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Abstract: To develop predictive models of fatty liver (FL), we performed a cross-sectional retrospec-
tive study of 1672 obese children with a median (interquartile range) age of 15 (13–16) years. The
outcome variable was FL diagnosed by ultrasonography. The potential predictors were: (1) binary:
sex; (2) continuous: age, body mass index (BMI), waist circumference (WC), alanine transaminase
(ALT), aspartate transaminase, gamma-glutamyltransferase, glucose, insulin, homeostasis model
assessment of insulin resistance (HOMA-IR), HDL-cholesterol, LDL-cholesterol, triglycerides, mean
arterial pressure, uric acid, and c-reactive protein; (3) ordinal: Pubertal status. Bootstrapped multi-
variable logistic regression with fractional polynomials was used to develop the models. Two models
were developed and internally validated, one using BMI and the other using WC as the anthropo-
metric predictor. Both models included ALT, HOMA-IR, triglycerides, and uric acid as predictors,
had similar discrimination (c-statistic = 0.81), and were similarly well calibrated as determined by
calibration plots. These models should undergo external validation before being employed in clinical
or research practice.

Keywords: cross-sectional study; obesity; children; adolescents; diagnostic techniques and proce-
dures; fatty liver

1. Introduction

The prevalence of fatty liver (FL) is increasing worldwide mostly because of the
current epidemics of obesity [1,2]. A recent metanalysis performed in subjects aged 1 to
19 years reported a prevalence of FL of 2.3% in normal-weight, 12.5% in overweight, and
36.1% in obese children [2]. Even if the natural history of FL in children is largely unknown
and cause–effect relationships between FL and associated diseases are hard to prove with
the present evidence base [3], it is reasonable to assume that FL persisting from childhood
to adulthood may have harmful hepatic and extrahepatic consequences [4–7].

FL is operationally defined as visible steatosis in more than 5% of hepatocytes at liver
biopsy or as an intrahepatic triglyceride content of at least 5.6% at magnetic resonance
spectroscopy (MRS) or magnetic resonance imaging (MRI) [8]. However, the most common
method used to diagnose FL in clinical practice and epidemiological research is liver
ultrasonography (LUS) [8,9]. When LUS is not available, the presently suggested method
to diagnose FL in adults is the calculation of surrogate indices of FL [8].

The use of surrogate indices of FL is becoming increasingly popular in adults [10].
However, very few data are available to date on surrogate indices of FL in children and
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adolescents. In a cross-sectional study, performed at our Center in 2007 on 267 subjects aged
8 to 18 years and with a body mass index (BMI) > 90th percentile for age, we found that
BMI, alanine transaminase (ALT), uric acid, insulin during oral glucose tolerance testing
(OGTT), and glucose during OGTT, contributed independently to FL [11]. Although these
variables were potential contributors to a multivariable surrogate index of FL, we did not
develop a prediction model, mostly because of the low number of available children [11].
Surprisingly, only one study was performed to date with the aim of developing a prediction
model for FL in children and adolescents. In 2011, Hosseini et al. developed a prediction
model of FL based on sex, age, BMI, waist circumference (WC) and triglycerides in a sample
of 962 Iranian subjects aged 6 to 18 years [12]. Unfortunately, Hosseini et al. [12] had not
available measurements of liver enzymes, uric acid, insulin, and c-reactive protein (CRP),
which are potential predictors of FL [11,13,14].

Insulin was the strongest multivariable predictor of FL in the general adult population
of the Dionysos Nutrition and Liver Study [15,16]. However, when we used the data from
the Dionysos Nutrition and Liver Study to develop the fatty liver index (FLI), we did
not take insulin into account because its measurement was not routinely performed [16].
Nowadays, insulin is almost routinely measured in obese patients and in those with FL,
and it will be increasingly so if the newly proposed definition of metabolic (dysfunction)
associated fatty liver disease (MAFLD) will replace the more traditional separation of FL
into non-alcoholic fatty liver disease (NAFLD) and alcoholic fatty liver disease (AFLD) [13].
To diagnose MAFLD, one has in fact to calculate the homeostasis model assessment of
insulin resistance (HOMA-IR), which is obtained from fasting insulin and glucose [17].
The diagnosis of MAFLD requires also the measurement of CRP [13], which may therefore
become more common in patients with FL.

The aim of the present cross-sectional study was, therefore, to develop and internally
validate multivariable prediction models of FL for obese children taking into account
anthropometry, the components of the metabolic syndrome, liver enzymes, insulin and
glucose alone and combined into HOMA-IR, uric acid, and CRP. The study was reported
following the “Transparent reporting of a multivariable prediction model for individual
prognosis or diagnosis” (TRIPOD) guidelines (Appendix A).

2. Subjects and Methods
2.1. Source of Data

The development and internal validation of the multivariable models for the prediction
of FL were performed using an already available dataset of obese children followed at our
tertiary care center for the treatment of pediatric obesity [18]. The study was approved by
the Ethical Committee of the Istituto Auxologico Italiano (research project code 1C021_2020,
acronym BILOB) and was conducted in accordance with the Declaration of Helsinki.
Written informed consent to participate in the study was obtained from the subjects aged
18 years or from the legal representatives of those aged < 18 years.

2.2. Participants

All the children were admitted to the Clinic to undergo a short-term structured mul-
tidisciplinary weight-loss program and underwent the assessment of the outcome and
the predictors before starting such program. The inclusion criteria were: (1) Caucasian
ethnic group, (2) age ≤ 18 years, (3) BMI ≥ 95th percentile for age according to Italian
growth charts [19], and (4) availability of LUS. The exclusion criteria were: (1) Genetic
or syndromic obesity, (2) treatment with any drug, (3) alcohol intake (any quantity), and
(4) hepatitis B virus (HBV) or hepatitis C virus (HCV) infection. All children underwent a
detailed clinical history and physical examination. Alcohol intake was assessed by inter-
view. Pubertal status was classified by a pediatric endocrinologist in 5 stages according to
Tanner [20]. Weight and height were measured following international guidelines [21]. WC
was measured at the midpoint between the last rib and the iliac crest. BMI was calculated as
weight (kg)/height (m)2. Standard deviation scores (SDS) of weight, height and BMI were
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calculated using Italian growth charts [19]. Performed blood tests included: (1) Alanine
transaminase (ALT), (2) aspartate transaminase (AST), (3) gamma-glutamyltransferase
(GGT), (4) glucose, (5) insulin, (6) cholesterol, (7) HDL-cholesterol, (8) LDL-cholesterol,
(9) triglycerides, and (10) CRP. All blood tests were performed in the fasting state and
evaluated using a Cobas 6000 analyzer (Roche Diagnostics, Monza, Italy). Systolic (SBP)
and diastolic blood pressure (DBP) was measured using a sphygmomanometer following
international guidelines. Mean arterial pressure (MAP) was calculated as SBP*(1/3) +
DBP*(2/3). The metabolic syndrome was diagnosed using the criteria of the International
Diabetes Federation [22]. HOMA-IR was calculated as (insulin*glucose)/405 [17].

2.3. Outcome

The outcome was FL diagnosed by LUS [11,23]: (1) Normal liver was defined as
the absence of liver steatosis or other liver abnormalities; (2) mild FL as the presence of
slight bright liver or hepatorenal echo contrast without intrahepatic vessels blurring and
no deep attenuation; (3) moderate FL as the presence of mild bright liver or hepatorenal
echo contrast without intrahepatic vessel blurring and with deep attenuation; (4) severe
FL as diffusely severe bright liver or hepatorenal echo contrast, with intrahepatic vessels
blurring (no visible borders) and deep attenuation without visibility of the diaphragm. For
the present analysis, FL was coded as 0 = normal liver and 1 = any degree of FL. Because
of the exclusion of any degree of alcohol intake and of HBV and HCV infections (see
Section 2.2), FL as determined by the present study is synonym with NAFLD. One should
note, however, that our threshold for alcohol intake (0 g/day) is much lower than that
currently used to define NAFLD (<30 g/day in men and <20 g/day in women) [8].

2.4. Predictors

The following potential predictors were considered: (1) binary: Sex (0 = female;
1 = male); (2) continuous: age (years), BMI (kg/m2), WC (cm), ALT (U/L), AST (U/L), GGT
(U/L), glucose (mg/dL), insulin (µU/mL), HOMA-IR (dimensionless), HDL-cholesterol
(mg/dL), LDL-cholesterol (mg/dL), triglycerides (mg/dL), MAP (mm Hg), uric acid
(mg/dL), and CRP (mg/l); (3) ordinal: Pubertal status (5 Tanner stages). The predictors
included all the continuous components of the metabolic syndrome, i.e., WC, glucose, HDL-
cholesterol, triglycerides, and blood pressure [22]. MAP was used as measurement of blood
pressure to avoid problems of multicollinearity stemming from having SBP and DBP in the
same model [24]. The predictors included liver enzymes (ALT, AST, GGT), which have been
associated with FL in children [11]. As discussed in detail in the Introduction, insulin was
included among the predictors because it was the most effective multivariable predictor of
FL in the Dionysos Nutrition and Liver study [16], and because its measurement is required
to calculate HOMA-IR, which is needed to diagnose MAFLD [13]; CRP was included
because it is similarly required to diagnose MAFLD [13]; lastly, uric acid was included
because it has been reported as a promising predictor of FL [14].

2.5. Sample Size

This is a cross-sectional retrospective study performed on an already available dataset
of 1672 children and adolescents (see Section 2.1). The present sample size calculation was
therefore post-hoc. For the reasons discussed at Section 2.4, we were interested to evaluate
the multivariable association of fatty liver with the following predictors: (1) sex, (2) age,
(3) pubertal status, (4) BMI, (5) WC, (6) ALT, (7) AST, (8) GGT, (9) glucose, (10) insulin,
(11) HOMA-IR, (12) HDL-cholesterol, (13) LDL-cholesterol, (14) triglycerides, (15) MAP,
(16) uric acid, and (17) CRP. This amounts to considering 20 effective predictors, 4 of
which are needed to code the ordinal 5-level pubertal status. Using the criteria of Riley
et al. [25,26], we calculated that 1535 children were needed to estimate a Cox-Snell R2 of
0.11 with a prevalence of 38% of the outcome, under the expectation of (1) a shrinkage
of predictor effects < 10%, (2) a difference of 5% in the model apparent and adjusted
Nagelkerke R2 value and, (3) an estimation within 5% of the average outcome risk in the
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population. Following the suggestion of Riley et al. [25,26], we choose the lowest vale of
Cox-Snell R2 that we detected in our experience at developing multivariable models for the
prediction of fatty liver. We also ignored likely multicollinear terms, e.g., age and pubertal
status [18], that we expected to remove in the model development phase [24,27], to err on
the side of including more subjects for the prediction, as we already had a large dataset at
our disposal. The available sample size of 1672 children was thus more than enough to
develop the models of interest.

2.6. Missing Data

There were no missing data.

2.7. Statistical Analysis

Most continuous variables were not Gaussian-distributed, and all are reported as
median (50th percentile) and interquartile range (25th and 75th percentiles). Discrete
variables are reported as the number and proportion of subjects with the characteristic
of interest. As suggested by Royston and Sauerbrei [27,28], we examined the Spearman
correlation matrix between the outcome and the potential predictors before embarking into
multivariable modeling and kept only one of the variables of highly correlated clusters,
as defined by a Spearman’s rho > |0.60|, they key criterion being its clinical availability.
The importance and the functional form of the predictors was evaluated using degree
2 fractional polynomials coupled to logistic regression in 1000 bootstrap samples with
replacement [27–29]. Only predictors with a bootstrap inclusion factor (BIF) ≥ 66%, i.e.,
occurring in more than two thirds of bootstrap samples, were included in the final models.
The 95% confidence intervals (95%CI) of the predictors of the final models were calcu-
lated using bootstrap in 1000 samples with replacement. Discrimination was evaluated
using Harrell’s c-statistic, which is equivalent to the area under the receiver operating
characteristic curve [30]. As measures of model fit, besides Cox-Snell R2 and Nagelkerke
R2, we calculated the Akaike information criterion (AIC) and the Bayesian information
criterion (BIC) [23]. Internal calibration was evaluated using Van Calster’s 3-level hier-
archy [31,32]: (1) “Mean calibration”, which compares the observed event rate with the
average predicted risk; (2) “weak calibration”, which tests whether the calibration slope is
1 and the calibration intercept is 0; (3) “moderate calibration”, which uses a calibration plot
with a superimposed locally weighted scatterplot smoother to test whether the predicted
risks correspond to the observed event rates [33]. The 95%CI of the calibration slope and
intercept were calculated using bootstrap on 2000 samples with replacement [31]. Statistical
analysis was performed using Stata 16.1 (Stata Corporation, College Station, TX, USA) with
the pmsampsize module [34], and R 4.0.4 (R Core Team 2021, Vienna, Austria) with the
val.prob.ci.2 function [31]. R code was run from within Stata using the rcall package [35].

3. Results
3.1. Study Population

Table 1 gives the measurements of the 1672 study subjects. They had a median (IQR)
age of 15 (13–16) years, ranging from 5 to 18 years, and most of them (748, 45%) were
postpubertal. FL was detected in 642/1672 (38%, 95%CI 36 to 41%) of the study subjects.
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Table 1. Measurements of the study subjects.

Total Girls Boys

n = 1672 n = 980 n = 692
Age (years) 15 (13–16) 15 (13–17) 15 (12–16)

Pubertal stage
Tanner stage 1 (prepubertal) 194 (11.6%) 85 (8.7%) 109 (15.8%)

Tanner stage 2 (pubertal) 144 (8.6%) 48 (4.9%) 96 (13.9%)
Tanner stage 3 (pubertal) 213 (12.7%) 75 (7.7%) 138 (19.9%)
Tanner stage 4 (pubertal) 373 (22.3%) 225 (23.0%) 148 (21.4%)

Tanner stage 5 (postpubertal) 748 (44.7%) 547 (55.8%) 201 (29.0%)
Weight (kg) 96 (83–112) 93 (83–106) 103 (86–120)

Weight (SDS) 3.01 (2.47–3.57) 3.07 (2.52–3.64) 2.91 (2.37–3.43)
Height (m) 1.63 (1.56–1.69) 1.60 (1.56–1.65) 1.68 (1.58–1.75)

Height (SDS) 0.33 (−0.30–1.04) 0.29 (−0.36–1.00) 0.37 (−0.24–1.09)
BMI (kg/m2) 36 (32–40) 36 (32–40) 36 (32–41)

BMI (SDS) 2.92 (2.50–3.32) 2.91 (2.51–3.28) 2.92 (2.47–3.39)
Waist circumference (cm) 111 (101–122) 108 (99–118) 115 (106–126)

Large waist circumference (IDF) 1646 (98.4%) 955 (97.4%) 691 (99.9%)
ALT (U/L) 23 (16–35) 19 (15–27) 30 (21–47)
AST (U/L) 21 (17–26) 19 (16–23) 24 (20–30)
GGT (U/L) 16 (12–22) 14 (11–19) 19 (15–28)

Glucose (mg/dl) 79 (74–83) 78 (73–82) 79 (75–84)
High glucose (IDF) 10 (0.6%) 6 (0.6%) 4 (0.6%)
Insulin (µU/mL) 13 (9–18) 12 (8–18) 13 (9–19)

HOMA-IR (dimensionless) 2.4 (1.6–3.5) 2.3 (1.6–3.4) 2.6 (1.7–3.7)
Cholesterol (mg/dl) 162 (142–182) 162 (142–182) 163 (142–183)

HDL-cholesterol (mg/dL) 43 (37–51) 45 (39–53) 42 (35–48)
Low HDL (IDF) 681 (40.7%) 397 (40.5%) 284 (41.0%)

LDL-cholesterol (mg/dL) 102 (85–122) 101 (83–121) 104 (87–124)
Triglycerides (mg/dL) 87 (66–114) 83 (64–110) 90 (69–122)

High triglycerides (IDF) 163 (9.7%) 85 (8.7%) 78 (11.3%)
Uric acid (mg/dL) 6.0 (5.2–6.9) 5.7 (5.0–6.4) 6.7 (5.7–7.6)

CRP (mg/L) 0.4 (0.2–0.7) 0.4 (0.2–0.7) 0.4 (0.2–0.7)
Systolic blood pressure (mm Hg) 120 (120–130) 120 (120–130) 125 (120–130)
Diastolic blood pressure (mm Hg) 80 (70–80) 80 (70–80) 80 (70–80)

High blood pressure (IDF) 687 (41.1%) 334 (34.1%) 353 (51.0%)
Mean arterial pressure 93 (87–97) 93 (87–97) 93 (90–97)

Fatty liver 642 (38.4%) 278 (28.4%) 364 (52.6%)

Fatty liver degree
None 1030 (61.6%) 702 (71.6%) 328 (47.4%)
Mild 250 (15.0%) 133 (13.6%) 117 (16.9%)

Moderate 300 (17.9%) 119 (12.1%) 181 (26.2%)
Severe 92 (5.5%) 26 (2.7%) 66 (9.5%)

Metabolic syndrome (IDF) 395 (23.6%) 193 (19.7%) 202 (29.2%)
Continuous variables are reported as median (50th percentile) and interquartile range (25th and 75th per-
centiles). Discrete variables are reported as number and proportion. Abbreviations: SDS = standard deviation
scores [19]; BMI = body mass index; IDF = International Diabetes Federation [22]; ALT = alanine transaminase;
AST = aspartate transaminase; GGT = gamma-glutamyltransferase; HOMA-IR = homeostasis model assessment
of insulin resistance; HDL = high density-lipoprotein; LDL = low density-lipoprotein, CRP = c-reactive protein.

3.2. Selection of Predictors for Multivariable Modeling

As suggested by Royston and Sauerbrei [27,28], we examined the Spearman corre-
lation matrix between the outcome and the potential predictors before embarking into
multivariable modeling (Table 2).
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Table 2. Spearman correlation coefficients between the outcome and potential predictors.

FL MALE AGE PUB BMI WC ALT AST GGT GLU INS HOMA HDLC LDLC TG MAP UR CRP

fl 1.00
male 0.25 1.00
age −0.02 −0.09 1.00
pub −0.10 −0.30 0.82 1.00
bmi 0.23 0.01 0.36 0.31 1.00
wc 0.25 0.23 0.38 0.28 0.77 1.00
alt 0.45 0.39 0.05 −0.09 0.21 0.29 1.00
ast 0.37 0.41 −0.12 −0.24 0.03 0.12 0.81 1.00
ggt 0.35 0.35 0.13 0.01 0.30 0.34 0.61 0.46 1.00
glu 0.12 0.13 −0.13 −0.16 0.09 0.13 0.07 0.03 0.05 1.00
ins 0.29 0.05 0.03 0.03 0.40 0.37 0.27 0.13 0.34 0.14 1.00

homa 0.30 0.07 0.01 0.01 0.41 0.38 0.27 0.13 0.34 0.29 0.98 1.00
hdlc −0.16 −0.17 −0.06 −0.02 −0.22 −0.27 −0.17 −0.09 −0.20 −0.07 −0.25 −0.26 1.00
ldlc 0.11 0.06 −0.03 −0.05 0.07 0.08 0.16 0.15 0.27 0.04 0.10 0.10 −0.05 1.00
tg 0.21 0.10 0.07 0.02 0.19 0.21 0.25 0.17 0.31 0.00 0.34 0.32 −0.38 0.43 1.00

map 0.11 0.14 0.30 0.22 0.41 0.42 0.19 0.06 0.23 0.06 0.25 0.25 −0.10 0.04 0.13 1.00
ur 0.29 0.36 0.13 0.05 0.37 0.42 0.37 0.28 0.38 0.09 0.28 0.29 −0.26 0.09 0.25 0.26 1.00
crp 0.10 −0.02 0.04 0.00 0.34 0.22 0.02 −0.04 0.16 0.04 0.14 0.14 −0.10 0.04 0.00 0.09 0.09 1.00

Abbreviations: fl = fatty liver; male = male sex; age = age; pub = pubertal status; bmi = body mass index; wc = waist circumference;
alt = alanine transaminase; ast = aspartate transaminase; ggt = gamma-glutamyltransferase; glu = glucose; ins = insulin; homa = home-
ostasis model assessment of insulin resistance; hdlc = high-density lipoprotein cholesterol; ldlc = low-density lipoprotein cholesterol;
tg = triglycerides; map = mean arterial pressure; ur = uric acid; crp = c-reactive protein. The units of measurements are the same used in
Table 1. Spearman’s correlation coefficients > |0.60| are given in bold.

Only one of the variables pertaining to highly correlated clusters was kept, as detected
by a Spearman’s rho > |0.60|. Age and pubertal status were highly correlated (rho = 0.82).
Age was kept for multivariable modeling because the assessment of pubertal status requires
a pediatric endocrinologist, rendering a prediction model including pubertal status not
usable in standard clinical practice. BMI and WC were highly correlated (rho = 0.77).
Because we aimed at detecting whether the single components of the metabolic syndrome
contribute to FL and WC is a component of the metabolic syndrome, we decided to
develop two distinct multivariable models, one using BMI and the other using WC as
the anthropometric predictor. It should be noted that, in the present study, we used BMI
(kg/m2) as predictor instead of BMI (SDS), which was used in our previous study [11]. This
was done because “raw” BMI is not dependent on any given reference chart and allows
a more direct comparison with WC, which was not evaluated in our previous study [11].
ALT was highly correlated with AST (rho = 0.81) and GGT (rho = 0.61). ALT was kept for
multivariable modeling because it is more hepatospecific than AST, and because GGT is
as a second-level exam in most centers. Lastly, HOMA-IR and insulin were correlated so
strongly (rho = 0.98) to be considered synonyms for modeling purposes. We kept HOMA-IR
for multivariable modeling instead of insulin because of its pathophysiological significance
and because it is presently required for the diagnosis of MAFLD [13]. Glucose was not
entered into the multivariable models because it is already included into HOMA-IR (See
Section 2.2).

3.3. Multivariable Modeling Strategy

Based on the above findings, we decided to evaluate two distinct multivariable models,
one using BMI and the other using WC as the anthropometric predictor. Both models
included sex, age, ALT, HOMA-IR, HDL-cholesterol, LDL-cholesterol, triglycerides, MAP,
uric acid, and CRP as potential predictors. The importance and the functional form of each
predictor was evaluated using degree 2 fractional polynomials in 1000 bootstrap samples
with replacement [27–29]. The bootstrap inclusion fraction (BIF) and the functional form of
the fractional terms 1 (BIF-1) and 2 (BIF-2) of the polynomials of the predictors are given in
Table 3. Only predictors with BIF-1 ≥ 66%, i.e., selected in at least two thirds of bootstrap
samples, were considered for inclusion in the final multivariable models.
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Table 3. Bootstrap inclusion fraction of the potential multivariable predictors of fatty liver (1000
bootstrap samples with replacement).

BMI Model WC Model

BIF-1 EXP-1 BIF-2 EXP-2 BIF-1 EXP-1 BIF-2 EXP-2

male 41.3 1 0.0 — male 8.5 1 0 —
age 95.4 1 16.5 — age 91.2 1 16.4 —
bmi 98.1 1 1.4 — wc 89.7 1 19.0 —
alt 100.0 −2 89.9 −1 alt 100.0 −2 89.1 1

homa 95.1 1 51.4 2 homa 98.6 1 52.4 2
hdlc 63.0 1 2.9 — hdlc 76.0 1 35.0 —
ldlc 31.1 1 20.1 — ldlc 26.7 1 16.1 —
tg 73.9 1 19.1 — tg 69.6 1 18.7 —

map 36.0 1 15.4 — map 48.9 1 36.4 —
ur 79.0 1 15.4 — ur 87.4 1 18.3 —
crp 40.0 1 21.0 — crp 62.8 1 31.4 —

Abbreviations: BMI = body mass index; WC = waist circumference; BIF-1 = bootstrap inclusion fraction of
fractional polynomial term 1; EXP-1 = exponent of fractional polynomial term 1; BIF-2 = bootstrap inclusion
fraction of fractional polynomial term 2; EXP-2 = exponent of fractional polynomial term 2; male = male sex;
age = age; bmi = body mass index; wc = waist circumference; alt = alanine transaminase; homa = homeostasis
model assessment of insulin resistance; hdlc = high-density lipoprotein cholesterol; ldlc = low-density lipoprotein
cholesterol; tg = triglycerides; map = mean arterial pressure; ur = uric acid; crp = c-reactive protein. The units of
measurements are the same used in Table 1. Predictors with BIF-1 ≥ 66% are given in bold.

As the BMI-based multivariable model is concerned, ALT had the highest BIF-1 (100%),
followed by BMI (98%), age (95%), HOMA-IR (95%), uric acid (79%) and triglycerides (74%).
All variables were selected as linear except for ALT and HOMA-IR. A second fractional
polynomial term was needed for ALT (BIF-2 = 90%), including ALT−2 and ALT−1, and for
HOMA-IR (BIF-2 = 51%), including HOMA-IR and HOMA-IR2.

As the WC-based multivariable model is concerned, ALT had the highest BIF-1 (100%),
followed by HOMA-IR (99%), age (91%), WC (90%), uric acid (87%), and triglycerides (70%).
All variables were selected as linear except for ALT and HOMA-IR. A second fractional
polynomial term was needed for ALT (BIF-2 = 89%), including ALT−2 and ALT−1, and for
HOMA-IR (BIF-2 = 52%), including HOMA-IR and HOMA-IR2.

3.4. Multivariable Models

The final multivariable models are given in Table 4. The corresponding regression
equations are given in Appendix B.

The discrimination of the BMI model was good (c-statistic = 0.81, 95%CI 0.79 to 0.83).
Figure 1 gives the calibration plot of the same model. The average expected rate of fatty
liver (38%, 95%CI 36% to 40%) equaled the average observed rate (38%, 95%CI 36% to 41%),
showing a satisfactory mean calibration. At logistic calibration, the average calibration
slope was 1 and the average intercept was 0, showing a satisfactory weak calibration. Lastly,
the examination of calibration plots showed an acceptable profile of moderate calibration
(Figure 1).
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Table 4. Final multivariable models (1000 bootstrap samples with replacement).

BMI Model WC Model

Age (years) −0.137 *** [−0.193 to −0.080] −0.132 *** [−0.189 to 0.075]
BMI (kg/m2) 0.063 *** [0.039 to 0.086] —

[ALT (U/l)/100]−2 0.036 *** [0.020 to 0.052] 0.034 *** [0.018 to 0.049]
[ALT (U/l)/100]−1 −0.767 *** [−0.943 to −0.591] −0.728 *** [−0.898 to 0.557]

[HOMA-IR
(dimensionless)/10] 3.583 *** [1.775 to 5.392] 3.848 *** [2.015 to 5.681]

[HOMA-IR
(dimensionless)/10]2 −2.634 ** [−4.395 to −0.873] −2.662 ** [−4.490 to 0.834]

Triglycerides (mg/dL) 0.004 * [0.001 to 0.007] 0.004 * [0.001 to 0.007]
Uric acid (mg/dL) 0.172 *** [0.072 to 0.272] 0.171 *** [0.070 to 0.271]

Waist circumference (cm) — 0.022 *** [0.012 to 0.032]
Intercept −0.533 −0.925

n 1672 1672
AIC 1746 1755
BIC 1794 1804

C-statistic 0.81 0.81
Cox-Snell R2 0.26 0.25

Nagelkerke R2 0.35 0.34
* p < 0.05, ** p < 0.01, *** p < 0.001. Values are logistic regression coefficients with bootstrapped 95% confidence in-
tervals in brackets. Abbreviations: BMI = body mass index; ALT = alanine transaminase; HOMA-IR = homeostasis
model assessment of insulin resistance; AIC = Akaike information criterion; BIC = Bayesian information criterion.

Figure 1. Internal calibration plot for the diagnosis of fatty liver from the BMI model. Abbreviation:
loess = locally estimated scatterplot smoother.

The discrimination of the WC Model was good (c-statistic = 0.81, 95%CI 0.78 to 0.83).
Figure 2 gives the calibration plot of the same model. The average expected rate of fatty
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liver (38%, 95%CI 36% to 40%) equaled the average observed rate (38%, 95%CI 36% to 41%),
showing a satisfactory mean calibration. At logistic calibration, the average calibration
slope was 1 and the average intercept was 0, showing a satisfactory weak calibration. Lastly,
the examination of calibration plots showed an acceptable profile of moderate calibration
(Figure 2).

Figure 2. Internal calibration plot for the diagnosis of fatty liver from the WC model. Abbreviation:
loess = locally estimated scatterplot smoother.

4. Discussion

The aim of the present study was to develop and internally validate multivariable
models for the prediction of FL in obese children and adolescents. Using a regression
modeling strategy based on the bootstrap [27,28], we developed and internally validated
two prediction models of FL, one using BMI and the other using WC as the anthropometric
predictor. Both models showed good discrimination and internal calibration (Table 4 and
Figures 1 and 2).

Our prediction models are obviously not intended to replace LUS. Provided that they
are externally validated, these models could be used as surrogate indices of FL in obese
children and adolescents in contexts where LUS is not available, as is currently suggested
for adults [8]. Moreover, always after external validation, these models could be used
to develop algorithms to rule in or rule in or out FL at certain values of the model score
(Appendix B) [16]. The good internal calibration of these indices does not imply, of course,
a similarly good external calibration [10].

Although this is the largest study performed so far in obese children and adolescents
with the aim of developing multivariable models for the prediction of FL, it is not without
limitations. The first limitation is that our models were developed on severely obese and
adolescents and may therefore not apply to non-obese subjects. The median SDS of BMI
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of our cross-section of children and adolescents is in fact greater than the 99th percentile
of the reference distribution [19]. Although all the predictors identified by our regres-
sion modeling strategy are in keeping with our current pathophysiological and clinical
knowledge about FL [10,11,16,23,36], there is no reason to believe that the underlying
prediction models will perform equally well in non-obese children and adolescents. Be-
sides needing external validation on obese children and adolescents to assess their true
performance [33,37], our prediction models will have to undergo separate evaluation in
non-obese children if one plans to use them in non-obese subjects. The second limitation is
that we studied only Caucasian children, the reason being that non-Caucasian individuals
with obesity account for less than 2% of the patients currently followed at our Center [38].
The third limitation is that LUS, our diagnostic method, is known to offer an accurate
assessment of FL only starting from an intrahepatic triglyceride content of at least 10% [39],
implying a number of “false negatives”, i.e., missed cases of FL, as compared to MRI or
MRS. However, LUS is presently the only feasible option to perform large studies and most
of the surrogate indexes of FL currently employed in adults were developed using LUS as
the reference method [40].

In addition to BMI or WC as the anthropometric predictor, the two multivariable
models that we developed and internally validated had the same set of predictors: ALT,
HOMA-IR, triglycerides and uric acid.

BMI and WC were entered as predictors of separate regression models to avoid
multicollinearity (Table 2). Multicollinearity was not an issue when we developed FLI,
which includes both BMI and WC, in the general population of Campogalliano (Modena,
Italy) [16]. However, multicollinearity was present when we modelled the association
between FL and potential risk factors in the general population of Bagnacavallo (Ravenna,
Italy) [23]. Although this is not specified, multicollinearity between BMI and WC was
likely not an issue for the development of the only prediction model of FL available to
date for children, which in fact includes sex, age, BMI, and WC as predictors [12]. Quite
interestingly, when BMI was replaced by WC (Table 4), the changes in the regression
coefficients of the other predictors were small, reinforcing the idea that, in our cross-section
of obese children, BMI and WC are interchangeable measures as the prediction of FL is
concerned (Table 2). Potential advantages of BMI over WC are that: (1) its components, i.e.,
weight and height, are routinely measured in children of all ages; (2) its measurement is
more precise than that of WC in severely obese subjects; and (3) it was recently shown to
be associated with incidence and remission of NAFLD in children [41].

ALT was the only predictor chosen in all bootstrap samples in both the BMI and WC
models (Table 3), confirming our previous finding of a strong multivariable association of
FL with ALT [11]. ALT was highly correlated with AST and GGT (Table 2) and, to avoid
multicollinearity, we choose to keep it in the models because it is more hepatospecific than
AST, and, contrary to GGT, it is routinely measured as “first-level” liver enzyme. As we
discussed in detail elsewhere [11], the fact that ALT is confirmed to be a component of
a multivariable predictor of FL does not imply that it can be used alone to discriminate
children with from those without FL.

HOMA-IR was not an independent predictor of FL in our previous study of 278 chil-
dren aged 8 to 18 years with BMI > 90th percentile for age and the same was true for its
components, i.e., fasting glucose and insulin, as evaluated by distinct logistic regression
models [11]. However, in that study both the area under the curve of glucose and that of
insulin during OGTT were independent predictors of FL [11]. Besides the larger sample
size (N = 1672), the wider age (5 to 18 years) of the subjects, and the higher entry criterion
for BMI (≥ 95th percentile for age) of the present study, it is possible that the more so-
phisticated multivariable selection of predictors used for the present analysis has allowed
HOMA-IR to show its full potential as predictor of FL [28].

Interestingly, of the components of the metabolic syndrome besides WC, only triglyc-
erides were independent predictors of FL in both the BMI and WC models, confirming
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our previous findings [11], those of Hosseini et al. [12], and what is more generally known
about the hypertriglyceridemic waist phenotype [36].

Uric acid was identified as an independent predictor of FL in both the BMI and WC
models, confirming our earlier findings [11] and the increasing evidence linking uric acid
levels with NAFLD [4,14,42].

The BIF-1 of CRP was under the prespecified threshold of 66% to accept it for inclusion
in both the BMI and WC models, and this was especially evident for the BMI model (Table 3).
This finding is in agreement with our previous study, where CRP was not an independent
predictor with FL [11].

5. Conclusions

In conclusion, in a large sample of obese children and adolescents, FL can be accurately
diagnosed by using multivariable models based on BMI or WC, ALT, HOMA-IR, triglyc-
erides, and uric acid. These models should undergo external validation, consisting of both
discrimination and calibration [10], before being employed in clinical or research practice.
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Appendix A. Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis
(TRIPOD) Guidelines

Table A1. TRIPOD Checklist.

Title 1

Identify the study as developing and/or
validating a multivariable prediction model, the

target population, and the outcome to
be predicted.

P2

Abstract 2

Provide a summary of objectives, study design,
setting, participants, sample size, predictors,

outcome, statistical analysis, results,
and conclusions.

P2

Background and objectives

3a

Explain the medical context (including whether
diagnostic or prognostic) and rationale for
developing or validating the multivariable
prediction model, including references to

existing models.

P2

3b
Specify the objectives, including whether the

study describes the development or validation of
the model or both.

P3
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Table A1. Cont.

Source of data

4a

Describe the study design or source of data (e.g.,
randomized trial, cohort, or registry data),

separately for the development and validation
data sets, if applicable.

P3

4b
Specify the key study dates, including start of

accrual; end of accrual; and, if applicable, end of
follow-up.

P3

Participants

5a

Specify key elements of the study setting (e.g.,
primary care, secondary care, general

population) including number and location
of centers.

P3

5b Describe eligibility criteria for participants. P2

5c Give details of treatments received, if relevant
(No treatment was administered) NA

Outcome

6a
Clearly define the outcome that is predicted by

the prediction model, including how and
when assessed

P3

6b
Report any actions to blind assessment of the

outcome to be predicted. (The prediction models
were developed retrospectively).

NA

Predictors

7a
Clearly define all predictors used in developing
or validating the multivariable prediction model,
including how and when they were measured.

P3

7b

Report any actions to blind assessment of
predictors for the outcome and other predictors.

(The prediction models were developed
retrospectively).

NA

Sample size 8 Explain how the study size was arrived at. P3

Missing data 9

Describe how missing data were handled (e.g.,
complete-case analysis, single imputation,
multiple imputation) with details of any
imputation method. (No missing data).

P4

Statistical analysis methods

10a Describe how predictors were handled in
the analyses. P4

10b
Specify type of model, all model-building

procedures (including any predictor selection),
and method for internal validation.

P4

10c For validation, describe how the predictions
were calculated. (Validation was internal). P4

10d
Specify all measures used to assess model
performance and, if relevant, to compare

multiple models.
P4

10e
Describe any model updating (e.g., recalibration)

arising from the validation, if done. (Internal
calibration only).

P4

Risk groups 11 Provide details on how risk groups were created,
if done. (Internal calibration only). P4

Development vs. validation 12

For validation, identify any differences from the
development data in setting, eligibility criteria,

outcome, and predictors. (No
external validation).

NA
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Table A1. Cont.

Participants
13a

Describe the flow of participants through the
study, including the number of participants with

and without the outcome and, if applicable, a
summary of the follow-up time. A diagram may

be helpful.

P4

13b

Describe the characteristics of the participants
(basic demographics, clinical features, available
predictors), including the number of participants
with missing data for predictors and outcome.

P4

13c

For validation, show a comparison with the
development data of the distribution of

important variables (demographics, predictors
and outcome). (No external validation)

NA

Model development 14a Specify the number of participants and outcome
events in each analysis. P4

14b

If done, report the unadjusted association
between each candidate predictor and outcome.
(We directly developed a multivariable model

using bootstrap selection of predictors).

NA

Model specification 15a

Present the full prediction model to allow
predictions for individuals (i.e., all regression
coefficients, and model intercept or baseline

survival at a given time point).

P8

15b Explain how to use the prediction model. App. A

Model performance 16 Report performance measures (with CIs) for the
prediction model. P8,9,10

Model-updating 17
If done, report the results from any model
updating (i.e., model specification, model

performance). (No updating was performed)
NA

Limitations 18
Discuss any limitations of the study (such as

nonrepresentative sample, few events per
predictor, missing data).

P10

Interpretation 19a

For validation, discuss the results with reference
to performance in the development data, and

any other validation data. (External validation
not performed)

NA

19b
Give an overall interpretation of the results,

considering objectives, limitations, results from
similar studies, and other relevant evidence.

P10

Implications 20 Discuss the potential clinical use of the model
and implications for future research. P10

Supplementary information 21
Provide information about the availability of

supplementary resources, such as study protocol,
Web calculator, and data sets.

App. B

Funding 22 Give the source of funding and the role of the
funders for the present study. P12

Abbreviations: NA = not applicable.
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Appendix B.

Table A2. Prediction Equations.

B1. Calculation of the linear predictor for the
BMI model

LP = −0.137*age + 0.063*bmi + 0.036*alt_1 − 0.767*alt_2 + 3.583*homa_1 −
2.634*homa_2 + 0.004*tg + 0.172*ur − 0.533

B2. Calculation of the linear predictor for the
WC model

LP = −0.132*age + 0.022*wc + 0.034*alt_1 − 0.728*alt_2 + 3.848*homa_1 −
2.662*homa_2 + 0.004*tg + 0.171*ur − 0.925

B3. Calculation of the probability of fatty
liver from the linear predictor Probability = eLP/1 + eLP

where:

age = Age (years)
bmi = Body mass index (kg/m2)

alt_1 = [ALT (U/l)/100]−2

alt_2 = [ALT (U/l)/100]−1

homa_1 = [HOMA-IR (dimensionless)/10]
homa_2 = [HOMA-IR (dimensionless)/10]2

tg = Triglycerides (mg/dL)
ur = Uric acid (mg/dL)

wc = Waist circumference (cm)
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