benefits of VR for improving the ambulation function of
children with cerebral palsy, mobility, balance, upper limb function, and body structure/function
and activity of people with stroke, and upper limb function of people with acquired brain injury.
Customization of VR systems is one important factor linked with improved outcomes. Most studies
do not address safety concerns, as only nine reviews reported adverse effects. The results provide
critical recommendations for the design and implementation of future VR programs, trials and
systematic reviews, including the need for high quality randomized controlled trials to test principles
and mechanisms, in primary studies and in meta-analyses, in order to formulate evidence-based
guidelines for designing VR-based rehabilitation interventions.

Keywords: neurological disorders; stroke; traumatic brain injury; cerebral palsy; rehabilitation;
virtual reality

1. Introduction

Neurological disorders are a leading cause of death and disability worldwide with
estimated annual costs of €266 billion in Europe [1]. Consequences of disabilities caused by
neurological disorders can be reduced by rehabilitation programs in addition to promotion,
prevention and treatment [2].

New promising interventions to improve rehabilitation outcomes such as virtual
reality (VR)-based interventions have been developed. Using various technical devices
(e.g., head-mounted displays, desktop computers, video capture systems, tracking systems,
motion-sensing gloves), VR delivers realistic experiences by creating virtual environments
(VEs) that closely resemble everyday environments [3]. Common examples of VR programs
with promising results for rehabilitation of patients with non-progressive neurological
conditions such as stroke or cerebral palsy (CP) are VR-based treadmill training for lower
extremity [4], reaching and grasping of virtual objects exercises for the upper extrem-
ity [5], and even playing games and performing various activities using commercially
available serious games platforms for upper and lower limb function: Nintendo WII or
Xbox Kinect [6,7].
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Significant improvements in rehabilitation outcomes for patients who underwent
VR-based interventions may be explained by their ability to offer meaningful and realistic
experiences, thus accommodating principles of rehabilitation [8]. Learning improves if
the tasks are meaningful, specific and repetitive and if the task difficulty is increased
over time [8,9]. In VR, the number of stimuli and the difficulty of tasks can be adjusted
to the needs and possibilities of the patients while maintaining stimulus control and
consistency [3,10,11]. Feedback is a key component for motor learning and facilitates
quick self-correction [12,13] and VR systems can provide real-time, strategic and goal-
directed feedback [3,11]. VR can also be viewed as a medium which offers environmental
enrichment. Previous research in animal and human studies showed the positive effect of
enriched environments on motor and cognitive performance [14,15].

Recently, there has been an increase in VR-based interventions for rehabilitation with
mixed results. To better understand the impact of VR-based interventions on neurological
rehabilitation, the first objective of this umbrella review was to summarise the evidence of
published meta-analyses regarding the effects of VR-based interventions for improving
physical and cognitive functions of patients with stroke, traumatic brain injury (TBI) and
CP and assess the quality of the evidence. Three past umbrella reviews reviewed the
effectiveness of various interventions, including VR, on upper limb outcome [16], balance
outcomes [17] and activities of daily living [18] in stroke with mixed results. Pollock [16]
identified moderate quality of evidence in favour of VR; Arienti [17] reported mixed
results with quality of evidence ranging from low to high quality; and García-Rudolph [18]
reported small to moderate effects for VR interventions, but the quality of evidence was
not graded. To our best knowledge, no umbrella review has investigated the effects of VR
for CP or TBI. This is the first umbrella review to comprehensively assess the effectiveness
of VR-based interventions on multiple physical and cognitive domains and identify factors
associated with treatment effects, for patients with stroke, CP and TBI.

Because of the increased heterogeneity of VR platforms and interventions for reha-
bilitation which may facilitate change via different underlying mechanisms, our second
objective was to assess the effects of factors that can impact rehabilitation. Using results
from subgroup comparisons, we defined two broad classes of moderator variables referring
to VR technology-related variables (e.g., immersion and presence, customization of VR
systems), sample and study methodology (e.g., age, clinical diagnosis, nature of the control
groups used as comparators). We were also interested in safety issues related to the use of
VR especially with vulnerable populations, particularly regarding adverse effects of VR
exposure [19,20]. Thirdly, we assessed whether VR is safe by quantifying the number and
severity of adverse effects reported in the reviews.

2. Methods

This umbrella review was conducted in accordance with the Cochrane guidelines
for overview of reviews [21] and the Joanna Briggs Institute guidelines for umbrella
reviews [22]. The protocol was registered on the Open Science Framework (OSF) (regis-
tration number: osf.io/w6hs8). No ethical approval was needed as we used data from
published studies.

2.1. Eligibility Criteria

The eligibility criteria was: (a) studies that employed a meta-analytic method; (b) par-
ticipants with a clinical diagnosis of stroke, TBI, CP and acquired brain injury (ABI), caused
by either stroke, TBI or CP; (c) VR-based interventions for rehabilitation of physical and/or
cognitive abilities; (d) physical functioning (e.g., upper limb function, balance, gait, motor
skills) and/or cognitive functioning outcomes (e.g., attention, memory, executive func-
tioning). We included meta-analytical reviews which used a wide range of VR platforms,
such as: head-mounted displays (HMDs), television (TV) screens, desktop computers,
video capture systems, tracking systems, headphones, motion-sensing gloves, joysticks,
keyboards, including commercial computer games platforms such as the Nintendo WII.
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In addition, the meta-analysis should have employed appropriate methods. We chose to
include only meta-analyses instead of having a broader approach and including systematic
reviews without meta-analytical data. The reason for this is the fact that meta-analytical
studies offer an effect estimate which would facilitate data synthesis, but this was not the
case for systematic reviews. As recommended in the Cochrane guidelines [21] we reported
our results and statistical summaries by outcomes.

We included peer reviewed articles, conference proceedings, chapters, dissertation
thesis and grey literature. We restricted our focus to English language publications to
ensure we had an excellent understanding of methods and data analysis reported by
authors. In order to increase power and reduce selection bias, we included meta-analyses
which performed subgroup analyses and reported pooled effect sizes for our variables of
interest and outcomes.

2.2. Search Strategy

A comprehensive search strategy was employed and performed by two review au-
thors to identify potentially relevant records. We searched the following databases through
February, 2020 and updated in December, 2020: the Cochrane Database of Systematic
Reviews, PsycINFO, EMBASE, PubMed, SCOPUS, ISI Web of Science, Database of Ab-
stracts of Reviews of Effects, Physiotherapy Evidence Database, ACM Digital Library, IEEE
Xplore Digital Library, ProQuest Dissertations & Theses A&I, Open Access Theses and
Dissertations, EThOS e-theses online service. We searched for the following terms in the
publication’s title, abstract, and keywords: (“virtual reality” OR “vr” OR “virtual envi-
ronment” OR game OR immersive) AND (rehab* OR improv* OR train* OR intervention
OR treat* OR expos* OR remediat*) AND (meta-analy* OR review). The search string
was modified appropriately for the various databases and an example can be found in the
Supplementary Materials. We also searched the references from the most recent systematic
reviews and meta-analyses.

2.3. Data Collection and Analysis
2.3.1. Selection of Meta-Analysis Process

Two reviewers independently screened the titles and abstracts. All records deemed
relevant were retrieved in full text and were reviewed by two reviewers in order to deter-
mine whether they met the selection criteria stated previously. Any disagreements were
resolved through discussion with a third reviewer.

2.3.2. Data Extraction and Management

Data were extracted independently by two reviewers using a predefined extraction
form. Any concerns were discussed with a third reviewer. Where any information from the
reviews was unclear or missing, we contacted the review authors. Two attempts were made.
We extracted: (a) meta-analysis identification data (e.g., authors, year of publication and
county of origin); (b) population characteristics (e.g., age and diagnosis); (c) intervention
and control group characteristics (e.g., type of intervention, VR platform, intervention
time); (d) review characteristics (e.g., trial design, number of primary studies and number
of participants, number of participants per intervention and control group); (e) statistical
summaries (e.g., outcomes and effect measure with 95% confidence intervals, p values
and heterogeneity); (f) apriori moderators (e.g., age, immersion and presence, type of VR
platform).

The outcomes were categorized as: (a) lower limb activity (e.g., mobility, ambulation
function, gait, walking speed); (b) balance and postural control; (c) upper limb, arm function
and activity (e.g., grip strength, arm function, improvement of motor impairment and
motor function, arm-hand activities); (d) activity limitation (e.g., activities of daily living,
global function, independence); (e) ICF WHO Framework outcomes (e.g., participation,
body structure and function, activity); (f) motor function; (g) cognitive functioning (e.g.,
overall cognition).
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2.3.3. Quality of Included Reviews

One review author performed quality assessment of all included meta-analysis and
another two reviewers performed the assessment of a random sample of included studies
and obtained good agreement. We used the AMSTAR 2 [23] to assess the methodological
quality of the included reviews (see Supplementary Materials). Risk of bias (ROB) was
reported as assessed by the original review authors. Quality of evidence for each outcome
was judged using a modified version for systematic reviews of the GRADE approach [24]
(described in the Supplementary Materials).

2.3.4. Overlapping of Studies

We calculated the corrected covered area (CCA) to account for overlapping of stud-
ies [25] (Supplementary Materials contains a spreadsheet used to calculate CCA).

2.3.5. Data Synthesis

We produced a narrative description and synthesis of the reviews. We organized
the review findings by outcomes and reported all the comparisons that were provided by
review authors. For each comparison, we extracted the effect size and the 95% CI (e.g.,
standardized mean differences, mean differences) and heterogeneity (I2) as reported by
review authors. To assess the magnitude of the effect, for standardized mean difference
and Hedge’s g coefficients we used Cohen’s metrics where a value of between 0.20 and 0.50
indicates a small effect, one between 0.50 and 0.80 indicates a medium effect, while a value
larger than 0.80 indicates a large effect size [26]. For mean differences and weighted mean
differences, we used the review authors judgements about the magnitude of results because
they were in the best position to understand and evaluate the scale results and cut-off
scores, given their familiarity with study-level data. For odds ratio, no estimation of the
magnitude of the effect was employed because each odds ratio estimates was explained by
different variables and each statistical model had a different arbitrary scaling factor [27]. We
extracted I2 as a measure of heterogeneity and interpreted the heterogeneity based on the
criteria provided by the Cochrane Handbook. I2 values ranging from 0 to 50% correspond
to low and not important heterogeneity, values ranging from 50% to 75% correspond to
moderate heterogeneity and values above 75% indicate substantial heterogeneity [28].

For moderator effects, we employed a similar approach of data extraction and report-
ing as we did for the overall effects. To address safety concerns, we extracted available
data and reported the number of primary studies and meta-analyses that reported adverse
effects and their magnitude and/or severity. Further details concerning moderator effects
data synthesis are available in Supplementary Materials.

3. Results

Our search generated 30,306 records. We excluded 10,167 duplicates and screened
20,139 records. After screening the title and abstract 19,777 articles were excluded and the
full text of 362 papers was assessed. We excluded 321 records because they focused on other
types of interventions and populations. Thus, 41 meta-analyses met our inclusion criteria
and were included in the umbrella review (see Figure 1 for the PRISMA flowchart [29];
Supplementary Materials, Table S1 contains a list of excluded studies with reasons).



J. Clin. Med. 2021, 10, 1478 5 of 42

J. Clin. Med. 2021, 10, x FOR PEER REVIEW 5 of 40 
 

 

criteria and were included in the umbrella review (see Figure 1 for the PRISMA flowchart 
[29]; Supplementary Materials, Table S1 contains a list of excluded studies with reasons). 

 

Figure 1. PRISMA flow diagram. RCT: randomized controlled trial, VR: virtual reality. 

3.1. Description and Methodological Quality of Included Reviews 
3.1.1. Study Characteristics 

Forty-one reviews with meta-analytical results were included in our umbrella re-
view. Characteristics of the study, type of patient population, intervention and control 
conditions, type of VR platform used, and outcomes can be found in Table 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Records identified through database 
searching  

(n = 30,306) 

Sc
re

en
in

g 
In

clu
de

d 
El

ig
ib

ili
ty

 
Id

en
tif

ica
tio

n 
Additional records identified 

through other sources  
(n = 0) 

Records after duplicates removed  
(n = 20,139) 

Records screened  
(n = 20,139) 

Records excluded  
(n = 19,777) 

Full-text articles assessed 
for eligibility  

(n = 362) 

Full-text articles not included, 
with reasons  

(n = 321): 
• 209 excluded: 

Systematic reviews, without 
meta-analytic data: 148 

Other types of reviews (e.g., 
scoping review): 52 

Experimental studies (e.g., RCT): 
3 

Poster presentations: 6 
• 112 meta-analysis 

excluded:  
Not population of interest 
(e.g., Parkinson Disease, 

older adults, mixed 
conditions): 59 

Not intervention of 
interest (e.g., VR 
combined with 

biofeedback): 52 
Mixed methods: 1 

Studies included in 
qualitative synthesis  

(n = 41) 

Figure 1. PRISMA flow diagram. RCT: randomized controlled trial, VR: virtual reality.

3.1. Description and Methodological Quality of Included Reviews
3.1.1. Study Characteristics

Forty-one reviews with meta-analytical results were included in our umbrella review.
Characteristics of the study, type of patient population, intervention and control conditions,
type of VR platform used, and outcomes can be found in Table 1.



J. Clin. Med. 2021, 10, 1478 6 of 42

Table 1. Characteristics of the included meta-analytic studies.

Author(s),
Year

Population
Age Country of Origin

Sample Size Per
Included

Meta-Analysis

Number of
Primary Studies

Include in
Meta-Analysis

Clinical Status of
the Sample

List of Interventions
with VR Component

List of Control
Interventions

Type of VR
Platform Used for

Intervention

VR intervention
Time

Outcome/s
Measurement

Instrument

Ahn et al. [30] Adults Korea
694 participants
(intervention =

278; control = 416)
9 Stroke c

VR interventions
consisted of:

motor-based learning;
combined and

conventional upper
limb therapy; various
exercises delivered via

gaming consoles;
reinforced feedback;
VR in combination
with low frequency

repetitive transcranial
magnetic stimulation;

goal-oriented
movement

amplification

Control intervention
consistent of: standard

therapy for upper
extremity;

conventional
occupational therapy;

VR in combination
with sham repetitive
transcranial magnetic

stimulation;
goal-oriented training

in VR without
movement

amplification

VE-based system
(e.g., RehabMaster

plus other VR
systems that were

not specified)
IG-based system
(e.g., IG type not

specified)

687 min (total); 48
min (per session);

12 sessions

Activities of daily
living:

Performance on
daily living

activities (Barthel
Index scale and

Functional
Independence

Measure)
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Table 1. Cont.

Author(s),
Year

Population
Age Country of Origin

Sample Size Per
Included

Meta-Analysis

Number of
Primary Studies

Include in
Meta-Analysis

Clinical Status of
the Sample

List of Interventions
with VR Component

List of Control
Interventions

Type of VR
Platform Used for

Intervention

VR intervention
Time

Outcome/s
Measurement

Instrument

Aminov et al.
[31] Adults Australia

955 participants
(intervention =

484; control = 471)
31

Stroke (sub-acute,
chronic, ischemic,
hemorrhagic and

mixed)

VR interventions
consisted of: various

rehabilitation exercises
delivered via video
capture or tabletop

systems with sensors
to detect patients’

movements and data
gloves to allow for

grasping and reaching
objects; video capture

systems and sensors to
allow patients to

observe their own
movements on the

screen and the correct
trajectory; reinforced

feedback for exercises;
various exercises

delivered via gaming
consoles

Control intervention
consisted of: standard

therapy; usual
activities at the

rehabilitation center
including social

activities, creative
crafts and physical

activities;
physiotherapy alone
and in combination
with occupational

therapy; occupational
therapy; computer
assisted cognitive

rehabilitation; physical
therapy with or

without occupational
therapy

VE-based system
(e.g., Reinforced

Feedback in
Virtual

Environment
system; Rehab

Master
game-based

system)
IG-based system
(e.g., Nintendo

Wii, Xavix;
PlayStation

EyeToy; IREX,
Xbox Kinect)

685 min (total); 42
min (per session);

18 sessions

ICFWHO
framework: Body

Struc-
ture/Function

(e.g., Fugl Meyer
Assessment);

Activity (e.g., Box
and Blocks Test);

Participation (e.g.,
Motor Activity

Log)
Cognitive
functions:

Attention (e.g.,
Continuous

Performance Test);
Executive

functioning (e.g.,
Trail Making Test-

A, Tower of
London); Verbal

and spatial
memory (Visual

learning test,
Verbal learning

test)

Barclay et al.
[32] a Adults Canada

20 participants
(intervention = 11,

control = 9)
1 Stroke (chronic)

VR intervention
consisted of: motorised

treadmill training

Control intervention
consisted of: treadmill
training without VR

VE-based system
(e.g., visual screen
with leg sensors
and treadmill)

180 min (total); 20
min (per session);

9 sessions

Community
ambulation: Time

to walk (e.g.,
Community Walk

Test); Walking
ability (e.g.,

Walking Ability
Questionnaire;

Gait speed (e.g.,
10-min walk test);

Self-efficacy
(Balance

Confident Scale)

Booth et al.
[33] a Adults UK

10 participants
(intervention = 9,

control = 8)
1

Acquired Brain
Injury (e.g., stroke,

TBI)

VR intervention
consisted of: balance

exercises delivered via
a game-based platform

Control intervention
consisted of:
traditional

rehabilitation

IG-based system
(e.g., Nintendo

Wii balance-board)

1200 min (total);
60 min (per
session), 20

sessions

Balance: Number
of full stands (30 s
sit-to-stand test)
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Table 1. Cont.

Author(s),
Year

Population
Age Country of Origin

Sample Size Per
Included

Meta-Analysis

Number of
Primary Studies

Include in
Meta-Analysis

Clinical Status of
the Sample

List of Interventions
with VR Component

List of Control
Interventions

Type of VR
Platform Used for

Intervention

VR intervention
Time

Outcome/s
Measurement

Instrument

Chen et al.
[34] Children USA

122 participants
(intervention = 97,

control = 25)
14

Cerebral Palsy
(hemiplegia,

diplegia,
quadriplegia,

mixed, spastic)

VR interventions
consisted of: various

rehabilitation activities
delivered via

commercially available
systems and e

engineer-built systems

Control intervention
consisted of:

conventional therapy

IG-based system
(e.g., PlayStation;
IREX; NJIT-RAVR;

Engineer-built
hand system plus
EyeToy Play Sony,
5DT 5 Ultra glove
plus PlayStation;

RE-ACTION
system, GX

system;
NeuroGame,

E-link Evaluation
and Exercise

System; powered
joystick linked to
computer game,

Wii)

539 min (total); 53
min (per session);

13 sessions

ICFWHO
framework: Body

Struc-
ture/Function

(e.g., kinematics);
Activity (e.g.,

Bruininks-
Oseretsky Test of

Motor
Proficiency);

Participation (e.g.,
Canadian

Occupational
Performance

Measure)

Chen et al.
[35] a Adults China

100 participants
(intervention = 50,

control = 50)
4 Stroke c

VR interventions
consisted of: therapy
program at home via

videoconferencing
system; motor task

treatment

Control intervention
consisted of: VR

therapy program in the
hospital; traditional

physical therapy

VE-based system
(e.g., workstation
equipped with a

3D motion
tracking system
which recorded

the patient’s arm
movements)

1200 min (total);
60 min (per
session); 20

sessions

Upper extremity
motor function:

Fugl Myer
assessment

Activities of daily
living:

Performance on
daily living

activities (Barthel
Index scale)
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Table 1. Cont.

Author(s),
Year

Population
Age Country of Origin

Sample Size Per
Included

Meta-Analysis

Number of
Primary Studies

Include in
Meta-Analysis

Clinical Status of
the Sample

List of Interventions
with VR Component

List of Control
Interventions

Type of VR
Platform Used for

Intervention

VR intervention
Time

Outcome/s
Measurement

Instrument

Chen et al.
[36] Children USA

504 participants
(intervention =

266, control = 238)
19

Cerebral Palsy
(hemiplegia,

diplegia, mixed,
spastic)

VR interventions
consisted of: physical

exercises with
interactive games and

serious games

Control intervention
consisted of: usual care;
usual physical activity;

modified
constraint-induced
movement therapy;

standard care; regular
routine; conventional

therapy; no input other
than data collection for

outcome measures;
waiting list control

group

IG-based system
(e.g., Nintendo

Wii; Eloton
SimCycle;

PlayStation;
GestureXtreme;
Q4; E-link; Xbox

Kinect;
engineer-built seat

cushion)

1215 (total); 55
(per session); 29

sessions

ICFWHO
framework:
Body Struc-

ture/Function
(e.g., Bruininks-

Oseretsky Test of
Motor

Proficiency);
Activity (e.g.,
Pediatric Berg
Balance Scale);

Participation (e.g.,
Assessment of

Motor and Process
Skills)

Arm function (e.g.,
Bruininks-

Oseretsky Test of
Motor

Proficiency);
Ambulation

function (e.g.,
10-min walk test)
Postural Control

(e.g., Berg Balance
Scale)

Cheok et al.
[37] Adults Singapore

161 participants
(intervention = 82,

control = 79)
6 Stroke c

VR interventions
consisted of:

conventional gaming
with conventional
physical therapy;

physical exercises and
balance training with
interactive games and

serious games

Control intervention
consisted of: physical

activity and or in
combination with

occupational therapy;
general exercises in
combination with

electrical stimulation to
tibialis anterior on

affected side; leisure
activities, such as

playing cards, bingo, or
Jenga

IG-based system
(e.g., Nintendo

Wii)

485 (total); 33 (per
session); 14

sessions

Global function
(e.g., Functional
Independence

Measure)
Functional

mobility (e.g.,
Timed Up and Go
test) and balance

(e.g., Berg Balance
Scale)

Static balance
(Postural sway

measures:
anteroposterior

eyes closed;
anteroposterior

eyes open;
medio-lateral eyes

closed;
medio-lateral eyes

open)
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Table 1. Cont.

Author(s),
Year

Population
Age Country of Origin

Sample Size Per
Included

Meta-Analysis

Number of
Primary Studies

Include in
Meta-Analysis

Clinical Status of
the Sample

List of Interventions
with VR Component

List of Control
Interventions

Type of VR
Platform Used for

Intervention

VR intervention
Time

Outcome/s
Measurement

Instrument

Corbetta et al.
[38] Adults Italy

341 participants
(intervention =

169; control = 172)
15 Stroke (ischaemic,

haemorrhagic)

VR interventions
consisted of: treadmill

walking training;
stepping over virtual
objects on a treadmill;
physical exercises for
balance and stepping

hills; robot training for
foot movements in a
virtual environment;

postural control
exercises; balance

training exercises with
serious games

Control intervention
consisted of:
conventional

rehabilitation with or
without treadmill
walking training;
stepping over real
foam objects in a
hallway; physical
exercises; robot
training for foot

movements without
VR; treadmill training
simulating stepping

obstacles

VE-based system
(e.g., HMDs;
audio-visual

system combined
with a

motion-tracking
system; projectors,
treadmill training

system; robotic
VR)

IG-based system
(e.g., Microsoft

Xbox 360 Kinect,
Nintendo Wii;

IREX)

459 (total); 32 (per
session); 13

sessions

Walking speed
(e.g., the 10-metre

walk)
Functional

mobility (e.g.,
Timed Up and Go
test) Balance (e.g.,

Berg Balance
Scale)

Da-Silva et al.
[39] a Adults UK

231 participants
(intervention =

113; control = 118)
2 Stoke c

VR interventions
consisted of:

self-directed exercise
delivered via

interactive gaming
system

Control intervention
consisted of: tailored

arm exercises; no input
other than visits to

collect outcome
measures

IG-based system
(e.g., Nintendo

Wii;
Hand-mounted

unit with infra-red
light and
Nintendo

Wiimotes to
translate hand

movement)

2790 (total); 33
(per session); 107

sessions

Arm function (e.g.,
Wolf Motor

Function Test)
Independence and
self-care activities:
Perceived amount
and quality of use
of the stroke (e.g.,

Motor Activity
Log)

De Keersm-
maecker et al.

[40]
Adults Belgium

105 participants
(Pre-test post-test

design = 105)
9 Stroke c

VR interventions
consisted of: treadmill

walking training
n/a

VE-based system
(e.g., HMDs;
visual screen;
treadmill with

multiple screens,
robotic device

Lokomat
exoskeleteon with

a screen)

646 (total); 35 (per
session); 18

sessions

Gait (e.g.,
Ten-Minute Walk

Test)
Functional gait

(e.g., Berg Balance
Scale, Timed Up

and Go)
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Table 1. Cont.

Author(s),
Year

Population
Age Country of Origin

Sample Size Per
Included

Meta-Analysis

Number of
Primary Studies

Include in
Meta-Analysis

Clinical Status of
the Sample

List of Interventions
with VR Component

List of Control
Interventions

Type of VR
Platform Used for

Intervention

VR intervention
Time

Outcome/s
Measurement

Instrument

De Rooij et al.
[41] Adults The Netherlands 516 participants b 21 Stroke c

VR interventions
consisted of: treadmill

walking training;
manipulating objects

that are projected on a
screen; exercise,
balance and/or

posture training on
interactive gaming

systems with or
without feedback

Control intervention
consisted of: group

therapy; conventional
therapy with or

without task-oriented
training; ergometer

bicycle training;
traditional non-VR
treadmill training;
physical exercises;

conventional therapy
plus weight-shift

training; conventional
therapy plus extra
balance therapy;

stepping over real
foam objects

VE-based system
(e.g., HMDs;
visual screen;

BioRescue
platform and

monitor)
IG-based system
(Microsoft Xbox

Kinect,
PlayStation,

Nintendo Wii Fit,
SeeMe VR system,

IREX)

494 (total); 31 (per
session); 15

sessions

Balance Static (e.g.,
Average postural
sway speed) and
dynamic balance

(e.g., Berg Balance
Scale, Timed Up

and Go)
Gait (e.g.,

Six-Minute Walk
Test)

Domínguez-
Téllez et al.

[42]
Adults France, Spain

262 participants
(intervention =

131; control = 131)
10 Stroke c

VR interventions
consisted of: treadmill
walking training; gait
training with active
gaming component

Control intervention
consisted of:

traditional non-VR
treadmill training;

exposure to identical
VR, but without

balance component
training and seated;

conventional therapy;
task-oriented training;

conventional
physiotherapy

VE-based system
(e.g., HMDs;
visual screen)

IG-based system
(Microsoft Xbox
Kinect, Nintendo

Wii Balance, IREX)

641 (total); 37 (per
session); 15

sessions

Balance (e.g., Berg
Balance Scale)

Gait (e.g.,
Ten-Minute Walk

Test)

Domínguez-
Téllez et al.

[43]
Adults France, Spain

735 participants
(intervention =

368; control = 367)
15 Stroke c

VR interventions
consisted of:
game-based

interventions on
manipulation of virtual

objects, performing
various VR tasks, VR

with bionic gloves, VR
therapy and
exoskeleton

Control intervention
consisted of:

conventional therapy,
intensive therapy,
functional therapy,

recreational therapy

VE-based system
(e.g., HMDs;
visual screen,

CAERN system,
mechatronic VR,

SmartGlove bionic
glove, Armeo

Spring
exoskeleton, You
Grabber bionic

gloves)
IG-based system
(Microsoft Xbox

Kinect,
PlayStation, IREX,

Nintendo Wii)

822 (total); 45 (per
session); 19

sessions

Upper limb motor
function (e.g.,
Fugl- Meyer)
Quality of life

(e.g., Functional
independence

measure)
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Table 1. Cont.

Author(s),
Year

Population
Age Country of Origin

Sample Size Per
Included

Meta-Analysis

Number of
Primary Studies

Include in
Meta-Analysis

Clinical Status of
the Sample

List of Interventions
with VR Component

List of Control
Interventions

Type of VR
Platform Used for

Intervention

VR intervention
Time

Outcome/s
Measurement

Instrument

Ferreira et al.
[13] Adults Brazil 310 participants b 11 Stroke (chronic,

acute)

VR interventions
consisted of:

interactive games
mainly for balance

training with or
without feedback

Control intervention
consisted of: physical

therapy; physiotherapy
including balance

training; conventional
physiotherapy and

exposure to identical
VR, but without

balance component
training

IG-based system
(e.g., Nintendo
Wii, Xbox with
Kinect, virtual

walking training
program using a
real-world video
recording, IREX;

standard
computer, an
audio-visual

output system,
and a motion

tracking system)

467 (total); 31 (per
session); 14

sessions

Functional balance
(e.g., Berg Balance

Scale)
Mobility (e.g.,

Timed Up and Go)

García-
Muñoz et al.

[44]
Adults , Spain

161 participants
(intervention = 87;

control = 74)
6 Stroke c

VR interventions
consisted of:

interactive games
mainly for balance

training

Control intervention
consisted of:

conventional therapy,
occupational therapy,
physiotherapy and

speech therapy,
neurodevelopment

training and
progressive training

IG-based system
(e.g., Nintendo

Wii)

527 (total); 33 (per
session); 15

sessions

Dynamic balance
(e.g., Berg Balance
Scale; Timed Up

and Go)
Static balance

(Postural sway
measures:

anteroposterior
deviations of the
center of gravity)

Ghai et al.
[45] Children Germany, India

274 participants
(Pre-test post-test

design = 274)
14

Cerebral Palsy
(spastic diparesis,

hemiplegic,
mixed)

VR interventions
consisted of: gait

training with active
gaming component;

gait training; gait
training with

interactive gaming;
training with anodal

transcranial direct
current stimulation;

ankle movement
exercises with

customized computer
games; treadmill

training; ankle training
with robot-assistance
and VR; home-based

virtual cycling training

n/a

IG-based system
(Xbox Kinect; Gait
Realtime Analysis

Interactive Lab;
Wii Fit U device;

Wii)

1000 (total); 33
(per session); 36

sessions

Gait (e.g., gait
velocity, stride

length, cadence,
stride width)
Gross motor
function (e.g.,
Gross motor
function test)
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Table 1. Cont.

Author(s),
Year

Population
Age Country of Origin

Sample Size Per
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Meta-Analysis

Number of
Primary Studies

Include in
Meta-Analysis

Clinical Status of
the Sample

List of Interventions
with VR Component

List of Control
Interventions

Type of VR
Platform Used for

Intervention

VR intervention
Time

Outcome/s
Measurement

Instrument

Gibbons et al.
[46] Adults Australia

523 participants
(intervention =

262; control = 261)
20

Stroke
(acute-subacute,

chronic)

VR interventions
consisted of:

interactive games
mainly for balance
training; treadmill
training; physical
exercises; postural

control training

Control intervention
consisted of: standard

care; conventional
therapy; exposure to

identical VR, but
without balance

component training
and seated; real object

training with foam
obstacles; task-oriented
training; outdoor gait
training; ergometer

bicycle training;
treadmill training;

documentary videos

VE-based system
(e.g., treadmill

plus PC and TV;
screen standard

computer,
synchronized with
treadmill velocity;

HMDs; visual
screen with leg

sensors and
treadmill)

IG-based system
(e.g., Nintendo

Wii; X-box Kinect;
IREX; standard
computer, an
audio-visual

output system,
and a motion

tracking system;
notebook

computer, beam
projector and

screens without
tracking system)

541 (total); 30 (per
session); 18

sessions

Functional balance
(e.g., Berg Balance

Scale)
Static balance

(Postural sway
measures: COP
velocity, COP

sway/path-length
eyes open and

eyes closed,
percentage WB on

affected limb)
Functional

mobility (e.g.,
Timed Up and Go)

Spatiotemporal
characteris-

tics/kinematics of
gait (e.g., 10 m

walk test, cadence,
stride length, step

length, stance
time)

Motor function
(e.g., Fugl- Meyer)

Muscle tone
(Tardieu scale)

Balance
confidence and
falls (e.g., ABC

question-
naire)Walking

ability (e.g.,
Walking ability
questionnaire)
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Table 1. Cont.

Author(s),
Year
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Age Country of Origin

Sample Size Per
Included

Meta-Analysis

Number of
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Meta-Analysis
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with VR Component

List of Control
Interventions

Type of VR
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Intervention

VR intervention
Time

Outcome/s
Measurement
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Iruthayarajah
et al. [47] Adults UK 413 participants b 17

Stroke (chronic
ischaemic,

haemorrhagic)

VR interventions
consisted of:

interactive games and
VR mainly for balance

training; treadmill
training; physical
exercises; postural

control training;
exercise program with

cognitive tasks; VR
training at home;

treadmill gait training
in VR in combination

with functional electric
stimulation

Control intervention
consisted of:

task-oriented training;
general exercise

therapy; conventional
weight-shift training;
conventional physical

therapy; no
intervention, resumed
with normal routine;

occupational and
physical therapy;
balance training;

treadmill training with
or without physical

therapy; treadmill gait
training; conventional

physiotherapy;
environmental
documentary;

proprioceptive
neuromuscular

facilitation exercise
program; VR training
in clinic; treadmill gait

training in
combination with
functional electric

stimulation

VE-based system
(e.g., real-world
video recordings

connected to a
treadmill and PC

and projector
without tracking

system; HMD and
treadmill; HMD,
treadmill with

optic flow; IREX
HMD; standard

computer, an
audio-visual

output system,
and a motion

tracking system,
video display and
an audio system;

notebook
computer, beam

projector and
screens;

real-world video
recordings

connected to a
treadmill and

stabilizing system)
IG-based system
(e.g., Nintendo

Wii; Xbox Kinetic;
BioRescue)

461 (total); 31 (per
session); 23

sessions.

Dynamic balance
(e.g., Berg Balance
Scale, Timed Up

and Go)
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Table 1. Cont.

Author(s),
Year

Population
Age Country of Origin

Sample Size Per
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Meta-Analysis

Number of
Primary Studies
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Meta-Analysis

Clinical Status of
the Sample

List of Interventions
with VR Component

List of Control
Interventions

Type of VR
Platform Used for

Intervention

VR intervention
Time

Outcome/s
Measurement

Instrument

Johansen et al.
[48] Children Norway

222 participants
(intervention =

113, control 109)
7

Cerebral Palsy
(hemiplegia,

diplegia,
tetraplegia)

VR interventions
consisted of: motion

controlled video games
for hand and arm

function

Control intervention
consisted of: no

treatment,
conventional therapy

IG-based system
(e.g., Nintendo
Wii; Wii sports;

Wii fit; Xbox 360;
Kinect Sports
Adventures,
PlayStation

EyeToy, Wii sports
resort

755 (total); 38 (per
session); 20

sessions

Hand and arm
function (e.g.,
Jebsen-Taylor

Hand Function
Test, Quality of

Upper Extremity
Skills Test)

Karamians
et al. [49] Adults US

1198 participants
(intervention) b 38 Stroke (acute,

chronic, mixed)

VR interventions
consisted of: VR and

game-based
interventions for upper

extremity
rehabilitation

Control intervention
consisted of: conven-

tional/traditional
occupational therapy,

task-oriented
rehabilitation,

task-related practice,
Bobath and

neurodevelopmental
treatment, stretching,

strengthening and
activities of daily living

VE-based system
IG-based system 975 (total)

Upper extremity
function (e.g.,
Wolf Motor

Functioning Test,
Fugl Meyer,

Action Research
Arm Test)
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Table 1. Cont.

Author(s),
Year

Population
Age Country of Origin

Sample Size Per
Included

Meta-Analysis

Number of
Primary Studies

Include in
Meta-Analysis

Clinical Status of
the Sample

List of Interventions
with VR Component

List of Control
Interventions

Type of VR
Platform Used for

Intervention

VR intervention
Time

Outcome/s
Measurement

Instrument

Laver et al.
[50] Adults Australia

1827 participants
(intervention =

827, control 1000)
50

Stroke (ischaemic,
hemiparesis,

haemorrhagic)

VR interventions
consisted of:

interactive games and
VR mainly for balance

training; treadmill
training; physical
exercises with or

without feedback;
postural control
training; exercise

program with
cognitive tasks; VR
training at home;

treadmill gait training
in VR in combination

with functional electric
stimulation

Control intervention
consisted of: usual care;

therapy provided
based on the Bobath

approach; Wii gaming
system; training using

the PSS CogRehab
program;

computer-assisted
rehabilitation; leisure
activities including

cards, bingo and Jenga;
ergometer bicycle

training with feedback;
pointing at targets in a
physical environment;

VR intervention
without feedback;

general
exercise/physical

therapy; no
intervention;

occupational therapy;
balance training;

treadmill training with
or without physical

therapy; conventional
physiotherapy

VE-based system
(e.g., HMDs and

data gloves)
IG-based system
(e.g., Nintendo

Wii; customized
games running on

laptop; depth
sensing camera

and display on a
television screen;

videogames with a
robotic arm; IREX;

Armeo®Spring
arm orthosis

interactive games,
rehabilitation

gaming system;
Kinect; Sony Play

Station; SeeMe VR;
arm orthosis

(T-WREX)
combined with

custom-designed
software package,

video capture
system; Space

Balance 3D; VFT
system which
consists of a
computer, a

monitor, and a
force plate;

Rutgers ankle
rehabilitation

system connected
to a desktop

computer; VR
therapy which
consists of an
exoskeleton

connected to the
computer;

RehabMaster™;
CAREN system,
actuated virtual

keyboard)

760 (total); 45 (per
session); 17

sessions

Arm function and
activity (e.g., Fugl

Meyer)
Hand function

(e.g., grip strength)
Gait and balance:

Lower limb
activity (e.g.,

Timed Up and Go
Test), Balance and
functional control
(e.g., Berg Balance

Scale)
Global motor
function (e.g.,

Motor Assessment
Scale)Activity

limitation:
activities of daily

living (e.g.,
Functional

Independence-
Measure)
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Table 1. Cont.

Author(s),
Year

Population
Age Country of Origin

Sample Size Per
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Meta-Analysis

Number of
Primary Studies
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Meta-Analysis

Clinical Status of
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List of Interventions
with VR Component

List of Control
Interventions

Type of VR
Platform Used for

Intervention

VR intervention
Time

Outcome/s
Measurement

Instrument

Lee et al. [51] Adults Korea
542 participants
(intervention =

276, control = 198)
21 Stroke (chronic)

VR interventions
consisted of: balance,

muscular, strength
exercises; arm and

finger rehabilitation
exercises; reinforced

feedback; exercises for
upper limb function;

treadmill training;
various commercial

and/or serious games
delivered via gaming

consoles; VR with
robotic gait training;

exercises delivered via
serious games in

combination with low
frequency repetitive

transcranial magnetic
stimulation; exercises
delivered via serious
games plus mental

practice

Control intervention
consisted of: treadmill
training without VR;
robotic gait training

without VR; physical
and occupational
therapy; physical
exercises; passive

control group;
ergometer training;

serious games exercises
in combination with

sham repetitive
transcranial magnetic
stimulation; exercises
delivered via serious

games without mental
practice

VE-based system
(e.g., treadmill

with real-world
video recording;

other VEs not fully
described)

IG-based system
(e.g., Wii,

Nintendo; Xbox
Kinect)

897 (total); 47 (per
session); 21

sessions

Upper limb
function (e.g.,
Jebsen Taylor

Hand Function
Test)

Lower limb
function (e.g.,

speed and
cadence)
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Table 1. Cont.

Author(s),
Year
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Age Country of Origin
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Meta-Analysis

Number of
Primary Studies
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Meta-Analysis

Clinical Status of
the Sample
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with VR Component

List of Control
Interventions

Type of VR
Platform Used for

Intervention

VR intervention
Time

Outcome/s
Measurement
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Li et al. [52] Adults China
428 participants
(intervention =

230, control = 198)
16

Stroke
(acute-subacute,

chronic)

VR interventions
consisted of: balance

training; treadmill
training; physical
therapy; treadmill
training in VR in
combination with
functional electric

stimulation

Control intervention
consisted of: physical

and occupational
therapy with or

without functional
electrical stimulation;

conventional
weight-shift training;

balance training;
treadmill gait training
in combination with

functional electric
stimulation; walking

training

VE-based system
(e.g., HMD and

treadmill with and
without

suspension;
treadmill, PC,
projector and

screen with optic
flow; treadmill,
PC, screen with

sensors; standard
computer, an
audio-visual

output system,
and a motion

tracking system
with video display

and an audio
system)

IG-based system
(e.g., Nintendo
Wii, IREX; TV

screen and balance
board Wii;

treadmill walking
training with

real-world video
recording and a

camera stabilizing
system)

386 (total); 26 (per
session); 16

sessions

Balance (e.g., Berg
Balance Scale,

Timed Up and Go
Test)

Activities specific
(ABC)

Forced platform
indicators (e.g.,
sway velocity,

weight
distribution)

Lin et al. [53]
a Adults Taiwan

684 participants
(intervention =

321, control = 360)
9 Stroke c

VR interventions
consisted of: balance

training; physical
training; arm support

training

Control intervention
consisted of:

recreational activities;
no additional

treatment; interactive
gaming balance-based
rehabilitation in seated
position; conventional
reach training; physical

exercises

VE-based system
(e.g., ArmeoBoom
integrated with a

webcam and a
laptop and an
adjusted 3D

virtual
environment)

IG-based system
(e.g., Nintendo

Wii, IREX;
hand-held remote
controller with a
base movement
sensor, PC, and
display screen)

339 (total); 43 (per
session); 15

sessions

Upper extremity
(e.g., Fugl Meyer)
Lower extremity
(e.g., Timed Up

and Go Test)
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Table 1. Cont.

Author(s),
Year
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Age Country of Origin

Sample Size Per
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Meta-Analysis

Number of
Primary Studies
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Meta-Analysis

Clinical Status of
the Sample
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with VR Component

List of Control
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Type of VR
Platform Used for

Intervention

VR intervention
Time

Outcome/s
Measurement
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Lohse et al.
[54] Adults USA

626 participants
(intervention =

321, control = 305)
24 Stroke c

VR interventions
consisted of: arm

exercises; treadmill
training; balance
training; exercise

therapy; reflection
therapy; street crossing

cognitive training;
treadmill gait training
in VR in combination

with functional electric
stimulation; functional

tasks; skills training;
reinforced feedback
therapy; upper limb

training at home

Control intervention
consisted of:

recreational activities;
treadmill training,
balance training;

occupational therapy
with or without
physiotherapy;

computer-based visual
scanning tasks;

traditional therapy,
physiotherapy;

treadmill gait training
in combination with

functional electric
stimulation;

psychoeducational
training; no
intervention

VE-based system
(e.g., treadmill,
projector and

laptop not
synchronized;
HMD with a

motion tracking
system; desktop
computer; PC,
LCD projector,

tracking system
and data gloves;

Rutgers ankle
rehabilitation
system and a
six-degree of

freedom Stewart
platform

force-feedback
system; PC

workstation, a
high-resolution
LCD projector, a

3D
motion-capture

system; PC,
video-camera and

3D
motion-capture
system; CAERN

system)
IG-based system

(e.g.,
semi-immersive
workbench with

haptic device and
stereoscopic

glasses; Nintendo
Wii, IREX;

computer and
data gloves

synchronized;
computer and

camera)

698 (total); 41 (per
session); 17

sessions

ICFWHO
framework: Body

Struc-
ture/Function

(e.g., Fugl Meyer
Assessment);

Activity (e.g., Berg
Balance Scale);

Participation (e.g.,
Jebsen-Taylor

Hand Function
Test)
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Author(s),
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Meta-Analysis
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with VR Component
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Intervention

VR intervention
Time

Outcome/s
Measurement
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Maier et al.
[10] Adults Spain

1470 (intervention
= 817, control =

653)
30 Stroke (chronic,

subacute, acute)

VR interventions
consisted of: various
task practices with or

without feedback

Control intervention
consisted of:

conventional therapy;
occupational therapy;

physical therapy;
passive control

VE-based system
(e.g., TV and

motion tracking;
HMD and motion

tracking;
computer and

motion tracking
through computer

vision and data
gloves)

IG-based system
(e.g., Wii;

PlayStation
EyeToy; Kinect)

1374 (total); 51
(per session); 17

sessions

ICFWHO
framework, only

upper limb
outcomes: Upper

limb body
function (e.g.,

Brunnstrom Motor
Recovery Stage)

Upper limb
activity (e.g.,

Action Research
Arm Test)

Mekbib et al.
[55] Adults China, USA

1292 (intervention
= 650, control =

642)
27 Stroke (chronic,

subacute)

VR interventions
consisted of: upper
limb exercises using

customized or
interactive gaming
platforms with or
without feedback

Control intervention
consisted of:

conventional therapy,
physical therapy,

occupational therapy
for upper limb

VE-based system
(e.g., adaptive

reality
rehabilitation

system that uses a
camera to track

patients’
movements, VR

system with
feedback)

IG-based system
(X-box Kinect,
YouGrabber,

Rehabilitation
Gaming System

(RGS),
NintendoWii,
FurballHunt

tabletop
rehabilitation

game,
RehabMaster
game, Smart

Glove, PneuGlove,
MusicGlove

797 (total); 44 (per
session); 18

sessions

Upper limb
function (e.g., Fugl

Myer, Box and
Block Test, Motor

Activity Log)
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VR intervention
Time

Outcome/s
Measurement
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Mohammadi
et al. [56] Adults Iran, USA

325 (intervention
= 166, control =

159)
13 Stroke (chronic,

subacute)

VR interventions
consisted of: exercises;

treadmill training;
game-based physical

exercises

Control intervention
consisted of: motion,

stretching,
strengthening,

therapeutic exercises;
functional electrical
stimulation; gait and

balance training;
neurodevelopmental
training; functional
activities; treadmill
training without VR

VE-based system
(e.g., monitor,

speakers, and a
static or dynamic
balance training
surface or floor

space)
IG-based system

(Wii Fit; IREX
system, Microsoft

X-box Kinect,
BalPro, BalTrak,

BioRescue
systems)

465 (total); 30 (per
session); 15

sessions

Balance (Berg
Balance Scale)

Prosperini
et al. [57] Adults Italy

521 (intervention
= 266, control =

255)
20 ABI (stroke, TBI)

VR interventions
consisted of: various

balance exercises
delivered via

commercially available
gaming consoles

Control interventions
consisted of: standard

physical therapy,
cognitive rehabilitation,

waiting list, balance
platform therapy,

balance re-training,
mirror visual feedback

training, stationary
cycling, vidogames

IG-based system
(Wii balance
board, Dance

Dance Revolution,
Kinect)

651 (total); 37 (per
session); 20

sessions

Balance (Berg
Balance Scale,

Timed Up and Go
Test)

Rodrigues-
Baroni et al.

[58]
Adults Brazil 154 participantsb 7 Stroke (chronic)

VR interventions
consisted of: treadmill
training; game-based

physical exercises;
exercises with feedback

Control intervention
consisted of: treadmill

training; no
intervention; exercises

without feedback

VE-based system
(e.g., treadmill
projector and

laptop not
synchronized;
treadmill and

HMD; treadmill
training or
stretching

exercises; Rutgers
ankle

rehabilitation
system and a
six-degree of

freedom Stewart
platform

force-feedback
system; treadmill,
Pc and projector)
IG-based system

(e.g., Wii;
PlayStation

EyeToy; Kinect;
IREX system)

549 (total); 41 (per
session); 13

sessions

Walking speed
(e.g., timed walk
measure based

upon the 10-Meter
Walk Test)
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VR intervention
Time
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Measurement
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Rutkowski
et al. [59] Adults Poland, Italy

271 (intervention
= 144, control =

127)
10 Stroke (chronic,

subacute)

VR interventions
consisted of: upper
limb exercise, grasp
and reach exercise,
cognitive exercises,
interactive video

games, practice specific
grips to play music

notes or songs

Control intervention
consisted of:
conventional

physicaltherapy,
exercisesfor increased
trunk stability, lower

extremity
musclestrength, gait
ability, occupational
therapy, motion and

strengthening
exercises, table-top

activities, training for
functional outcomes

VE-based system
(e.g., treadmill
projector and

laptop)
IG-based system

(e.g.,
Rehabilitation

Gaming System,
Virtual realityre-
flectiontherapy,
IREX system,
RehabMaster,

RAPAEL Smart
Glove, ctuated
virtualkeypad
system(AVK)

withPneuGlove,
MusicGlove)

577 (total); 24 (per
session); 24

sessions

Upper limb
function (e.g., Fugl

Myer)
Lower limb

function (gait)
(e.g., Timed Up

and Go Test)

Saposnik et al.
[60] Adults Canada

195 participants
(intervention = 54,

control = 49,
pre-test post-test

design = 92)

12 Stroke (chronic,
subacute)

VR interventions
consisted of: exercise

therapy; motor
exercises

Control intervention
consisted of: exercise

therapy; motor
exercises

VE-based system
(e.g., PC and

electromagnetic
motion tracking
system; PC and

data gloves;
HMDs, VR curved

screen; PC, a
high-resolution
LCD projector, a
wall screen, a 3D
motion-tracking

system and simple
manipulable

objects; pneumatic
hand orthosis and
HMD; pneumatic
glove and HMD)
IG-based system

(e.g., IREX;
Nintendo Wii;

PlayStation
EyeToy; VR

Motion;
semi-immersive

workbench,
handheld stylus
and stereoscopic

shuttered glasses)

1562 (total); 65
(per session); 17

sessions

Motor function
(e.g., Wolf motor

function test)
Motor impairment
(e.g., Fugl-Meyer)
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Table 1. Cont.

Author(s),
Year

Population
Age Country of Origin

Sample Size Per
Included

Meta-Analysis

Number of
Primary Studies

Include in
Meta-Analysis

Clinical Status of
the Sample

List of Interventions
with VR Component

List of Control
Interventions

Type of VR
Platform Used for

Intervention

VR intervention
Time

Outcome/s
Measurement

Instrument

Saywell et al.
[61] Adults New Zealand

612 participants
(intervention =

304, control = 296,
pre-test post-test

design = 12)

23
Acquired Brain
Injury (stroke,

TBI)

VR interventions
consisted of: physical
exercise delivered via
serious games; hand

exercises; balance
training; physical

exercise delivered via
serious games with

electrical stimulation;
treadmill training with

functional electrical
stimulation; robotic

therapy performing the
ankle movements
using the robotic
system and VR

Control intervention
consisted of:

traditional stroke
rehabilitation; no

intervention;
physiotherapy with or
without occupational

therapy; physical
exercise delivered via
serious games without

VR component;
traditional hand

exercises; traditional
reach-training; no

intervention; general
exercise and electrical
stimulation; robotic

therapy performing the
same ankle movements

using the robotic
system without VR

VE-based system
(e.g., PC, LCD

projector, tracking
system and data

gloves;
MusicGlove and

IsoTrainer)
IG-based system

(e.g.,
semi-immersive

workbench,
handheld stylus
and stereoscopic
shuttered glasses;

Nintendo Wii;
IREX; X-Box

Kinect; HMD,
motion tracking

system and
sensors;

PlayStation
EyeToy, T-WREX

weight-supported
arm orthosis;
ArmeoBoom

device integrated
with a webcam

and a laptop;
eBaViR; Rutgers

ankle
rehabilitation

system connected
to a desktop
computer)

722 (total); 41 (per
session); 18

sessions

Upper limb (e.g.,
Wolf motor

function test)
Lower limb

balance measures
(e.g., Berg Balance

Scale)
Lower limb gait
measures (e.g.,

Timed Up and Go
Test)

Measures of
independence

(e.g., Functional
independence

measure)
Fugl Meyer
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Sample Size Per
Included

Meta-Analysis
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Primary Studies
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Meta-Analysis

Clinical Status of
the Sample

List of Interventions
with VR Component

List of Control
Interventions

Type of VR Platform Used
for Intervention

VR intervention
Time

Outcome/s
Measurement
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Tay et al.
[62] Adults Malaysia 436 participants b 17 Stroke (chronic,

acute)

VR interventions
consisted of: balance
training in standing
position; upper limb
exercises in standing

position with feedback;
upper limb exercises

with feedback; balance
training using serious
games; arm support

training; gesture
therapy

Control intervention
consisted of: balance
training in a seated

position; occupational
therapy and/or Wii
upper limb exercises

without feedback;
physiotherapy and

occupational therapy;
occupational therapy;
proprioceptiveneuro-
muscular facilitation

exercise program;
occupational therapy

and exercises

VE-based system (e.g.,
hand-held remote controller

detected with a base
movement sensor, laptop
computer and a 32-inch

liquid crystal-display
screen; ArmeoBoom

integrated with a webcam
and a laptop and an
adjusted 3D virtual

environment)
IG-based system (e.g.,

Nintendo Wii, IREX, RGS,
Tetrax Biofeedback System

center of pressure
controlled; FurballHunt

game which consisted of a
horizontally placed screen
with webcam and motion

capture software; BioRescue
platform with pressure

sensors and monitor;
Gesture Xtreme

video-capture system,
Rehab Master, You Grabber
with PC, screen and gloves
containing sensors; Gesture

Therapy; PC, tracking
system and data gloves;

MoU-Rehab- a combination
of two mobile devices: a

tablet PC and a smartphone
with a Bluetooth connection;

RehabMaster with PC,
monitor, and depth sensor;
T-WREX weight-supported

arm orthosis with PC, a
web cam, and a hand grip)

642 (total); 37 (per
session); 16

sessions

Balance and gait
(e.g., Berg Balance
Scale, Timed Up

and Go Test,
walking tests)
Upper limb

function (e.g.,
Fugl-Meyer, Box
and Block Test)
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Meta-Analysis
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with VR Component
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for Intervention

VR intervention
Time

Outcome/s
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Veerbeek
et al. [63] Adults The Netherlands 507 participants b 23 Stroke c

VR interventions
consisted of: finger

movement and
tracking exercise at

home and in the clinic
in an fMRI scanner;
reinforced feedback;

arm therapy; exercise
training using serious

games; arm exercises at
home; therapy

program at home via
videoconferencing

system; gesture
therapy; hand opening

exercises with
pneumatic hand

support and feedback;
hand exercises;

stepping over virtual
objects on a treadmill;

training on how to
access and use the

station facilities of the
Mass Transit Railway;

treadmill training;
balance and exercise

training; foot exercises
with visual and

auditory feedback;
robotic therapy

performing the ankle
movements using the
robotic system and VR

Control intervention
consisted of: no

intervention/waiting
list; conventional

rehabilitation;
conventional exercises;
VR arm exercises in the

clinic; physiotherapy
and occupational

therapy; exercises for
the upper limb;

therapy provided
based on the Bobath

approach; occupational
therapy; recreational
activities; movement

training;
grasp-and-release of
the virtual and actual
objects exercises but

without any assistance
of hand opening;

conventional therapy;
stepping over foam
objects in a hallway;
psycho-educational

programme with video
modelling; treadmill
training; static and
dynamic balance

training; foot exercises
without visual and
auditory feedback;

robotic therapy
performing the same

ankle movements
using the robotic

system without VR

VE-based system (e.g., PC,
projector, and

potentiometer; PC
workstation, a

high-resolution LCD
projector, a 3D

motion-capture system;
HMD, data gloves, tracking

system; workstation
equipped with a 3D motion
tracking system; computer
workstation connected to a
3D motion-tracking system
and projector; ArmeoBoom
integrated with a webcam

and a laptop and an
adjusted 3D virtual

environment; HandTutor
gloves; pneumatic hand

orthosis and HMD; HMD
and treadmill; PC with
desktop; treadmill, PC,

visual screen with
electromagnetic tracking

system)
IG-based system (IREX; Wii;
Semi-immersive workbench

with haptic device and
stereoscopic glasses;

Playstation EyeToy; PC,
tracking system and data

gloves; Rutgers ankle
rehabilitation system

connected to a desktop
computer)

Range between 3
to 7 days per

week; 10 days to 7
weeks; 20 to 60
min per session

Gait speed and
maximum gait

speed (e.g., 10-m
walk test)

Step length (gait
analysis)Walking

ability (e.g.,
Walking ability
questionnaire)
Motor function

arm (e.g.,
Fugl-Meyer)

Muscle tone (e.g.,
Modified

Ashworth scale)
Arm-hand
activities

(unilateral) (e.g.,
Box and Block

Test)
Arm-hand
activities

(bilateral) (e.g.,
Chedoke arm and

hand activity
inventory)

Basic ADL (e.g.,
Functional

independence
measure)
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Table 1. Cont.

Author(s),
Year
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Sample Size Per
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Meta-Analysis
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Primary Studies
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Meta-Analysis

Clinical Status of
the Sample
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with VR Component

List of Control
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Type of VR
Platform Used for

Intervention

VR intervention
Time

Outcome/s
Measurement

Instrument

Wang et al.
[64] a Adults China

41 participants
(intervention = 22,

control = 19)
2 Stroke c

VR interventions
consisted of: treadmill

training

Control intervention
consisted of:

traditional treadmill
training; treadmill
training, without

control over the slope
of the treadmill

VE-based system
(e.g., treadmill, PC,
visual screen with

electromagnetic
tracking system;

treadmill and
HMD)

12 sessions d Balance (ABC
scale)

Warnier et al.
[65] Children The Netherlands 194 participants b 7

Cerebral Palsy
(hemiplegic,

diplegic, spastic
quadriplegia,

spastic diplegic,
athetoid, ataxic)

VR interventions
consisted of:

interventions for
balance and walking

using gaming
component,

intervention using
virtual cycling

Control intervention
consisted of: other

interventions than VR

VE-based system
(e.g., virtual

cycling system
with interactive

workout)
IG-based system
(customized PC
gaming, TYMO-
Tyromotion, Wii

Games, Nintendo
Wii Fit balance

board and balance
based video game,
jogging program)

1144 (total); 31
(per session); 39

sessions

Balance (e.g.,
Timed Up and Go
Test, Functional

reach test)
Walking (e.g.,

10-m walk test)

Wattchow
et al. [66] a Adults Australia 76 participants b 4 Stroke c

VR interventions
consisted of: motor
tasks; conventional

gaming tasks;
customized

rehabilitation gaming
tasks

Control intervention
consisted of:

conventional therapy
plus motor tasks

without VR; physical
and occupational

therapy

VE-based system
(e.g., hand-held

remote controller
detected with a
base movement
sensor, laptop

computer
customized

rehabilitation
gaming soft- ware

and a 32-inch
liquid-

crystal-display
screen)

IG-based system
(e.g., IREX)

576 (total); 25 (per
session); 25

sessions

UL impairment
(e.g., Fugl-Meyer)
UL activity (e.g.,
Barthel Index)
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Table 1. Cont.

Author(s),
Year

Population
Age Country of Origin

Sample Size Per
Included

Meta-Analysis

Number of
Primary Studies

Include in
Meta-Analysis

Clinical Status of
the Sample

List of Interventions
with VR Component

List of Control
Interventions

Type of VR
Platform Used for

Intervention

VR intervention
Time

Outcome/s
Measurement

Instrument

Wiley et al.
[67] Adults Canada

122 participants
(intervention = 63,

control = 51)
5 Stroke

VR interventions
consisted of: cognitive

training and
rehabilitation, activities

of daily
livingsimulation,

reaching tasks
combined with

cognitive training,

Control intervention
consisted of:

computerized
cognitive rehabilitation,

traditional cognitive
rehabilitation, spatial
and timeorientation

techniques,
writingtraining,

occupational therapy
and physiotherapy

VE-based system
(e.g., Joystim

system)
IG-based system

(e.g., IREX,
Reh@City,
Reh@Task)

600 (total); 40 (per
session); 15

sessions

Cognitive
function: global

cognition (MMSE),
attention (Trail
Making Test A),
Memory (Digit

Span Test),
language (Stroke
Impact ScaleCom-

munication
Domain and

Neurobehavioral
Functioning
Inventory-

Communication
Domain)

Wu et al. [68] Children China, US
448 participants
(intervention =

226, control = 222)
11 Cerebral Palsy

VR interventions
consisted of:
game-based

interventions for
balance and walking

Control intervention
consisted of: regular

rehabilitation, strength
training,

neurodevelopmental
therapy

IG-based system
(Nintendo Wii Fit,
Nintendo Wii Fit

balance board,
Xbox Kinect, Q4

situational
interactive

rehabilitation
training system)

1193 (total); 31
(per session); 40

sessions

Balance and gait
(e.g., Berg Balance
Scale, Timed Up

and Go Test)

Note. a = data extracted from subgroup analysis performed in the meta-analysis; b = number of participants in the intervention and control group could not be extracted; c = condition sub-types not specified; d =
duration of session is not reported; n/a = not applicable, pre-test post-test design.
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3.1.2. Participants

Thirty-two reviews included patients with stroke, six had samples of children with
CP [34,36,45,48,55,59,65,67,68] and three had patients with ABI, including stroke and
TBI [33,57,61].

3.1.3. Intervention Characteristics

All reviews focused on VR-based interventions, either delivered as standalone inter-
ventions or in combination with conventional therapy. Twenty reviews (49%) included both
types of interventions in the analyses, six did not specify if VR interventions were delivered
alone or in combination with conventional therapy (15%), eight included only VR interven-
tions without conventional therapy (29%) and four reviews included VR with conventional
therapy (10%). Three reviews (7%) investigated the moderator effects of VR-based inter-
ventions delivered alone versus VR-based interventions delivered in combination with
conventional therapy [38,41,50].

3.1.4. Control Group Characteristics

To eliminate more sources of bias from influencing the effect of the VR-based inter-
vention, most of the reviews (37 reviews, 90%) computed pooled effect sizes from primary
studies with adequate experimental designs and adequate control groups (e.g., RCTs
or quasi-RCTs) allowing comparison of effects of VR-based interventions with control
conditions (passive and active conditions), the remaining four reviews included in their
analysis those studies with a pre-test post-test design (10%) [34,40,45,60]. Many control
interventions were active conditions (e.g., conventional therapy) (19 reviews, 51%), but a
considerable number of reviews included comparisons based on heterogeneous control
groups (conventional therapy and passive control groups such as waiting list included in
the same analysis) (13 reviews, 35%). For some comparisons, the control group type was
not specified (3 reviews, 8%) (see Supplementary Materials for Tables S4–S10).

3.1.5. Quality of Included Reviews

According to AMSTAR 2 [23] concerns regarding the methodological quality of the
reviews were mainly caused by failure to: (a) report on the sources of funding for primary
studies (95%); (b) perform a comprehensive literature search (93%); (c) justify the inclusion
of RCTs or non-RCTs (78%); (d) to account for ROB in individual studies when interpreting
and discussing results (68%) (Supplementary Materials, Table S2). Forty out of 41 reviews
assessed risk of bias. Most reviews used the Physiotherapy Evidence Database (PEDro)
Scale (21 reviews, 52%) and Cochrane’s “Risk of bias” tool (15 reviews, 36%). One used the
Jadad scale (3%), one used the Joanna Briggs Institute Critical Appraisal tool for RCTs (3%),
one used Downs-Black rating scale items (3%) and one used an adapted scoring protocol
(3%). Major concerns in relation to ROB were related to performance bias as all reviews
(88%) that assessed blinding of participants and personnel included primary studies at
high or unclear risk of performance bias (more than 75% of the primary studies reported
high or unclear risk of performance bias). Results of GRADE assessment indicated that
for immediate follow-up assessment, most evidence was of very low (55 effects out of 147
effects; 37%) and low quality (76 effects out of 147 effects, 52%). Only 14 effects were of
moderate quality (10%) and 2 of high quality (1%) (detailed in Supplementary Materials,
Tables S4–S10).

3.1.6. Overlapping of Studies

Using the formula provided by Pieper [25] we obtained a value of CCA of 0.042 which
indicates a slight overlap of studies.

3.2. Intervention Effects and Quality of Evidence

Our first goal was to investigate the effectiveness and quality of the evidence for VR-
based interventions on physical and cognitive outcomes of patients with stroke, TBI and CP.
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3.2.1. Intervention Effects for Lower Limb Activity

Nineteen meta-analyses assessed the effectiveness of VR interventions at immediate
follow-up for lower limb activity compared with conventional therapy or no intervention.
Sixteen focused on stroke and three on CP. For CP all three reviews [36,45,65] reported
significant improvements in favour of VR with moderate to large effects and very low
to moderate quality of evidence. Their analysis [36] included only RCTs and identified
moderate heterogeneity. [65] focused only on RCTs but had substantial heterogeneity in
results. [45] used a pre-post-test design with low heterogeneity in results. In the case of
people with stroke, ten reviews [37,40,43,46,47,51–53,58,62] identified low to large signifi-
cant effects in favour of VR with very low to moderate quality of evidence. Nine reviews
included only RCTs in their analysis, but [40] included studies with a pre-post-test design.
Heterogeneity was low for most comparisons. Four reviews which included only RCTs
and used Timed Up and Go Test (TUG) as an outcome measure of mobility reported im-
provements for VR groups with effects ranging in magnitude from low to moderate and
quality ranging from very low to moderate [42,47,52,62]. On the contrary, two reviews, one
that included only RCTs [13] and one with pre-post-test design studies [44] did not identify
benefits of using VR on TUG but with low quality of evidence. Heterogeneity was low.
Two reviews based on RCTs analysed if effects remain at follow-up (up to 3 months) for
people with stroke [38,46]. Significant effects in favour of VR but with low magnitude were
reported for walking speed and gait velocity with low and very low quality of evidence.
No significant improvements were obtained for functional mobility but with very low
quality of evidence.

3.2.2. Intervention Effects for Balance and Postural Control

Nineteen reviews investigated the effectiveness of VR interventions at immediate
follow-up for balance and postural control compared with conventional therapy or no
intervention. Three meta-analyses included children with CP [36,65,68] and three included
people with Acquired Brain Injury (ABI) (e.g., stroke, TBI) [33,57,61]. Thirteen reviews
focused on the effect of VR on people with stroke [13,35,37,38,40,42,44,46,47,52,56,62,64].
All included only RCTs except for one that included studies with a pre-post-test design [40].
For CP all reviews reported significant improvements on balance and postural control
measures for VR interventions. The magnitude of effects ranged from small to large
effects, but with low quality of evidence. For ABI results from three reviews with low and
very low quality of evidence did not support better rehabilitation outcomes on measures
such as Sit to Stand Test [33] and multiple measures of balance including Berg Balance
Scale (BBS) [57,61]. In the case of people with stroke, results reported in the reviews were
mixed, depending on the outcome measure used. For BBS [13,38,40,42,47,52,56,62] reported
significant improvements for VR, but with effects ranging from low to large in magnitude
and quality ranging from low to moderate. Using the same BBS as outcome [35,37,44]
identified no effects for VR, but with very low and low quality of evidence. Reviews
that used measures such as anteroposterior and mediolateral deviations of the centre of
gravity [44] and postural sway measures (e.g., centre of pressure sway/path length) [37,46]
did not identify significant improvements for VR with very low and low quality of evidence.
Non-significant effects were also reported for the Functional Reach Test (FRT) [42,44,52]
and Balance Confidence Scale (BCS) [52,64] with very low and low quality of evidence. A
pooled effect based on balance measures such as: BBS, FRT, TUG and Four Step Square
Test (FSTQ) significantly favoured VR but was low in magnitude and low in quality [57].
Heterogeneity was low for most comparisons. At up to three months follow-up, only one
review [46] reported effects, and in this case they were non significant for VR for people
with stroke on balance outcomes, but with very low study quality.

3.2.3. Intervention Effects for Upper Limb, Arm Function and Activity

Eighteen reviews assessed the effectiveness of VR interventions in improving upper
limb, arm function and activity for people with stroke, ABI, and CP. Three included children
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with CP [34,36,48] and reported significant and large effects for VR, but low quality of
evidence. Two reviews [36,48] included in their analysis only RCTs, and one [34] reported
an analysis based on studies that used a pre-post-test design. One review focused on people
with ABI [61] and reported a small but significant effect on the Fugl Myer (FM) Assessment
scale with moderate quality of evidence based on RCTs. However, the same study did not
identify a significant effect for VR for upper limb function measured using various scales
such as the Wolf Motor Test, 9-hole peg test for example, but with low quality of evidence.
For people with stroke, five reviews that used FM reported significant improvements for
VR [43,50,55,59,62]. The effects were based on RCTs and were moderate to large with very
low to high quality. Two reviews with low quality of evidence reported no significant
improvements for the VR groups [35,66], noting that both reviews included only RCTs
in their analysis. Some reviews that included comparisons between VR and controls on
scales such as the Wolf Motor Function Test [60] and Box and Block Test [43,60,62] did not
identify any significant improvements for VR interventions, but with very low quality of
evidence. To the contrary, one review identified a small but significant effect for upper
limb function measured using the Box and Block Test or the Motor Activity Log but with
low quality of evidence [55]. Mixed evidence comes from studies which used various
upper limb, arm function and activity measures to pool effects. For example, [48,49,51,60]
identified significant effects for VR ranging from low to large in magnitude, but with low
quality of evidence. Two reviews [49,60] included in their analysis studies that used a
pre-post test design. Other reviews that included only RCTs [39,50,53,59,63,66] did not
identify any improvements for VR, though the study quality ranged from low to high. In
general heterogeneity was low. Only one review [50] reported follow up effects (up to
three months) for upper limb function, but the effect was not significant with high quality
of evidence.

3.2.4. Intervention Effects for Activity Limitation

Six reviews focused on the effectiveness of VR interventions compared with control
interventions for people with stroke and one review on people with ABI. All of them
included only RCTs. No review focused on activity limitation of children with CP. For
people with ABI Saywell [61] identified a medium and significant effect of VR but with
low quality of evidence for independence outcome. For people who had had a stroke
two reviews [30,63] identified small and large effects in favour of VR on activities of
daily living, but with very low and low quality of evidence. Reported heterogeneity was
low. Two reviews [35,43] reported no improvements for VR compared with controls for
daily living activities measured using the Barthel Index Scale. Heterogeneity was low for
one comparison [35], but substantial in the case of the other [43]. Again, the quality of
evidence ranged from very low to low. Two reviews assessed global functioning using the
Functional Independence Measure. Domingue-Tellez [43] reported a moderate effect with
very low quality of evidence and substantial heterogeneity. Cheok [37] did not identify
improvements for VR with low heterogeneity but the quality of evidence was low. Da-
Silva [39] reported a significant effect for VR in the case of perceived quality of use of the
stroke arm, but no significant results for the perceived amount of use of the stroke arm.
For both outcomes, the quality of evidence was rated as very low. None of the reviews
included follow up effects for this outcome.

3.2.5. Intervention Effects for ICF WHO Framework: Body Structures/Function, Activity,
and Participation

Five reviews investigated the effectiveness of VR for body structures/function, activity,
and participation. Two reviews focused on children with CP and three on people with
stroke. One review included studies with a pre-post-test design [34] and the rest of the
reviews included RCTs. Chen [34] identified significant effects in favour of VR for children
with CP for participation and body structure/function. The effects were large and moderate
in magnitude, and the quality of evidence was very low and moderate. Noting that the
estimates of effects were based on studies which used a pre-post-test design. Chen [36]
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reported significant improvements in favour of VR for all outcomes for children with
CP. Large effects were reported for activity outcome with low quality of evidence. For
body function the effect was moderate and the quality was low and for participation
the effect was low in magnitude with very low quality of evidence. Results from three
reviews suggest significant effects for body structures/functions and activity for people
with stroke [10,31,54]. However, the effects were mostly small in magnitude and the quality
of evidence ranged from low to moderate. For participation outcome results from two
reviews suggested contradictory results. Aminov [31] reported non-significant results
with low quality of evidence and [54] reported a moderate effect for VR but with very low
quality of evidence for people with stroke. Overall, heterogeneity was mostly low, with a
few cases of moderate heterogeneity. None of the reviews included follow up effects for
this outcome.

3.2.6. Intervention Effects for Motor Function

Three reviews assessed the effectiveness of VR for motor function. One included
children with CP [45] and two included people with stroke [46,50]. Ghai [45] reported a
moderate significant effect for gross motor function with low quality of evidence. Noting
that the evidence comes from studies with a pre-post design and not RCTs which can lessen
the quality of evidence with moderate heterogeneity. For people with stroke, neither of
the two reviews which included only RCTs identified significant improvements for the VR
groups with quality of evidence ranging from very low to moderate [46,50]. Heterogeneity
ranged from low to substantial. There were no reviews that included follow up effects for
this outcome.

3.2.7. Intervention Effects for Cognitive Functioning

Only two reviews which included RCTs investigated the effectiveness of VR in improv-
ing cognitive functioning for people with stroke [31,67]. Aminov [31] reported a significant
small to medium effect size with very low quality of evidence for overall cognition. Het-
erogeneity was low. While Wiley [67] did not identify any significant results which favour
VR on cognitive outcomes such as: global cognition, attention, memory, and language with
very low quality of evidence and small to moderate heterogeneity. None of the reviews
included follow up effects for this outcome.

3.3. Moderator Effects

For our second objective that aimed to identify factors that can enhance rehabilitation
outcomes we detected four moderator variables that were reported in reviews (Supplemen-
tary Materials, Tables S12–S15).

3.3.1. Mode of Delivery

The first moderator aimed to identify differences in effects between VR standalone
interventions and VR interventions delivered in combination with conventional therapy.
Three reviews investigated this moderator and all focused on people with stroke [38,41,50].
None of the reviews investigated other conditions. For lower limb outcomes such as
gait speed or mobility (measured with TUG) three reviews pointed out no significant
differences between the effects of VR interventions delivered alone vs. those combined
with conventional therapy [38,41,50]. Similar results emerged for activity limitation [50].
Balance (measured with BBS) results in two reviews were inconclusive as one review [41]
indicated positive effects only for VR interventions delivered alone and not for VR com-
bined with conventional therapy. However, another review [50] reported significant effects
for VR interventions combined with conventional therapy, but not for VR standalone
interventions. A slight benefit reported in one review suggested significant improvements
for VR interventions delivered with conventional therapy for upper limb outcomes. Such
improvements were not significant for VR interventions delivered alone [50].
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In conclusion, the summary of evidence suggests that adding conventional therapy
to VR training does not significantly improve lower limb activity, balance and activity
limitation outcomes compared to only delivering VR interventions alone. For upper limb
function, results suggest better rehabilitation outcomes in the case of VR interventions
combined with conventional therapy.

3.3.2. Timed Match Interventions

A second moderator reported in one review compared differences in effects between
time dose matched interventions and time non-dose matched interventions for people with
ABI [61]. There were no significant effects reported for non-dose matched interventions
on any of the outcomes: lower limb gait, upper limb, or FM. Non-significant effects were
also identified for dose-matched interventions on lower limb and upper extremity. A small
significant effect was reported for FM [61]. For all the comparisons the heterogeneity was
low. Based on the above results we might conclude that there is limited evidence to support
any differences between interventions that are dose matched and those that are not on
physical functioning.

3.3.3. Intervention Length

Two reviews assessed the effect of intervention length (using meta-regression and cat-
egorical variables) and reported non-significant effects on upper limb activity for children
with CP and people with stroke [34,49]. One review identified that interventions with a
total duration greater than 15 h positively impacted upper limb function [55]. Taken to-
gether, evidence that supports the significant effect of intervention length on rehabilitation
outcomes is mixed.

3.3.4. Technological Features of the VR Platforms

Two moderators focused on identifying if technological features of the VR platforms
used produced different effects. Comparisons concerned potential differences between
commercially available systems and customized systems [10,31,34,36,50,54] and between
VE-based interventions and interactive gaming (IG)-based interventions [47]. Overall,
results highlighted the importance of the technological components that underlie VR
interventions and stress that specially designed and customized VR interventions were
more effective for: upper extremity, ambulation and postural control [36]; arm function [36];
upper limb body function and activity [10]; overall body function and activity [54] with
small to large effects and low heterogeneity. VEs -based interventions showed significant
improvements with small to moderate effects for functional mobility and balance [47].

3.4. Safety Concerns in VR-Adverse Effects

Our third objective aimed to investigate whether VR is safe. Ten out of 41 meta-
analysis included in our umbrella review reported adverse effects (see Table 2). Six reviews
reported no major adverse effects [35,38,52,56,63,65]. Four reviews reported a few cases
of mild adverse effects linked with study participation: transient dizziness and headache,
pain, dizziness, increase in hypertonicity, loss of control, increased spasticity, back ache
and fatigue [33,37,50,62] (see Table 2).
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Table 2. Adverse effects. Summary of findings.

Author(s), Year Number of Primary Studies Which
Reported Adverse Events Reported Results and Severity of Symptoms

Corbetta et al. [38] 1 study No major adverse effects.

Laver et al. [50] 23 studies

19 studies reported no significant adverse events linked
to study participation; 4 studies reported: transient

dizziness and headache (2 cases); pain (2 cases); pain
and dizziness (several participants) not related to
intervention; increase in hypertonicity (3 cases).

Booth et al. [33] 3 studies Minor adverse effects: either no effects noted, loss of
control, or dizziness.

Chen et al. [35] No study reported adverse effects N/A
Cheok et al. [37] 1 study Minor adverse effects: increased spasticity (3 cases).

Li et al. [52] 1 study No major adverse effects.
Tay et al. [62] 4 studies Mild pain, back ache and fatigue (4 studies).

Mohammadi et al. [56] 2 studies No major adverse effects.
Veerbeek et al. [63] 23 studies No major adverse effects.
Warnier et al. [65] 7 studies No major adverse effects.

4. Discussion

The current umbrella review assessed if VR based interventions could aid rehabil-
itation in patients with stroke, ABI and CP. The meta-analyses in this umbrella review
identified some beneficial effects of VR-based interventions on physical and cognitive
functioning. We included 41 eligible meta-analyses which increased the statistical power.
This umbrella review included separate data synthesis for several outcomes of interest:
lower limb activity; balance and postural control; upper limb, arm function and activity;
activity limitation; ICF WHO Framework (body structures/function, activity, and partic-
ipation); motor function; cognitive functioning. This allowed us to conduct an in-depth
data synthesis to identify for which functional outcome VR works best. Additionally, we
quantified the ROB reported in the reviews and assessed the quality of evidence for each
outcome to clearly inform researchers and practitioners about the evidence that supports
the use of VR interventions. We chose to focus the discussion mostly on evidence that
comes from moderate or high quality of evidence [69]. The certainty of the evidence that
comes from moderate quality studies suggests that the true effect is probably close to the
estimated effect and high quality indicates that the true effect is similar to the estimated
effect. To the contrary, evidence of very low and low quality suggests that it is probable that
the true effect is different than the estimated effect [69,70]. The data synthesis found mostly
low- or very low-quality evidence that supports the effectiveness of VR interventions. Most
reviews focused on people with stroke, and only six on children with CP and three on
people with ABI. Only a limited number of effects were rated as having moderate and
high quality of evidence, but overall, results of moderate and high quality of evidence
highlighted potential benefits of VR for improving ambulation function of children with
CP, mobility, balance, upper limb function, and body structure/function and activity of
people with stroke, and upper limb function of people with ABI. Our results are in line
with other studies that investigated the efficacy of VR interventions in various vulnerable
populations. For example, significant improvements in VR-based rehabilitation interven-
tions compared with control interventions were also obtained for older healthy adults and
older adults with other neurological conditions such as dementia, Parkinson’s Disease,
Multiple Sclerosis [71–75].

Mixed evidence of very low quality emerged for cognitive functioning for people with
stroke, but no data was available for this outcome in the case of people with ABI, including
TBI and children with CP. A lack of reviews that included samples of people with ABI was
also identifed in the case of lower limb function, ICF WHO framework (body function,
activity, and participation), and motor function. The quality of evidence for most effects
was downgraded mainly due to small sample sizes, high ROB of primary studies and
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failure to include grey literature and conduct a comprehensive literature search (as assessed
by four items from AMSTAR) according to the criteria proposed by Pollock [24]. Regarding
the ROB, the main weakness was caused by the lack of participants and personnel blinding.
We agree with Laver [50] that this domain is more strongly related to the type and intrinsic
characteristics of the intervention and less to the study quality. Even if the blinding of
participants and personnel might be more difficult for VR-based studies, adding an active
control group that can undergo equivalent less immersive VR interventions (e.g., training
using interactive gaming or interventions delivered via PCs) may reduce the likelihood of
performance bias.

An important question is whether the effects were maintained at follow up. Two
reviews identified small effects with small 95% CIs at follow-up (up to three months) for
people with stroke on walking speed and gait velocity [38,46]. Effects were not significant
for mobility, but the 95% CIs were wide [46]. Because all these effects were rated as having
low and very low quality, this restricts our confidence in the estimate of effects. Only one
review reported effects at three months follow-up for people with stroke which were not
significant with narrow 95% CIs, but with low quality of evidence [46]. In the case of upper
limb function one review reported no significant improvements for the VR group, but with
high quality of evidence and narrow 95% CIs which reflects enough precision in the effect
estimates [50]. Regarding children with CP and people with ABI, including TBI no review
assessed VR-based interventions at follow up. Taken together, results suggest that there is
currently a lack of reporting of follow up data to assess if the benefits of using VR were
sustained in the long run.

Another key point concerns the clinical relevance of the results. Support in favour of
VR on the TUG mobility outcome for people with stroke comes from two reviews with
moderate study quality of evidence [47,52]. The 95% CIs reported by [47] were small, but
those reported by [52] were wide which might limit our confidence in the results. It is
important to notice that even if the two reviews pointed out statistical significance for
TUG outcomes, the results showed that the effect reflects minimal clinically important
changes. In previous studies [76] reported 95% CIs of the smallest real difference (SRD)
for TUG between −3.75 to 2.59 s. SRD was proposed as a measure of sensitivity to change.
Values that fall outside this range indicate real or clinical changes. Both reviews reported
values within these ranges, which limit our ability to conclude that the improvements
were real or of practical significance. For people with stroke, two reviews rated as having
moderate quality of evidence suggested that VR was more effective than control groups
in improving balance as measured with BBS with moderate magnitude of effects and
narrow 95% CIs [47,56]. Taking into account the practical significance of these results, [47]
calculated coefficients (95% minimal detectable changes) and reported that the effects
observed for BBS indicated that the improvements reflect clinically meaningful changes.
Such a result strengthens our ability to conclude that the effects reflected real improvements.
For upper limb function measured with FM evidence of high-quality pointed out that VR
was effective for people with stroke with relatively narrow 95% CI which could indicate
that despite some uncertainty there still can be enough precision to highlight the utility
of the intervention. However, the mean difference reported by [50] was lower than the
minimum value of 7.2 or 9 reported in previous studies for SRD to reflect real or clinical
changes [77,78].

In the case of children with CP no data was reported for outcomes measured with
individual scales such as TUG mobility, balance measured with BBS, or upper limb function
assessed with FM. In these cases outcomes resulted from composite scores from multiple
measurement instruments. In terms of magnitude of effects, large effects which suggest
meaningful improvements, were obtained for balance and upper limb function, although
the quality of evidence remains of very low and low quality. For people with ABI most
of the reported effects for balance measured with BBS and Sit to Stand Test were small in
magnitude and non significant though with very low and low quality of evidence. For
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FM outcome results indicated a significant small to moderate effect with moderate quality
of evidence.

4.1. Factors That Can Enhance Rehabilitation Outcomes
4.1.1. Factors Identified via Moderator Analysis

Our second objective aimed to identify factors that can enhance rehabilitation out-
comes and highlight the underlying mechanisms that can explain their effect. Overall,
results offer support in favour of customized VR systems compared to commercially
available VR systems (e.g., Nintendo Wii, Microsoft Kinect), especially for upper limb
extremity, body function and activity. Bespoke VR systems are more likely to follow reha-
bilitation principles compared to commercial VR by adjusting to user needs and abilities,
supporting feedback, task-specific practice and usage of affected limb, and increasing
difficulty [10,30,31]. Research using these environments is also more likely to design and
conduct usability evaluations with users to select the type of tasks and activities to reach
specific rehabilitation goals [73,74]. Even if customized VR systems may require more
intensive time for development than off-the-shelf commercial VR systems, they may also
be more effective in rehabilitation. Moderators assessing the impact of delivering VR
interventions alone or in combination with conventional therapy, and those assessing the
length of VR intervention did not have any clinical significance.

4.1.2. Proposed Factors

While performing our literature review and data synthetises, we noticed that the
existing literature concerning moderator factors for VR intervention effects was missing
some important variables. To cover this gap, informed by a literature review, we propose
other factors that might impact VR treatment outcomes such as: type of interaction in VR,
components of the VR intervention (e.g., tasks, activities, gaming elements), immersion,
presence and participant enjoyment and motivation.

Interaction is achieved mainly via technical capabilities of the VR system (hardware)
that allows the user to explore and manipulate the environment, ultimately changing the
events [79]. Many primary studies used a form of VR interaction (e.g., motion capture tech-
nology to capture patient’s movement) that accommodates neurorehabilitation principles
and creates enriched environments to facilitate neuroplasticity by helping patients practice
and learn in VR real life tasks and activities. Previous studies showed that interaction
in VR improves performance. For example, medical students who manipulated directly
and in real-time virtual 3D anatomical structures had better learning outcomes than stu-
dents who passively viewed the interaction in the same stereoscopic 3D environment [80].
We speculate that environments in which interaction takes place in real time such as the
situation in which the VR system responds to the user’s actions and sends feedback can
improve rehabilitation outcomes. An example of such real-time interaction is when the
participant walks on a treadmill and the speed of the treadmill is adjusted according to
user’s movements and the projected VR environment changes the direction while the user
moves throughout the environment. Immersion is an objective feature related more to the
technology being used to deliver virtual experiences and the ability to simulate the real
world and create authentic experiences [3,79]. Some VR systems are more immersive than
others. For example, those that use body and head tracking technology coupled with a large
field of view displays (e.g., HMDs) to generate a 360◦ “first person” view of the scenario are
highly immersive [3]. Less immersive VR systems use desktop computer screens without
motion tracking technology. Presence is a subjective state of consciousness and describes
the extent to which people can actually feel they are “there” in the VR [79] and is often
measured using questionnaires [81,82]. It is commonly accepted that technological features
of the VR systems (e.g., motion tracking technology, field of view and stereoscopy) which
make the experience highly immersive increase presence [83]. Adequate immersion and
presence help the user to behave in VR as they normally do in real life situations [79] and
might contribute to the successful transference of skills and knowledge acquired in VR
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to the real world [84] though the role of immersion and presence in rehabilitation should
further be explored in meta-analyses. Increased interaction in VR was also suggested to
be positively related to task enjoyment which can lead to a higher level of programme
enjoyment. Research has shown that enjoyment of VR interventions for rehabilitation
elevated adherence to therapy [85]. Another mechanism proposed by Howard [71] to
explain positive rehabilitation outcomes of VR that is closely related to user needs was
participants’ increased excitement which contributes to increased motivation. Adding
gaming elements to the application can also boost motivation, engagement and adherence
to intervention because people will be less focused on the physical impairment and focus
their attention on the experience [75,86]. There is need for further empirical studies to test
these proposed factors in order to identify mechanisms that can enhance VR rehabilitation
outcomes.

Less emphasis in the stroke, TBI and CP literature was placed on differentiating the
methodology used to deliver the intervention than in other domains [87] such as tasks,
activities or games. VR tasks refer to specific actions, activities are broader and target high
level functions and games follow specific rules [87]. Various tasks, activities and games
were used for VR rehabilitation ranging from less complex (e.g., grasping and reaching
objects) to more complex (e.g., playing games which require interacting within the game,
following rules and keeping score.). In line with rehabilitation principles that stress the
importance of task specific practice and gradually increasing task difficulty [9], we suggest
designing interventions which start at a low level of complexity with tasks and continue at
a higher level with activities and games.

4.2. Safety Concerns in VR-Adverse Effects

The few meta-analyses that reported adverse effects did not identify an increased
number of adverse effects and none reported severe adverse effects. However, adverse
effects in VR should be documented to allow for an informed decision about the safety and
feasibility of using VR with vulnerable populations.

4.3. Implications for Neurorehabilitation

A main question is whether improvements observed in VR can translate to real life
improvements and the underlying clinical impact. Most effects that were expressed via
standardized mean differences were of moderate and large magnitude, which suggests
that VR-based interventions have clinical significance. Major clinical improvements based
on large effects were reported for lower limb activity, balance and postural control. Small
improvements were observed for motor function. Some studies computed effect sizes using
mean differences for well-established scales such as lower limb activity measured with
TUG, balance measured with BBS and upper limb function measured with FM. In the case
of these studies we were able to benchmark the results reported from these meta-analyses
with SRD values published in other studies that can indicate whether the changes had
clinical relevance. For TUG and FM the reported effect sizes were of small magnitude
and limited clinical relevance. For BBS the values were large and likely to reflect clinically
significant changes.

The most investigated condition was stroke and only a limited number of reviews
included children with CP and people with ABI. When it comes to the target popula-
tion, compelling evidence of moderate and high quality of evidence emerged for people
with stroke on most outcomes: mobility, balance, upper limb function, and body struc-
ture/function and activity. Evidence of moderate quality in favour of VR for improving
upper limb function was reported for people with ABI, including TBI. For children with
CP, evidence of moderate quality supports the use of VR interventions for rehabilitation of
lower limb activity such as ambulation function.

Larger effects were reported for VR interventions which consisted of various reha-
bilitation activities (e.g., treadmill walking, gait training for lower limb activity; balance
training exercises, postural control exercises for balance and postural control) delivered via
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commercially available systems and engineer-built systems resulted in greater improve-
ments. VR interventions designated to improve upper limb functions resulted in smaller
improvements. Such interventions consisted mostly of VR programs in which people
had to perform motor tasks by moving or manipulating virtual objects. Some VR devices
were coupled with data gloves to allow for real-time feedback. Several explanations can
account for larger effects for lower limb activity and balance versus upper limb function.
First, treadmill training and postural VR interventions usually use larger screens or HMDs
which allow for increased immersion compared to reaching and grasping tasks that can
be delivered on smaller screens which can be less immersive [47]. It was also argued that
VR interventions for upper limb rehabilitation should include high intensity training with
many repetitions [8,88]. However, two meta-analyses showed that the duration of the
intervention does not impact treatment effects for children with CP and people with stroke
for upper limb function [34,49]. Based on the synthesis of evidence we could not identify
any superiority effects of age e.g., young people outcomes such as those of children with
CP compared to older adults such as people with stroke. We also mention that stroke was
the most studied condition with increased data availability which could also contribute to
the quality and number of trials included in the meta-analysis.

There is a general agreement that VR can provide meaningful and realistic experiences
which can facilitate rehabilitation outcomes [8,89]. For example, by being able to repeti-
tively deliver the intervention while gradually increasing the level of difficulty VR can be
an efficient means to apply principles of experience-dependent plasticity for rehabilitation
of patients with brain damage [9] and principles of motor learning which are known to
improve rehabilitation outcomes [8]. Main advantages of VR are accessibility of practice
repetition, multisensory feedback, increasing task difficulty, task specificity [8,89]. All
the VR interventions included in the meta-analyses included to a degree rehabilitation
tasks that allowed for repetition, multisensory and immediate feedback, variability and
adaptation of task difficulty to particular user needs. Additionally, evidence from moder-
ation analysis suggests that customizing the VR systems and adapting them to patients’
needs can improve rehabilitation outcomes by implementing rehabilitation principles
(e.g., supporting feedback, task-specific practice and usage of affected limb, adjusting for
task difficulty).

Despite promising results concerning the effectiveness of VR-based interventions in
rehabilitation, there is still inconclusive evidence concerning the successful transference
of skills from VR to real life settings [89]. Examples of rehabilitation tasks that follow
motor learning principles in VR are reaching movements while wearing an HMD, virtually
rotating a hand held virtual object, arm or joint motions to play various sports in VR [89].
In short, the repetitive practice of specific motor skills improves the ability to perform the
task. Rehabilitation outcomes are improved if the practice of the motor task takes place
in realistic and meaningful environments where multisensory information can modulate
performance [90]. It was suggested that successful implementation depends on the software
and hardware capabilities [91]. For example, a mismatch in sensory and motor information
between the virtual and real environment can lead to a failure of successful skill transfer.
Key features of the VR environment such as fidelity (multisensory stimuli: haptic, visual
and auditory) and dimensionality lead to successful rendering of the real world tasks to VR,
which in turn impacts motor learning and motor execution [89]. Main challenges concern
barriers of transfer of learning issues that relate to reduced ecological validity and task
specificity. Major limitations can be caused by system delays (e.g., delays in the visual
display of stimuli or system latency between participants actions via controllers and the
VR system responses) that can reduce the realism of the experience or failure to correctly
estimate the perceived distance in virtual environments compared to real situations which
can prevent optimal transfer of skills acquired in VR to real life [91]. Addressing technical
limitations such as these can improve the ecological validity of the intervention effects.
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5. Limitations and Future Directions

Our study raises several points of interest for future work. First, we included both
RCTs and studies with a pre-test post-test design in order to increase statistical power.
However, only four reviews included studies with a pre-test post-test design and 37 reviews
included only RCTs. To account for this, we have signposted throughout our review where
evidence came for studies with a pre-post-test design which consequently reduced our
confidence in the results that came from those reviews.

Our moderation synthetises may be limited by subgroup comparisons performed in
reviews. Even though we identified important apriori moderators (e.g., immersion), we
were not able to assess directly their contribution to VR effectiveness because the reviews
did not account for these variables. In future reviews, it would be useful to identify the
effectiveness or superiority of VR interventions by comparing the intervention groups
with passive and active control groups. Similarly, identifying whether highly immersive
VR environments are more effective than low immersive VR environments will allow for
better design of VR protocols for intervention. Even though stroke, TBI and CP have
negative impacts on cognitive functions, there is currently a lack of reviews that focus
on cognitive rehabilitation. Future reviews should investigate the effect and quality of
evidence of VR interventions on cognitive functioning. Currently there is limited data on
the cost-effectiveness of VR interventions compared to traditional neurorehabilitation, as
none of the reviews provided such data.

6. Conclusions

Our umbrella review synthesised a large body of literature on the effects and quality of
the evidence of VR-based interventions for physical and cognitive rehabilitation of patients
with stroke, TBI and CP. Overall, there is evidence of a benefit of VR in improving physical
functioning in people with stroke, TBI and CP, however, most results are based on very
low- and low-quality studies. There is a need for high quality RCTs to further investigate
the effects of VR interventions.

Our results suggest that the effectiveness of VR interventions is boosted by variables
that relate to the technological features of the VR environment, such as customization
of VR environments and, possibly, by immersive and interactive VR. We highlight the
need to identify and test potential mechanisms that are responsible for effective VR-based
rehabilitation, in order to formulate evidence-based guidelines for the design of VR-based
rehabilitation interventions.
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training in different fields of rehabilitation: A systematic review and meta-analysis. J. Rehabil. Med. 2020, 52, jrm00121. [CrossRef]

60. Saposnik, G.; Levin, M.; Outcome Research Canada Working Group. Virtual reality in stroke rehabilitation: A meta-analysis and
implications for clinicians. Stroke 2011, 42, 1380–1386. [CrossRef] [PubMed]

61. Saywell, N.; Taylor, N.; Rodgers, E.; Skinner, L.; Boocock, M. Play-based interventions improve physical function for people
with adult-acquired brain injury: A systematic review and meta-analysis of randomised controlled trials. Clin. Rehabil. 2017, 31,
145–157. [CrossRef] [PubMed]

62. Tay, E.L.; Lee, S.W.H.; Yong, G.H.; Wong, C.P. A systematic review and meta-analysis of the efficacy of custom game based virtual
rehabilitation in improving physical functioning of patients with acquired brain injury. Technol. Disabil. 2018, 30, 1–23. [CrossRef]

63. Veerbeek, J.M.; van Wegen, E.; van Peppen, R.; van der Wees, P.J.; Hendriks, E.; Rietberg, M.; Kwakkel, G. What is the evidence
for physical therapy poststroke? A systematic review and meta-analysis. PLoS ONE 2014, 9, e87987. [CrossRef]

64. Wang, X.Q.; Pi, Y.L.; Chen, B.L.; Chen, P.J.; Liu, Y.; Wang, R.; Li, X.; Waddington, G. Cognitive motor interference for gait and
balance in stroke: A systematic review and meta-analysis. Eur. J. Neurol. 2015, 22, 555-e37. [CrossRef]

65. Warnier, N.; Lambregts, S.; Port, I.V. Effect of Virtual Reality Therapy on Balance and Walking in Children with Cerebral Palsy: A
Systematic Review. Dev. Neurorehabil. 2019, 1–17. [CrossRef]

66. Wattchow, K.A.; McDonnell, M.N.; Hillier, S.L. Rehabilitation Interventions for Upper Limb Function in the First Four Weeks
Following Stroke: A Systematic Review and Meta-Analysis of the Evidence. Arch. Phys. Med. Rehabil. 2018, 99, 367–382.
[CrossRef] [PubMed]

67. Wiley, E.; Khattab, S.; Tang, A. Examining the effect of virtual reality therapy on cognition post-stroke: A systematic review and
meta-analysis. Disabil. Rehabil. Assist. Technol. 2020, 1–11. [CrossRef] [PubMed]

68. Wu, J.; Loprinzi, P.D.; Ren, Z. The Rehabilitative Effects of Virtual Reality Games on Balance Performance among Children
with Cerebral Palsy: A Meta-Analysis of Randomized Controlled Trials. Int. J. Environ. Res. Public Health 2019, 16, 4161.
[CrossRef] [PubMed]

69. Schünemann, H.J.; Mustafa, R.A.; Brozek, J.; Steingart, K.R.; Leeflang, M.; Murad, M.H.; Bossuyt, P.; Glasziou, P.; Jaeschke, R.;
Lange, S.; et al. GRADE guidelines: 21 part 2. Test accuracy: Inconsistency, imprecision, publication bias, and other domains for
rating the certainty of evidence and presenting it in evidence profiles and summary of findings tables. J. Clin. Epidemiol. 2020, 122,
142–152. [CrossRef]

70. Ryan, R.; Hill, S. How to GRADE the Quality of the Evidence. Cochrane Consumers and Communication, 2016. Available online:
https://colorectal.cochrane.org/sites/colorectal.cochrane.org/files/public/uploads/how_to_grade.pdf (accessed on 26 March
2021).

71. Howard, M.C. A meta-analysis and systematic literature review of virtual reality rehabilitation programs. Comput. Human Behav.
2017, 70, 317–327. [CrossRef]

http://doi.org/10.1080/10749357.2016.1192361
http://www.ncbi.nlm.nih.gov/pubmed/27309680
http://doi.org/10.2340/16501977-2633
http://www.ncbi.nlm.nih.gov/pubmed/31794044
http://doi.org/10.1016/j.apmr.2019.10.195
http://doi.org/10.1002/14651858.CD008349.pub4
http://www.ncbi.nlm.nih.gov/pubmed/29156493
http://doi.org/10.1155/2019/7595639
http://doi.org/10.1177/0269215515593611
http://www.ncbi.nlm.nih.gov/pubmed/26141808
http://doi.org/10.1016/j.apmr.2018.09.123
http://doi.org/10.1371/journal.pone.0093318
http://doi.org/10.1080/02699052.2020.1725126
http://doi.org/10.1016/j.jstrokecerebrovasdis.2019.03.054
http://doi.org/10.1007/s00415-020-09918-w
http://www.ncbi.nlm.nih.gov/pubmed/32447551
http://doi.org/10.1590/bjpt-rbf.2014.0062
http://www.ncbi.nlm.nih.gov/pubmed/25590442
http://doi.org/10.2340/16501977-2755
http://doi.org/10.1161/STROKEAHA.110.605451
http://www.ncbi.nlm.nih.gov/pubmed/21474804
http://doi.org/10.1177/0269215516631384
http://www.ncbi.nlm.nih.gov/pubmed/26869595
http://doi.org/10.3233/TAD-170184
http://doi.org/10.1371/journal.pone.0087987
http://doi.org/10.1111/ene.12616
http://doi.org/10.1080/17518423.2019.1683907
http://doi.org/10.1016/j.apmr.2017.06.014
http://www.ncbi.nlm.nih.gov/pubmed/28734936
http://doi.org/10.1080/17483107.2020.1755376
http://www.ncbi.nlm.nih.gov/pubmed/32363955
http://doi.org/10.3390/ijerph16214161
http://www.ncbi.nlm.nih.gov/pubmed/31661938
http://doi.org/10.1016/j.jclinepi.2019.12.021
https://colorectal.cochrane.org/sites/colorectal.cochrane.org/files/public/uploads/how_to_grade.pdf
http://doi.org/10.1016/j.chb.2017.01.013


J. Clin. Med. 2021, 10, 1478 42 of 42

72. Maggio, M.G.; Russo, M.; Cuzzola, M.F.; Destro, M.; La Rosa, G.; Molonia, F.; Bramanti, P.; Lombardo, G.; De Luca, R.; Calabrò,
R.S. Virtual reality in multiple sclerosis rehabilitation: A review on cognitive and motor outcomes. J. Clin. Neurosci. 2019, 65,
106–111. [CrossRef]

73. Kim, O.; Pang, Y.; Kim, J.H. The effectiveness of virtual reality for people with mild cognitive impairment or dementia: A
meta-analysis. BMC Psychiatry 2019, 19, 219. [CrossRef]

74. Bevilacqua, R.; Maranesi, E.; Riccardi, G.R.; Di Donna, V.; Pelliccioni, P.; Luzi, R.; Lattanzio, F.; Pelliccioni, G. Non-Immersive
Virtual Reality for Rehabilitation of the Older People: A Systematic Review into Efficacy and Effectiveness. J. Clin. Med. 2019, 8,
1882. [CrossRef]

75. Neri, S.G.; Cardoso, J.R.; Cruz, L.; Lima, R.M.; de Oliveira, R.J.; Iversen, M.D.; Carregaro, R.L. Do virtual reality games improve
mobility skills and balance measurements in community-dwelling older adults? Systematic review and meta-analysis. Clin.
Rehabil. 2017, 31, 1292–1304. [CrossRef]

76. Flansbjer, U.B.; Holmbäck, A.M.; Downham, D.; Patten, C.; Lexell, J. Reliability of gait performance tests in men and women with
hemiparesis after stroke. J. Rehabil. Med. 2005, 37, 75–82. [CrossRef] [PubMed]

77. Kim, H.; Her, J.; Ko, J.; Park, D.-s.; Woo, J.-H.; You, Y.; Choi, Y. Reliability, Concurrent Validity, and Responsiveness of the
Fugl-Meyer Assessment (FMA) for Hemiplegic Patients. J. Phys. Ther. Sci. 2012, 24, 893–899. [CrossRef]

78. Hsueh, I.-P.; Hsu, M.-J.; Sheu, C.-F.; Lee, S.; Hsieh, C.-L.; Lin, J.-H. Psychometric Comparisons of 2 Versions of the Fugl-
Meyer Motor Scale and 2 Versions of the Stroke Rehabilitation Assessment of Movement. Neurorehabil. Neural Repair 2008, 22,
737–744. [CrossRef]

79. Slater, M.; Wilbur, S. A framework for immersive virtual environments (FIVE): Speculations on the role of presence in virtual
environments. Presence Teleoperators Virtual Environ. 1997, 6, 603–616. [CrossRef]

80. Jang, S.; Vitale, J.M.; Jyung, R.W.; Black, J.B. Direct manipulation is better than passive viewing for learning anatomy in a
three-dimensional virtual reality environment. Comput. Educ. 2017, 106, 150–165. [CrossRef]

81. Witmer, B.G.; Singer, M.J. Measuring presence in virtual environments: A presence questionnaire. Presence 1998, 7,
225–240. [CrossRef]

82. Usoh, M.; Catena, E.; Arman, S.; Slater, M. Using presence questionnaires in reality. Presence Teleoperators Virtual Environ. 2000, 9,
497–503. [CrossRef]

83. Cummings, J.J.; Bailenson, J.N. How immersive is enough? A meta-analysis of the effect of immersive technology on user
presence. Media Psychol. 2016, 19, 272–309. [CrossRef]

84. Slater, M.; Linakis, V.; Usoh, M.; Kooper, R. Immersion, Presence and Performance in Virtual Environments: An Experiment with
Tri-Dimensional Chess. Available online: https://dl.acm.org/doi/abs/10.1145/3304181.3304216 (accessed on 26 March 2021).

85. Rose, T.; Nam, C.S.; Chen, K.B. Immersion of virtual reality for rehabilitation—Review. Appl. Ergon. 2018, 69, 153–161. [CrossRef]
86. Lange, B.S.; Requejo, P.; Flynn, S.M.; Rizzo, A.A.; Valero-Cuevas, F.J.; Baker, L.; Winstein, C. The Potential of Virtual Reality and

Gaming to Assist Successful Aging with Disability. Phys. Med. Rehabil. Clin. N. Am. 2010, 21, 339–356. [CrossRef]
87. Garcia-Betances, R.I.; Arredondo Waldmeyer, M.T.; Fico, G.; Cabrera-Umpierrez, M.F. A succinct overview of virtual reality

technology use in Alzheimer’s disease. Front. Aging Neurosci. 2015, 7, 80. [CrossRef] [PubMed]
88. Brunner, I.; Skouen, J.S.; Hofstad, H.; Aßmus, J.; Becker, F.; Sanders, A.-M.; Pallesen, H.; Qvist Kristensen, L.; Michielsen, M.;

Thijs, L.; et al. Virtual Reality Training for Upper Extremity in Subacute Stroke (VIRTUES). Multicent. RCT 2017, 89, 2413–2421.
[CrossRef] [PubMed]

89. Levac, D.E.; Huber, M.E.; Sternad, D. Learning and transfer of complex motor skills in virtual reality: A perspective review. J.
Neuroeng. Rehabil. 2019, 16, 121. [CrossRef] [PubMed]

90. Sveistrup, H. Motor rehabilitation using virtual reality. J. Neuroeng. Rehabil. 2004, 1, 10. [CrossRef] [PubMed]
91. Morel, M.; Bideau, B.; Lardy, J.; Kulpa, R. Advantages and limitations of virtual reality for balance assessment and rehabilitation.

Neurophysiol. Clin. 2015, 45, 315–326. [CrossRef]

http://doi.org/10.1016/j.jocn.2019.03.017
http://doi.org/10.1186/s12888-019-2180-x
http://doi.org/10.3390/jcm8111882
http://doi.org/10.1177/0269215517694677
http://doi.org/10.1080/16501970410017215
http://www.ncbi.nlm.nih.gov/pubmed/15788341
http://doi.org/10.1589/jpts.24.893
http://doi.org/10.1177/1545968308315999
http://doi.org/10.1162/pres.1997.6.6.603
http://doi.org/10.1016/j.compedu.2016.12.009
http://doi.org/10.1162/105474698565686
http://doi.org/10.1162/105474600566989
http://doi.org/10.1080/15213269.2015.1015740
https://dl.acm.org/doi/abs/10.1145/3304181.3304216
http://doi.org/10.1016/j.apergo.2018.01.009
http://doi.org/10.1016/j.pmr.2009.12.007
http://doi.org/10.3389/fnagi.2015.00080
http://www.ncbi.nlm.nih.gov/pubmed/26029101
http://doi.org/10.1212/WNL.0000000000004744
http://www.ncbi.nlm.nih.gov/pubmed/29142090
http://doi.org/10.1186/s12984-019-0587-8
http://www.ncbi.nlm.nih.gov/pubmed/31627755
http://doi.org/10.1186/1743-0003-1-10
http://www.ncbi.nlm.nih.gov/pubmed/15679945
http://doi.org/10.1016/j.neucli.2015.09.007

	Introduction 
	Methods 
	Eligibility Criteria 
	Search Strategy 
	Data Collection and Analysis 
	Selection of Meta-Analysis Process 
	Data Extraction and Management 
	Quality of Included Reviews 
	Overlapping of Studies 
	Data Synthesis 


	Results 
	Description and Methodological Quality of Included Reviews 
	Study Characteristics 
	Participants 
	Intervention Characteristics 
	Control Group Characteristics 
	Quality of Included Reviews 
	Overlapping of Studies 

	Intervention Effects and Quality of Evidence 
	Intervention Effects for Lower Limb Activity 
	Intervention Effects for Balance and Postural Control 
	Intervention Effects for Upper Limb, Arm Function and Activity 
	Intervention Effects for Activity Limitation 
	Intervention Effects for ICF WHO Framework: Body Structures/Function, Activity, and Participation 
	Intervention Effects for Motor Function 
	Intervention Effects for Cognitive Functioning 

	Moderator Effects 
	Mode of Delivery 
	Timed Match Interventions 
	Intervention Length 
	Technological Features of the VR Platforms 

	Safety Concerns in VR-Adverse Effects 

	Discussion 
	Factors That Can Enhance Rehabilitation Outcomes 
	Factors Identified via Moderator Analysis 
	Proposed Factors 

	Safety Concerns in VR-Adverse Effects 
	Implications for Neurorehabilitation 

	Limitations and Future Directions 
	Conclusions 
	References

