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Abstract: The brain structural changes related to gender incongruence (GI) are still poorly under-
stood. Previous studies comparing gray matter volumes (GMV) between cisgender and transgender
individuals with GI revealed conflicting results. Leveraging a comprehensive sample of transmen
(n = 33), transwomen (n = 33), cismen (n = 24), and ciswomen (n = 25), we employ a region-of-interest
(ROI) approach to examine the most frequently reported brain regions showing GMV differences
between trans- and cisgender individuals. The primary aim is to replicate previous findings and
identify anatomical regions which differ between transgender individuals with GI and cisgender
individuals. On the basis of a comprehensive literature search, we selected a set of ROIs (thala-
mus, putamen, cerebellum, angular gyrus, precentral gyrus) for which differences between cis- and
transgender groups have been previously observed. The putamen was the only region showing
significant GMV differences between cis- and transgender, across previous studies and the present
study. We observed increased GMV in the putamen for transwomen compared to both transmen and
ciswomen and for all transgender participants compared to all cisgender participants. Such a pattern
of neuroanatomical differences corroborates the large majority of previous studies. This potential
replication of previous findings and the known involvement of the putamen in cognitive processes
related to body representations and the creation of the own body image indicate the relevance of this
region for GI and its potential as a structural biomarker for GI.

Keywords: gender incongruence (GI); gray-matter volumes (GMV); magnetic resonance imaging
(MRI); neuroanatomy; transgender

1. Introduction

Gender identity development is a complex process involving multifactorial inter-
actions among genetic, hormonal, social, and psychological factors. As a result of this
complex process, there are different gender identities, including, among others, female,
male, nonbinary, agender, gender nonconforming, gender fluid, intersex, pangender, gen-
derqueer, or androgynous. Whereas biological sex (i.e., the sex assigned to an individual at

J. Clin. Med. 2021, 10, 1454. https://doi.org/10.3390/jcm10071454 https://www.mdpi.com/journal/jcm

https://www.mdpi.com/journal/jcm
https://www.mdpi.com
https://orcid.org/0000-0001-6970-6093
https://orcid.org/0000-0002-0074-5251
https://doi.org/10.3390/jcm10071454
https://doi.org/10.3390/jcm10071454
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/jcm10071454
https://www.mdpi.com/journal/jcm
https://www.mdpi.com/2077-0383/10/7/1454?type=check_update&version=2


J. Clin. Med. 2021, 10, 1454 2 of 13

birth on the basis of the anatomy of the reproductive system) and gender identity (i.e., the
subjective identification of an individual as male, female, or one of the other gender identi-
ties) coincide in most people, there are individuals who do not identify with their biological
sex. The phenomenon of gender incongruence (GI) is more widespread and relevant than
often thought. Individuals for whom gender identity is different from their biological sex
are referred to as transgender, whereas the term cisgender describes individuals whose
biological sex and gender identity coincide. Recent media attention to transgender and GI
has increased substantially, with changes in laws and attempts to reduce societal discrimi-
nation allowing more people to openly identify as gender incongruent and seek treatments
such as gender-affirming hormone therapy (GAHT) and gender-affirming surgery. A large
portion of transgender individuals are constantly exposed to high levels of social stress and
suffer from severe discomfort [1–4]. Patients affected by GI have to deal with difficulties in
accessing relevant healthcare services and adequately trained primary care providers. In
an attempt to reduce stigmatization and facilitate access to relevant healthcare needs, the
11th version of the International Classification of Diseases (ICD-11) added “gender incon-
gruence (GI)” as a diagnosis to the sexual health section and removed “gender dysphoria”
from the mental health section [5]. With respect to the prevalence of being transgender in
the general population, two recent epidemiological studies conducted in the Netherlands
and Belgium revealed that 1.1% of individuals with male birth-assigned sex and 0.8% of
individuals with female birth-assigned sex reported an incongruent gender identity [6,7].
Evaluating worldwide prevalence rates in a meta-analytic approach, Arcelus et al. reported
a rate of around 4.6 per 100,000 for being transgender [8].

The neurobiological mechanisms underlying GI and more specifically changes in
brain structure and function are still poorly understood. A neurobiological parameter
that might be of crucial importance is the study of brain anatomical differences. Several
magnetic resonance imaging (MRI) studies comparing transgender individuals with GI
and cisgender individuals found brain structural differences in the putamen, the thala-
mus, and the angular and the insular gyri [9–11]. Furthermore, other studies showed a
strong overlap of brain structures in individuals sharing the same gender identity [12–15].
Whereas some previous studies in transgender individuals revealed structural brain pat-
terns more consistent with the gender identity in hypothalamus [12,14], left pre- and
postcentral gyri [15], and the nucleus accumbens [16], others demonstrated structural brain
patterns more consistent with the biological sex in putamen, precentral gyrus [10], and
the frontal cortex [17]. Overall, findings on brain structural differences between cis- and
transgender individuals are very heterogeneous and, in many cases, difficult to interpret
due to potential confounders of sexual orientation [18,19], genetic factors [2], hormonal
factors [20], and small sample sizes [8]. Some researchers believe that differences in cor-
tical development and in β-estrogen receptor efficiency might primarily influence the
development of unique brain structural phenotypes for specific gender identity subtypes
during early neurodevelopmental phases [12,14,21]. Another approach postulates that
the human brain is best described as a mosaic of female and male characteristics, refuting
the oversimplified concept of a dichotomous “female” or “male” brain [22,23]. Despite
such interesting findings and theoretical efforts, the precise brain anatomical correlates that
most reliably and specifically indicate GI and, thus, differentiate between transgender and
cisgender individuals remain elusive.

The majority of previous studies focused on interpreting structural differences in the
context of sexual differentiation, primarily trying to clarify whether the brain of transgender
participants resembles that of their biological sex or that of their experienced gender
identity. The present study aims to replicate previous findings and identify anatomical
regions which differ between transgender individuals with GI and cisgender individuals.
We identified a set of candidate regions from previous studies and examined whether we
can replicate these findings in our own sample of cis- and transgender participants. Our
hypothesis is that we can identify one or several distinct anatomical regions for which gray
matter volume (GMV) differences from previous studies can be replicated in the present
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study. Using a sample of cismen, ciswomen, transmen, and transwomen, we focus solely
on differences in GMV, since this parameter has been examined most extensively, with
conflicting results for several anatomical structures. Successful replication of previous
findings for a specific anatomical region would help in clarifying the aforementioned
contradictory results. An overarching aim of this study is to facilitate the identification of
candidate brain regions as structural biomarkers in GI.

2. Experimental Section
2.1. Participants

The MRI data presented here were recorded in the context of a larger research project
comprising several functional MR tasks and resting-state fMRI, which are reported else-
where [22,24–26]. Transgender participants were either transmen (TM), describing individ-
uals born with the biological sex of a woman but identifying as men, or transwomen (TW),
describing individuals born with the biological sex of a man but identifying as women.
Cisgender participants are referred to as CW for cisgender women and CM for cisgender
men. Since we aimed to assess specific gender identity effects irrespective of the biological
sex, we combined CW and CM to form the cis group and TM and TW to form the trans
group. For direct comparability with previous studies and to enable a more in-depth anal-
ysis, GMV is also compared among the four groups separately. In total, 115 participants
took part in the present study, including 24 CM, 25 CW, 33 TM, and 33 TW (n = 66 trans;
n = 49 cis). All cisgender participants were recruited via public announcement around
Aachen (Germany). TM and TW were recruited in self-help groups and at the Department
of Gynecological Endocrinology and Reproductive Medicine of the RWTH Aachen Uni-
versity Hospital, Germany. All cisgender participants reported heterosexual orientation,
whereas sexual orientation was not systematically assessed in transgender participants.
This was partly because the majority of transgender participants were unable or unwilling
to describe themselves as either hetero- or homosexual. Transgender participants either
started already with or firmly declared their intention of undergoing GAHT in the future,
stated a strong sense of belonging to the opposite sex, and also expressed the desired
gender identity in everyday life. All transgender participants fulfilled diagnostic criteria
for GI, as diagnosed by a board-certified mental-health professional at the Department of
Psychiatry, Psychotherapy, and Psychosomatics of the RWTH Aachen University Hospital,
Germany. The German version of the Structured Clinical Interview of the fourth edition
of the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV) [27] was used to
ensure the exclusion of participants with mental health diagnoses unrelated to GI. For all
cis- and transgender participants, further exclusion criteria were presence of neurologi-
cal disorders, other medical conditions affecting the brain metabolism, and first-degree
relatives with a history of mental disorders. The local Ethics Committee of the Medical
Faculty of RWTH Aachen University approved the study (EK 088/09). Participants were
financially reimbursed and gave their written informed consent for participation.

2.2. Data Acquisition

The MRI data were acquired using a 3 T Siemens Trio MR Scanner (Siemens Med-
ical Systems, Erlangen, Germany) at the Department of Psychiatry, Psychotherapy, and
Psychosomatics of the RWTH Aachen University Hospital. Whole-brain images were
obtained from each participant using the following parameters: T1-weighted Magne-
tization Prepared-Rapid Gradient Echo (MP-RAGE) 3D measurement; time repetition
(TR) = 1900, time echo (TE) = 2.52, time inversion (TI) = 900; fli angle (α) = 9◦, Field of View
(FoV) = 250 mm2, voxel size: 1 × 1 × 1 mm3, slices = 176.

2.3. Data Preprocessing

Imaging data were preprocessed using the SPM12 software (Wellcome Department of
Imaging Neuroscience Group, London, UK; http://www.fil.ion.ucl.ac.uk/spm (accessed
on 15 September 2020)) running under MATLAB 2017b (The MathWorks, Natick, MA,
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USA) and the CAT12 toolbox, version 12.7 [28]. All anatomical images were manually
reoriented to the intercommissural plane to improve spatial registration of anatomical im-
ages. Furthermore, images were corrected for field intensity inhomogeneities and spatially
normalized into standard space. The images were segmented into gray matter (GM), white
matter (WM), and cerebrospinal fluid (CSF), and the segmented tissue was modulated
with Jacobian determinants. The modulated gray-matter volumes were smoothed with
a Gaussian kernel of 8 mm full width at half maximum (FWHM), which represents a
good kernel for detecting morphometric differences in both small and larger neural struc-
tures [29,30]. Lastly, the normalized, modulated, and smoothed gray-matter segments of
all 115 participants were included for further statistical analyses.

2.4. ROI Selection and Definition

We searched the existing literature as of December 2020 with the goal of identifying
the most frequently reported ROIs, i.e., regions that were repeatedly found in previous
studies, albeit with contrasting results for comparisons between cisgender and transgender
individuals. The following search terms were used: brain AND (transgender OR transsex-
ual OR gender dysphoria OR gender incongruence) AND (magnetic resonance imaging OR
MRI OR voxel-based morphometry OR VBM). Studies were selected for further inspection
if they employed either whole-brain or ROI analyses and if they included GMV as the
primary outcome parameter. Studies examining children and studies only comparing
total brain volumes or cortical thickness were excluded. This search process yielded 11
studies [9–11,15,17,31–36].

For the present study, ROIs were only selected if they were reported to differ signifi-
cantly between at least one trans- and one cisgender group in several of the 11 previously
published studies. More precisely, the following criteria were used to ascertain our set of
ROIs: (i) for each ROI, differences between trans- and cisgender participants were reported
in at least three of the 11 previous studies (i.e., ROI reported in >25% of previous studies);
(ii) the overall set of ROIs should span the entire brain including cortical, subcortical, and
cerebellar structures; (iii) the overall set of ROIs should comprise regions from studies
published by different groups, in order to reduce the influence of potential publication bias
on our selection process; (iv) the total amount of ROIs selected should not be too high in
order to keep the number of multiple comparisons reasonably low. Using these criteria, we
selected the thalamus, putamen, cerebellum, precentral gyrus, and the angular gyrus (AG)
for further analyses. Except for the thalamus, separate ROIs were used for the left and
right hemispheres, resulting in nine ROIs. These a priori defined regions are visualized in
Figure 1. Masks for these anatomical ROIs were obtained from the WFU Pickatlas toolbox
(Wake Forest School of Medicine, Winston Salem). Mean parameter estimates of each ROI
for each participant were then extracted using MarsBaR (http://marsbar.sourceforge.net/
(accessed on 23 September 2020) and transferred to SPSS 25 (SPSS Inc., Chicago, IL, USA)
for further analysis.

Figure 1. A priori selected set of regions of interest (ROIs) included in the gray-matter analysis.

http://marsbar.sourceforge.net/
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2.5. Data Analysis

The primary aim of this study was to examine gender identity effects, i.e., differences
between all cisgender and all transgender participants. Using multivariate analysis of
variance (MANOVA), we calculated a model with two groups (cis, trans) as the between-
subject factor and the nine ROIs as dependent variables. Additionally, we calculated the
same model with four groups (CW, CM, TM, TW) as the between-subject factor and the
nine ROIs as dependent variables. The four-group model was needed to examine the
directionality of ensuing effects and to increase comparability with previous findings. In
line with previous studies, both models included the total intracranial volume (TIV), as
well as the age and the level of education, as covariates of no interest. Inclusion of these
covariates is relevant since GMV has been shown to vary substantially depending on these
factors. Furthermore, given that TIV was accounted for, all GMV differences reported
here should be interpreted as being relative rather than absolute. To account for multiple
comparisons when examining pairwise comparisons in the nine different ROIs, we applied
Bonferroni correction. This method was chosen because it represents a rather conservative
correction method necessary for our aim of pinpointing only the most consistent ROIs
while keeping false-positive results to a minimum.

3. Results
3.1. Participants

An overview of demographic data for all participants can be seen in Table 1. Three
separate univariate ANOVAs were used to test for group differences of demographic
variables and TIV. The four groups (CM, CW, TM, TW) were used as the between-subject
factor, and a significant main effect for “group” (p < 0.05) was found for all three ANOVAs.
For age as dependent variable, we found the following group differences: CM > TM
(p = 0.002), CW > TM (p = 0.009), and TW > TM (p = 0.001). With the level of education as a
dependent variable, the following group differences were observed: CM > TM (p = 0.021)
and CW > TM (p = 0.021). Regarding TIV as a dependent variable, group differences were
observed for CM > CW (p < 0.001), CM > TM (p < 0.001), TW > CW (p < 0.001), and
TW > TM (p < 0.001).

Table 1. Demographic data for cisgender and transgender participants.

CW (n = 25) CM (n = 24) TM (n = 33) TW (n = 33)

Age 31 (11) 33 (11) 24 (7) 33 (13)
Years of

education 15 (3) 15 (3) 14 (3) 14 (3)

TIV 1460 (115) 1605 (97) 1412 (107) 1567 (102)
The table gives relevant demographic information (means, with standard deviations in brackets) about par-
ticipants, divided by groups. CW = cisgender women; CM = cisgender men; TIV = total intracranial volume;
TM = transmen; TW = transwomen.

3.2. GMV Differences

A significant group effect on the multivariate level was not found, neither in the
two-group MANOVA with cis and trans, nor in the four-group MANOVA with CW, CM,
TM, and TW. Upon further investigation of univariate effects, the two-group MANOVA
(cis vs. trans) revealed a significant group effect only for the left (F(1, 110) = 5.22, p = 0.024,
η2 = 0.045) and right (F(1, 110) = 3.96, p = 0.049, η2 = 0.035) putamen. Inspecting the pair-
wise comparisons revealed larger GMV for trans compared to cis in both the left (mean
difference = 0.018, pBonferroni = 0.024) and the right putamen (mean difference = 0.014,
pBonferroni = 0.049). Figure 2 provides further visualization of these group difference in the
left and right putamen. For better comparability with previous studies and in order to ana-
lyze specific differences between all groups of participants, we also examined the univariate
group effects from the four-group MANOVA. Corroborating the aforementioned results
from the two-group model, the four-group MANOVA also yielded a significant group effect
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only for the left (F(3, 108) = 4.09, p = 0.009, η2 = 0.102) and right (F(3, 108) = 4.65, p = 0.004,
η2 = 0.114) putamen. When examining the pairwise comparisons for all four groups, we
saw larger GMV for TW as compared to CW in both hemispheres (left putamen: mean
difference = 0.035, pBonferroni = 0.014; right putamen: mean difference = 0.032, pBonferroni =
0.009). Moreover, larger GMV was found for TW relative to TM (mean difference = 0.031,
pBonferroni = 0.015) in the right putamen. Group differences for the four-group model are
shown in Figure 3. For better overview and full transparency of GMV results, we present
all means and standard deviations for all nine ROIs in Table 2 (depicted separately for cis
and trans) and Table 3 (depicted separately for CM, CW, TM, and TW).

Figure 2. Differences in gray matter volumes (GMV) for the putamen, depicted separately for cisgender and transgender
participants. The y-axis depicts values representing parameters estimates for GMV. The cis group includes both cismen and
ciswomen and the trans group includes both transwomen and transmen. Significant GMV group differences, at p < 0.05
(Bonferroni corrected), were present for both the left and the right putamen. LH = left hemisphere; RH = right hemisphere.

Table 2. Gray matter volumes (GMVs) of all ROIs, depicted separately for cisgender and transgender
participants.

CIS (n = 49) TRANS (n = 66)

Putamen (L) * 0.446 (0.05) 0.4593 (0.055)
Putamen (R) * 0.4465 (0.05) 0.4560 (0.051)

Precentral Gyrus (L) 0.3341 (0.041) 0.3338 (0.04)
Precentral Gyrus (R) 0.3232 (0.038) 0.3180 (0.038)

Thalamus 0.3699 (0.045) 0.3677 (0.042)
AG (L) 0.3904 (0.058) 0.3821 (0.059)
AG (R) 0.3491 (0.052) 0.3425 (0.045)

Cerebellum (L) 0.4048 (0.037) 0.4023 (0.033)
Cerebellum (R) 0.4105 (0.039) 0.4086 (0.035)

The table presents mean values per group for GMV (with standard deviations in brackets) for cis- and transgender
participants. All values represent parameters estimates for GMV. The cis group includes both cismen and
ciswomen and the trans group includes both transwomen and transmen. Asterisks (*) indicate significant GMV
group differences for this region, trans > cis, at p < 0.05 (Bonferroni corrected).
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Table 3. Gray matter volumes for all ROIs, depicted separately for cis men, cis women, transmen,
and transwomen.

CW (n = 25) CM (n = 24) TM (n = 33) TW (n = 33)

Putamen (L) (a) 0.4287 (0.055) 0.464 (0.039) 0.4374 (0.046) 0.4812 (0.054)
Putamen (R) (a)&(b) 0.4280 (0.053) 0.4657 (0.04) 0.4339 (0.042) 0.4781 (0.051)

Precentral Gyrus (L) 0.3176 (0.036) 0.3513 (0.04) 0.3305 (0.029) 0.3371 (0.049)
Precentral Gyrus (R) 0.31 (0.039) 0.3369 (0.033) 0.317 (0.034) 0.3189 (0.041)

Thalamus 0.3622 (0.038) 0.378 (0.05) 0.3679 (0.042) 0.3675 (0.042)
AG (L) 0.3727 (0.05) 0.4088 (0.062) 0.3661 (0.05) 0.3982 (0.064)
AG (R) 0.3263 (0.045) 0.373 (0.05) 0.3353 (0.045) 0.3497 (0.045)

Cerebellum (L) 0.3945 (0.036) 0.4155 (0.036) 0.3964 (0.034) 0.4081 (0.032)
Cerebellum (R) 0.3987 (0.036) 0.4227 (0.038) 0.4021 (0.036) 0.4152 (0.034)

The table presents mean values per group for GMV (with standard deviations in brackets) for cis men, cis
women, transmen and transwomen. All values represent parameters estimates for GMV. CW = cisgender women;
CM = cisgender men; TM = transmen; TW = transwomen. (a) TW > CW, significant group differences at p < 0.05
(Bonferroni corrected). (b) TW > TM, significant group differences, at p < 0.05 (Bonferroni corrected).

Figure 3. Differences in gray matter volumes (GMV) for the putamen, depicted separately for cismen, ciswomen, transmen,
and transwomen. The y-axis depicts values representing parameters estimates for GMV. Asterisks (*) indicate significant
GMV group differences, at p < 0.05 (Bonferroni corrected). CW = cisgender women; CM = cisgender men; LH = left
hemisphere; RH = right hemisphere; TM = transmen; TW = transwomen.
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4. Discussion

Optimizing therapeutic interventions and implementing individualized precision
medicine approaches to predict when and how a person is affected by GI are difficult goals
to achieve and seldom based on neurobiological mechanistic insights. Such approaches are
currently not feasible due to a limited understanding of the underlying brain structural
(and functional) mechanisms. Addressing this situation, we set out to investigate and
replicate GMV differences between cisgender individuals and transgender individuals
with GI. The aim of the present study was to identify brain regions which have the potential
to qualify as structural biomarkers of GI in the future. More specifically, our goal was
to identify one or several specific ROIs that were significantly different between cis- and
transgender in multiple previous studies and the present study. Our results indicate the
putamen as the only region fitting these criteria.

Distinct neuroanatomical characteristics of the putamen were associated with gender
identity, both in the majority of previous studies and in the present investigation. Impor-
tantly, the observed GMV differences in the putamen are not primarily explained by a pure
biological sex effect, as we did not find significant differences between CW and CM in our
study. The gender identity effect in the putamen in the present findings corroborates six of
the seven previous studies reporting GMV differences in this region. Except for Savic and
colleagues [10], six previous studies [9,32–36] and the present study found larger GMV
for trans- as compared to cisgender participants. It is beyond the scope of the present
study to investigate the reasons for this discrepancy between Savic and colleagues [10]
and the remaining studies. We suggest that confounding factors such as sexual orientation,
GAHT, and genetic profiles might play a role. With respect to sexual orientation, Savic
and colleagues [10] were the only ones to include strictly heterosexual TW; all transgender
participants in their study were assigned male at birth, wanted to live as women, and
were sexually attracted to ciswomen. Furthermore, they specifically excluded TW who
had already received GAHT. Similar to previous studies, we suggest that the observed
putamen effect is most likely not influenced by GAHT status. In different studies, increased
GMV in this region was found both for TW who had not started GAHT [9] and for TW
who were already receiving GAHT (including the present study) [34]. Another aspect that
further complicates the issue of GAHT influences in neuroanatomical studies of GI was
reported by Kranz and colleagues [37]. In their review, the authors pointed out that the
different hormones given to TM and TW might have opposite effects on GMV. Testosterone
treatment in TM likely has a primarily anticatabolic effect on brain volume, resulting in
increased GMV in subcortical regions such as the thalamus and the pallidum. On the
other hand, estrogen and antiandrogen treatment in TW seems to reduce GMV in the
hypothalamus, thalamus, pallidum, and hippocampus.

Our ability to replicate previous findings for the putamen seems to corroborate the in-
volvement of this brain region in GI. However, before we can determine with certainty that
the putamen is the exact anatomical region which most consistently differs between trans-
and cisgender participants, further confirmation and extension of our results is needed.
Importantly, researchers should strive to replicate these findings in large-scale datasets
(e.g., UK Biobank). The rather small sample sizes of the present and previous studies
preclude the detection of very subtle, but important, neuroanatomical differences. More-
over, additional methodologies are needed to support such a claim, including multimodal
approaches and combinations of data from multiple studies or sites in a meta-analytic
framework. Whether such structural changes, as observed in the present study, are innate
or acquired in transgender participants with GI remains to be clarified by neurodevel-
opmental and longitudinal studies. Most importantly, our results clearly align with the
general pattern and direction of previous findings: larger GMV in putamen for trans as
compared to cis in general and larger GMV in the putamen for TW as compared to CW
and TM. More specifically, our results and the majority of previous findings illustrate that
the observed putamen effects are strongly influenced by larger GMV of the TW group as
compared to all other groups. It seems that the specificity, usefulness, and clinical relevance



J. Clin. Med. 2021, 10, 1454 9 of 13

of the putamen as a neuroanatomical marker might be highest for TW relative to TM or
transgender individuals in general. Future studies must further evaluate the discriminatory
power of these effects both in TW with and without GAHT.

However, what makes the putamen especially relevant for transgender and GI? In
accordance with previous studies [10,33], we suggest that the specific role for the putamen
in GI is most likely related to the general function of this brain region in processing body
representations and the own body image. Such an explanation seems reasonable, consider-
ing that the strong feeling of being trapped in the wrong body and persistent discomfort
with one’s physical appearance represent key features of GI. The putamen is one of the
brain regions which is crucial for the integration of somatosensory and motoric information
relevant to coordinate context-dependent motor and cognitive responses [38]. Previous
functional MRI studies revealed that the putamen generates responses to painful stimuli
and processes inputs from different body parts via somatotopically organized response
mappings [39–41]. Thus, fMRI studies have confirmed the somatotopic arrangement of
both motor responses and nociceptive information in the putamen [42,43]. Together with
the cerebellum, somatosensory and motor cortices, the thalamus, and the basal ganglia, the
putamen is thought to be directly involved in the formation of the own body image [44].
Accordingly, several fMRI studies observed activation patterns related to body image
dissatisfaction in the putamen in anorexia nervosa [45,46]. Furthermore, the putamen,
in combination with other multisensory integration areas, enables us to experience our
body as distinct from the rest of the outside world, thus creating a unitary experience of
whole-body ownership [47]. In this context, we can only speculate as to why the putamen
effects are most strongly found in the TW group. Putamen volumes might be specifically
linked to the level of body dissatisfaction in TW because these individuals are convinced
that a corresponding, female body image represents an essential part of being a woman
and that a female physical appearance is of importance for cis- and transwomen. It was
previously demonstrated that the constant evaluation of the own body image may be of
much stronger significance in transgender individuals, especially TW, because of a strong
focus on low social acceptance of sexually dimorphic face and body features in these
individuals [48].

From childhood on, our body image is reinforced via multisensory integration of
external and internal stimuli which in most cases leads to a congruence between self-
perception and own body image. The dissociative feelings experienced by transgender
individuals with GI could, thus, be due to neurodevelopmental changes in the putamen and
other brain regions processing own body perception. The formation of a congruent body
image represents a very delicate and complex developmental milestone, involving neuronal
processes enabling somato-perception, somato-representation, and alignment between the
physical and the psychological self. If neural networks and structures crucially involved
in this process are altered in GI, this might in part also explain the discomfort between
self-perception and own body image. When it comes to genetic or hormonal mechanisms
causing such neurodevelopmental differences in the first place, several studies [21,49]
suggested that specific α and β gene polymorphisms of sex hormone receptors are linked
to GI. Given its crucial role in human brain differentiation [50], the β-estrogen receptor
surely plays a key role in the development of gender identity.

In contrast to previous studies [10,15,35], we did not find GMV differences in the AG.
Notably, a recent fMRI study [51] observed increased AG activity for TW as compared
to CM in a gender face perception task. Moreover, they found that AG activity was
significantly correlated with higher levels of body dissatisfaction. In this task-based fMRI
study, the AG might be specifically activated due to its involvement in perceiving and
remembering faces. The AG is involved in processing both the physical and the social
aspects of faces [52,53], constituting a key region in conceptual processing [54]. Trans-
and cisgender individuals might exhibit different AG activation patterns in fMRI studies
with facial stimuli because evaluating faces has an inherently stronger significance in
transgender individuals [48]. In our task-free, MRI data, specific processing of facial stimuli
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was absent. Thus, in addition to the fundamental differences in the physical parameters
being assessed (blood oxygenation level dependent response vs. gray matter volumes),
these methodological differences in the study design might provide a potential explanation
for the discrepancy between the present MRI and previous fMRI results for the AG.

Our findings should be considered in light of several limitations that future stud-
ies could address and expand upon. While the own body perception hypothesis might
provide a fitting theoretical framework to interpret our results, other explanations and
interpretations are possible as well. We do not intend to present our results as a definite
proof or unequivocal support of the own body perception hypothesis. Specifically, the
observed difference in putamen GMV between TW and TM is difficult to explain if differ-
ences in own body perception are assumed for all transgender individuals. Furthermore,
we cannot discern the specific influence of GAHT on our results as we included both
individuals with and without concurrent GAHT. While theoretically possible, we did not
split the transgender groups further as this would have resulted in smaller group sizes
insufficiently powered to robustly detect statistical effects. As the goal of the present study
was to investigate brain structural differences between cis- and transgender individuals,
we did not systematically assess hormonal levels for the present sample. We acknowledge,
however, that GAHT might represent an important factor influencing neuroimaging cor-
relates of GI. Large-scale multicenter studies are currently under way, investigating how
neuroimaging parameters, such as GMV, resting-state functional connectivity, task-based
fMRI, and anatomical connectivity, change in the course of GAHT. We believe that only
such longitudinal designs, with repeated MR measurements before and after the start of
GAHT, are suitable to analyze and quantify specific GAHT effects. Furthermore, sexual
orientation of cis- and transgender participants has to be controlled for and assessed in a
systematic manner in future studies. While it seems that some preliminary findings point to
the existence of brain anatomical differences due to sexual orientation [55–58], others found
no difference [33]. Examining these five previous studies with respect to sexual orientation
effects in the putamen, two found such effects and three did not. Thus, one cannot exclude
the possibility that findings in the putamen in the present study are also influenced by
sexual orientation to some degree. Thus, sexual orientation should be accounted for in
all future neuroimaging transgender studies, with the aim of delineating and separating
the effects of gender identity and sexual orientation more precisely. Scientific journals and
funding agencies might support this process by explicitly asking researchers to include
the sexual orientation of all individuals in studies on sex, sexual orientation, and gender
identity.

Our results have some crucial implications for transgender and GI. Issues related
to self-identity and medical interventions in individuals with GI are important medical
and societal challenges for the 21st century, specifically considering the high suicide risk
associated with GI [16,59,60]. As GI can have a rather early onset in many patients, it
becomes important to examine the neurodevelopmental trajectory of these GMV differences
in the putamen in youth and adolescence. Further changes in the putamen over the course
of GAHT have to be delineated in longitudinal studies. Lastly, it should be noted that
tangible efforts to design predictive modelling approaches in GI are already underway
with promising results from others [32,61] and our own group [22]. In the future, these
parallel efforts have to be combined and tested in larger samples in order to create robust
multimodal modeling frameworks incorporating GMV, cortical thickness, brain activation,
and resting-state functional connectivity profiles. For many transgender individuals with
GI, GAHT is followed by gender-affirming surgery [62]. Whereas some patients will
substantially benefit from GAHT and gender-affirming surgery, others exhibit a very poor
treatment response. Therefore, predictive tools supporting medical professionals in their
decision whether or not to apply GAHT and gender-affirming surgery are highly warranted.
Personalizing treatment in GI would also mean to be able to identify individuals for whom
it may be optimal to prescribe additional treatments and specifically tailor application of
testosterone, hormonal antagonists, or alternate types of sex hormones. Without substantial
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advances in these areas, individualized and precision medicine approaches cannot be
implemented, and an increasing number of patients will continue to suffer from health
issues associated with GI. Thus, the present study provides a potential replication of
previous results while also exemplifying the need for clinicians and scientists to further
increase their understanding of the specific underlying neurobiological mechanisms of GI.
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