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Abstract: Combined direct antineoplastic activity and the long-lasting immunological effects of
allogeneic hematopoietic cell transplant (HCT) can cure many hematological malignancies, but
broad adoption requires non-relapse mortality (NRM) rates and graft-versus-host disease (GVHD)
control. Recently, posttransplant cyclophosphamide (PTCy) given after a bone marrow transplant
significantly reduced GVHD-incidence, while PTCy given with tacrolimus/mofetil mycophenolate
(T/MMF) showed activity following allogeneic peripheral blood stem cell transplantation (alloPB-
SCT). Here, we report the experience of a larger cohort (85 consecutive patients) and expanded
follow-up period (03/2011–12/2019) with high-risk hematological malignancies who received alloPB-
SCT from Human-Leukocyte-Antigens HLA-matched unrelated/related donors. GVHD-prophylaxis
was PTCy 50 mg/kg (days+3 and +4) combined with T/MMF (day+5 forward). All patients stopped
MMF on day+28 with day+110 = median tacrolimus discontinuation. Cumulative incidences were
12% for acute and 7% for chronic GVHD- and no GVHD-attributed deaths. For surviving patients, the
12, 24, and 36-month probabilities of being off immunosuppression were 92, 96, and 96%, respectively.
After a 36-month median follow-up, NRM was 4%; median event-free survival (EFS) and overall
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survival (OS) had yet to occur. One- and two-year chronic GVHD-EFS results were 57% (95% CI,
46–68%) and 53% (95% CI, 45–61%), respectively, with limited late infections and long-term organ
toxicities. Disease relapse caused the most treatment failures (38% at 2 years), but low transplant
toxicity allowed many patients (14/37, 38%) to receive donor lymphocyte infusions as a post-relapse
strategy. We confirmed that PTCy+T/MMF treatment effectively prevented acute and chronic GVHD
and limited NRM to unprecedented low rates without loss of disease control efficacy in an expanded
patient cohort. This trial is registered at U.S. National Library of Medicine as #NCT02300571.

Keywords: allogeneic hematopoietic cell transplantation; graft-versus-host disease; post-transplant
cyclophosphamide; immunosuppression modulation; long term outcomes

1. Introduction

In recent years, extraordinary advances have been made in therapeutics for many
hematological malignancies; however, allogeneic hematopoietic cell transplant (HCT)
represents the only potentially curative and globally affordable treatment for most of
them [1–7].

To allow the widespread use of HCT, issues of transplant toxicity and disease relapse
require immediate address [2,3,5–7]. The key to both of these issues appears to be graft-
versus-host disease (GVHD). As the principal cause of death in allogeneic HCT, GVHD
prevention or treatment requires immunosuppression, which negatively impacts relapse
risk and morbidity [8–10]. Given these facts, all avenues to govern GVHD must be pursued.

As of a few years ago, HCT has relied on a combination of calcineurin-inhibitor
(CNI) plus short course methotrexate (MTX) for GVHD prophylaxis [11,12]. The pair
have proven less than fully effective; up to 80% of patients develop GVHD, nearly 30%
die from immune-related complications, and many long-term survivors deal with severe
forms of chronic-GVHD [8]. The effectiveness of the combination was partially increased
at the beginning of the century through the addition of antithymocyte or antilymphocyte
globulins (ATG/ATLG) [13–16].

Based on the results of previous seminal studies demonstrating that cyclophos-
phamide may target early-proliferating alloreactive T-cells involved in GVHD onset, in
2002, a novel prevention strategy of cyclophosphamide (PTCy) given after bone marrow
graft was successfully used as a single-agent GVHD prophylaxis in the haploidentical HCT
setting [17,18]. This approach quickly extended to matched related and unrelated donors,
and achieved high success in both acute and chronic GVHD control [19,20]. However,
preliminary results were limited by graft source, as peripheral blood stem cells (PBSC)—not
bone marrow cells—are the worldwide preferred donor source in allo-HCT [6,21]. Using
PBSC as a graft—in addition to being the preferred donor option—offers many clinical
advantages, e.g., faster engraftment, lower infection risk, and the hope of a more sustained
graft-versus-tumor effect. Initial attempts to use PTCy as a sole GVHD prophylaxis after
PBSC, however, resulted in a high incidence of GVHD and non-relapse mortality (NRM).
Therefore, many groups started evaluating the combination of PTCy with other immuno-
suppressive agents [22–26]. Tacrolimus/mycophenolate-mofetil (T/MMF)—combining
immunosuppression with an immunomodulant effect—was explored in this setting. The
revealed results were promising [12,24,26,27].

In light of this, we presented data in 2016 on the first 35 patients we treated with
PTCy and tacrolimus/MMF (T/MMF) as GVHD prophylaxis after allo-PBSC-transplant
(PBSCT) [26]. The present study updates those published results for 85 patients followed
for 36 months, with a focus on immunosuppressive modulation, long-term control of
GVHD and late complications, and patient outcomes.
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2. Materials and Methods

All patients underwent PBSC-based HCT and were matched for HLA-A, B, C, DRB1,
and DQB1 alleles to either a related or unrelated donor. The following were deemed
acceptable levels of recipient–donor mismatch: an allele–match for HLA-A, B, C, DRB1,
and DQB1; a single allele disparity for HLA-A, B, C, or DRB1 or DQB1; two allele disparities
for HLA-A, B, or C; a single allele disparity for HLA–DRB1; and a single antigen plus
single allele disparity for HLA-A, B, or C. The Supplemental Information sections of
the previous publication detailed clinical eligibility and exclusion criteria. All patients
signed informed consent before study entry. The study (NCT02300571) was originally
conceived by principle investigators as a phase II study; however, it was approved by
the Ethics Committee as an observational/interventional study. Our primary objective
was to determine the capability of the drug combination to control both acute GVHD
(aGVHD) and chronic GVHD (cGVHD), based on cumulative incidence. Secondarily,
we sought to measure several key indicators of drug combination success: non-relapse
mortality (NRM), infections, overall survival (OS), event-free survival (EFS), cGVHD-EFS,
long-term toxicity, and relapse rate. Acute GVHD was diagnosed based on standard
criteria, whereas cGVHD was determined by both traditional and NIH criteria [28–30].
To account for disease status, stage, and cytogenetic heterogeneity across patients, we
also assessed patients using the refined disease risk index [31]. A post hoc analysis based
on total immunosuppressive burden associated with the transplantation platform was
performed. The analysis considered all posttransplant GVHD control systemic treatments:
GVHD or engraftment syndrome, GVHD after donor lymphocyte infusion (DLI) or second
alloPBSCT, and GVHD prophylaxis for second alloPBSCT. Aside from this list, death
remained the only other immunosuppression risk. Each immunosuppressive agent had
the potential to be used at any point throughout the initial and last day of treatment before
permanent discontinuation. By exception, when treatment gaps exceeded three months,
the discontinuous block durations were summed. Topical agents and budesonide were not
included in these analyses. Competing risks for GVHD were graft failure, relapse, DLI,
and death.

2.1. Conditioning Regimen, Postgraft Immunosuppression, and Supportive Care

Conditioning regimens are reported in Table 1. On day+3 and +4 after transplant, im-
munosuppression began with intravenous administration of cyclophosphamide
(50 mg/kg/day). On day+5 and forward, twice-daily doses of tacrolimus (0.06 mg/kg,
targeting trough blood levels of about 5 ng/mL) and thrice-daily doses of MMF (15 mg/kg)
were started and provided until day+28, at which point MMF was discontinued. On
day+84, a tacrolimus taper was begun. On day+5, a daily G-CSF (5 mcg/kg) was started
and continued until the absolute neutrophil count (ANC) >1.0 × 109/L for three con-
secutive days. As described in the previous publication, patients received prophylaxis
for bacterial, fungal, and viral infections, and for Pneumocystis jirovecii. In cases of fever
(>38.5 ◦C), blood and urine cultures were collected and wide-spectrum antibiotic intra-
venous therapy (i.e., piperacillin/tazobactam at 4.5 g q8 h i.v. and vancomycin at 500 mg
q6 h i.v.) was started until pathogens were identified or clinical control achieved. Diag-
nostic and invasive procedures were performed as described in the first report. Standard
cytomegalovirus (CMV) monitoring by polymerase-chain-reaction (PCR) was begun on
day+10 and continued weekly until day+365 after transplant. Thereafter, monitoring
continued according to patients’ follow-up schedule. Treatment with ganciclovir or val-
ganciclovir began when the number of CMV DNA copies rose above 100/mL (unrelated
donors) or 500/mL (related donors) for two consecutive measurements, or after a viral
load change of >0.5 log IU/mL in peripheral blood plasma. Biweekly plasma samples
were taken to detect the Epstein–Barr virus (EBV) up to one year from transplant and then
whenever was clinically indicated.
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Table 1. Patient and Donor Characteristics. AML: acute myeloid leukemia; ALL: acute lymphoblas-
tic leukemia; MDS: myelodisplastic syndrome; BMT: bone marrow transplantation; CR: complete
response; MDR: minimal residual disease; TBI: total body irradiation; MMF: mofetil mycopheno-
late; CMV (Cytomegalovirus); D (donor); R (recipient). Disease risk corresponding to Center for
International Blood and Marrow Transplant Research CIBMTR classification. * Two patients had
an antigen disparity at DQA1; Cyclophosphamide was also given before alloPBSCT at 14.5 mg/kg
on two consecutive days. ◦ Cyclophosphamide was also given before PBSCT at 10 mg/kg on two
consecutive days. CD 34+ cell doses of cell were available for all patients; CD3+ doses only for 89%
of patients.

Patients’ and Donors’ Characteristics Total (N = 85)

Age at transplant (years)
Median 51 y
Range 19–74

Sex
Male 51 (60%)

Female 34 (40%)

Disease
AML 33 (39%)
AML 25 (75%)

Relapsed AML 8 (25%)
ALL 14 (16%)
ALL 6 (43%)

Relapsed ALL 8 (57%)
Non-Hodgkin Lymphoma 17 (20%)

Multiple Myeloma 12 (14%)
MDS 4 (5%)

Hodgkin Lymphoma 3 (4%)
Aplastic Anemia 1 (1%)

Myelofibrosis 1 (1%)

Disease status at Transplant
1◦ CR 40 (47%)

>1◦ CR 22 (26%)
Active disease 23 (27%)

CIBMTR risk group
Very High 6 (7%)

High 29 (34%)
Intermediate 32 (38%)

Low 17 (20%)
Not applicable 1 (1%)

Source of stem cell
peripheral blood stem cell 85 (100%)

Sex mismatch
No 47 (55%)
Yes 38 (45%)

Female into male 20 (24%)

Donor age, years
Median 29 y
Range 16–68

Source of graft
sibling 20 (24%)

unrelated 65 (76%)

HLA match

10/10 47 (55%)
9/10 23 (27%)

8 */10 15 (18%)
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Table 1. Cont.

Patients’ and Donors’ Characteristics Total (N = 85)

CMV serology
CMV D−R− 2 (2%)
CMV D+R− 31 (37%)
CMV D−R+ 2 (2%)
CMV D+R+ 50 (59%)

Conditioning regimen
Busulfan + Cyclophosphamide 25 (30%)

Thiotepa + Treosulfan 11 (13%)
Fludarabine + Treosulfan + Thiotepa 7 (8%)

Treosulfan + Fludarabine + Cyclophosphamide 5 (6%)
Treosulfan + Cyclophosphamide 11 (13%)
Melphalan + Cyclophosphamide 5 (6%)

Treosulfan + Cyclophosphamide + TBI 2Gy ◦ 4 (5%)
Melphalan + Cyclophosphamide + TBI 2Gy ◦ 4 (5%)

Busulfane + Fludarabine 5 (6%)
Fludarabine + Melphalan + TBI 2Gy ◦ 3 (2%)

Fludarabine + Thiotepa + Cyclophosphamide 4 (5%)
Cyclophosphamide + ATG + Fludarabine 1 (1%)

Infused cell dose * CD34+ cell × 106/kg,
Median 7 (range 2–15)

CD3+ cell × 108 kg
Median 2.89 (range 1.123–10.372)

Total Nucleated Cells × 108/kg
Median 12.1 (range 6.9–15.739)

2.2. Monitoring after Transplant

Neutrophil engraftment was defined as the first of three consecutive days posttrans-
plant with an Absolute Neutrophil Count ANC of 0.5 × 109/L. Platelet engraftment was
defined as a platelet count of 20 × 109/L with no transfusion during the preceding seven
days. Posttransplant day+28, +56, +90, +180, and +365 donor chimerism was assessed
on circulating myeloid and CD3+ lymphocytes. Chimerism was determined using short
tandem repeat (STR)-fragment length analysis (AmpFlSTR®Identifiler®PCR Amplification
Kit, Applied Biosystems), with full chimerism defined as more than 97% donor cells.

2.3. Long Term Follow-Up

All patients considered stable (disease in control, off immunosuppressive treatment
(IS) and with no signs of GVHD) after HCT were periodically monitored as follow: a
transplant team clinic was scheduled every 30–60 days, cardiac function was evaluated at
day +100 after HCT (with clinical assessment, electrocardiogram, and echocardiogram),
then every 6 months during the first year, and annually thereafter. Pulmonary Function
tests (PFT) were performed at day +100 after HCT and then every 6 months during the
first year thereafter annually. Thyroid function (TSH, FT3 and FT4) was monitored every
90 days after HCT. Dyslipidemia was monitored at day +100 after HCT and then every six
months. During the transplant team clinic, patients were monitored for blood pressure,
liver dysfunction, muscle and joint diseases, diabetes, and oral and eye manifestations.
Oral and ophthalmologist consults were scheduled annually. The onset of cardiomiopathy
with a reduction of ejection fraction (EF) under 50%, as well as valvular or conduction
anomalies were considered cardiac complications. Onset of a new obstructive disorder was
defined as a reduction of forced expiratory volume in 1 s (FEV1)/forced vital capacity ratio
<0.70 (Tiffenau index) in patients with normal Pulmonary function test (PFT). Onset of a
new restrictive disorder was defined as reduction in lung volumes with normal Tiffenau
index in subjects with normal PFT. Worsening of a preexistent lung disorder was defined
as a decrease in pulmonary functions resulting from a previous restrictive or obstructive
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disorder. When TSH was higher than normal limits and FT4 was lower than the inferior
range of normality, it was considered hypothyroidism. Hyperthyroidism was defined as
lower than normal TSH with higher than upper normal limits of FT4. Dyslipidemia was
diagnosed when total cholesterol was higher than 200 mg/dL, triglycerides were higher
than 150 mg/dL or HDL <40 mg/mL [32].

2.4. Statistical Analyses

Measures of OS, EFS, and cGVHD-EFS were estimated using the Kaplan–Meier
method at their respective 95% confidence intervals (CI) [33–35]. A patient death from any
cause constituted an OS event, and a relapse or death from any cause was characterized
as an EFS event. Chronic GVHD-EFS events, defined broadly per NIH criteria, included
any form of cGVHD, relapse, or death. The values for OS, EFS, and cGVHD-EFS were
each calculated as the time elapsed between transplant date and event date/censor date,
or as the time between transplant date and final follow-up date for patients without an
observed event. For patients treated after transplant with DLI, OS and EFS were calculated
from the date of first DLI. Kaplan–Meier estimates of DFS, OS, and cGVHD-DFS were
compared between groups via log rank statistics and the Cox proportional hazards model.
Discontinued immunosuppression time was determined from the date patients ended their
immunosuppression drug tapers without subsequent resumption. NRM encompassed
all deaths that occurred without evidence of relapse. Standard methods were used to
estimate aGVHD and cGVHD rates, relapse or progression, and NRM. Death was treated
as a competing risk for all other endpoints. Relapse was treated as a competing risk for
NRM. Categorical variables were expressed as proportions and continuous variables were
expressed as medians within their respective ranges. Immunosuppressive burden was
evaluated considering both reversible and nonreversible transitions between states. Multi-
state models and the Aalen–Johansen estimator were used to calculate the probability of
being: (1) alive and not on immunosuppression, (2) alive and on immunosuppression; or
(3) dead (absorbing state). A multistate analysis considering nonreversible transition was
also performed to estimate the instantaneous probability of being in one of five states: (1)
alive and on immunosuppression, (2) alive and off the first immunosuppression, (3) alive
and on the second immunosuppression, (4) alive and off subsequent immunosuppression,
or (5) dead [33]. Statistics were performed using IBM-SPSS Statistics v.20, GraphPad-Prism
v.5, STATA V.16, R version 3.6.3.

3. Results

Eighty-five (85) consecutive patients were enrolled and treated at our Transplant
Center between March 2011 and July 2019 (characteristic summary in Table 1). The median
follow-up of surviving patients was 36 months (range, 5–107); the median follow-up for
the entire population was 26 months.

3.1. Engraftment

The median times to neutrophil and platelet recovery were 14 (range, 11–32) and 16
(range, 10–201) days, respectively. Of the 85 patients, 80 (94%) sustained engraftment, 3
(4%) suffered primary graft failure, and 2 (2%) experienced secondary graft failure. Among
the primary graft failures, two patients received a second transplant (1 HLA-haploidentical
donor, 1 autologous donor), and the third patient died from complications of infection.
One of the two (2%) patients with secondary graft failure received a second haploidentical
transplant and the other received a CD34+ boost from the original donor. Only one patient
experienced delayed engraftment. Median lymphocyte counts (lymphocyte × 103/mmol)
were 0.40, 1.23, 1.24, 1.78, and 2.10 at 28, 56, 84, 180, and 365 days after transplant, respec-
tively. On posttransplant day+28, the median donor chimerism for the engrafting patients
was >97%, and in not-relapsing patients, chimerism continued at >97% control over time,
with no patients requiring transfusion support, even one year after transplant. After
transplant, the median time until discharge was 19 (range, 13–174) days. Within the first
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100 days after transplant, 16 (19%) patients were readmitted for infection or graft failure
and one patient for sinusoidal obstruction syndrome. Across all cases, the complications
were treated and the patients were subsequently discharged (Table 2).

Table 2. Post-transplant data. ◦ Peripheral blood lymphocyte count was available on day 28, 56,
+84, +180, and +365 for all survivor patients. § Chimerism on peripheral blood was available for
all patients alive without disease relapse. † Toxicities were graded according to standard National
Cancer Institute Common Terminology Criteria for Adverse Events version 4.0. ‡ Hemorrhagic
cystitis and cerebral hemorrhage.

Post-Transplant Data (n = 85)

Engraftment median time
Neutrophils engraftment > 0.5 × 109/L 14 days (range 11–32)

Platelets engraftment > 20 × 109/L 16 days (range 10–201)

Peripheral Blood Lymphocyte count ◦

Day+28 Median (U/µL) 400 (range 10–3640)
Day+56 Median (U/µL) 1200 (range 250–5000)
Day+84 Median (U/µL) 1200 (range 360–5000)
Day+180 Median (U/µL) 1800 (range 400–4900)
Day+365 Median (U/µL) 2100 (range 110–5600)

Chimerism §
Day+28 >97% of patients alive and not relapsed
Day+56 >97% of patients alive and not relapsed

Day+84, +180, +365 >97% of patients alive and not relapsed

CMV reactivation
Incidence 55 (65%)

Median day of reactivation 37 (range 13–330)

Bloodstream infection during engraftment
(day 0–26)
Incidence 14 (16%)

Sort of microorganism
E. Coli 5 (36%)

Pseudomonas aeruginosa 4 (29%)
Klebsiella pneumoniae

carbapenemase-producing 3 (21%)

Klebsiella Oxytoca 1 (7%)
Enterococcus Faecium 1 (7%)

Invasive Fungal infection at 1 year
Incidence 3 (4%)

Toxicity (G3–G4) †
Mucositis 16 (19%)

Hemorrhage ‡ 6 (7%)
Liver enzymes elevation 5 (6%)

Sinusoidal obstruction disease (SOS) 4 (5%)
Hypocalcemia 1 (1%)

Hyperbilirubinemia 1 (1%)

3.2. Infections

Various bacteria, viruses, and fungal infections affected the study group as described
below. Of the 14 (16%) patients who suffered septicemia during engraftment (days 0 to 26),
Escherichia coli (5 patients), Pseudomonas aeruginosa (4 patients) and Klebsiella pneumoniae
Carbapenemase-producing bacteria (3 patients) were most frequently isolated. Klebsiella
oxytoca and Enterococcus faecium were also isolated in some patients, but less frequently.
During the engraftment phase, 16 (19%) patients experienced fever of unknown origin and
were treated with empirical antibiotic therapy.
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No primary CMV infections were reported, although CMV reactivation (median onset
day+37; range, 13–330) was observed in 55 of 85 patients (65%). Preemptive therapy was
successful in all cases of CMV. No patients developed CMV reactivation after day+365.
No patient developed EBV-related lymphoproliferative disease or an EBV DNA increase
requiring anti-CD20 monoclonal antibody administration. Hemorrhagic cystitis due to
BK virus was seen in 7 of 85 (8%) patients; however, complete resolution of the infection
was achieved in each instance. Two patients suffered HBV reactivation after transplant,
but were successfully treated with antiviral therapy. One patient, who was positive for
HCV RNA pretransplant, underwent transplantation without hepatic toxicity. This patient
began a course of sofosbuvir/velpatasvir on day+100 and complete clearance of the viral
load was achieved within three months.

The incidence of proven new invasive fungal infections was 4% one year after trans-
plant. While no patients died from such infections, two experienced aspergillus pneumonia
and one suffered mucormycosis (Table 2).

3.3. Long-Term Toxicity

Cardiovascular disorders also appeared in a number of patients: 5 (8%) patients
developed hypertension (median onset day+34), 1 (1%) patient’s ejection fraction fell
below 50%, and 1 (1%) patient had a cardiac event during the transplant procedure. After
HCT, 16 (32%) patients exhibited PFT changes: new obstructive disorder (12%), new
restrictive disorder (10%), or worsened preexisting PFT alteration (10%). Several endocrine
system issues emerged in the population: 4 patients (5%) developed thyroid dysfunctions
(3 hypothyroidism, 1 hyperthyroidism); 7 patients (15%) became dyslipidemic; 2 (3%)
patients emerged with diabetes (Type II) (Table 3). One patient developed oral squamous
carcinoma, and two patients developed anterior segment ocular complications (cataracts)
that were successfully treated.

Table 3. Long Term Toxicities. PFT = Pulmonary Function Test; ◦ data were available for 51 patients;
x Data were available for 77 patients; a Data were available for 47 patients; b Data were available for
76 patients; c Data were available for 63 patients; d Data were available for 80 patients, defined as
ejection fraction < 50%.

Long Term Toxicities (All Data Reflect Median Follow Up of 36 Months)

Modification of PFT ◦:
Global Incidence 16 (32%)

New obstructive disorder 6 (12%)
New restrictive disorder 5 (10%)

Worsening of a preexistent disorder 5 (10%)

Emergence of Thyroid disfunction x 4 (5%)
Hypothyroidism 3 (4%)
Hyperthyroidism 1 (1%)

Emergence of Dyslipidemia a

Global incidence 7 (15%)

Emergence of Diabetes b

Global incidence 2 (3%)

Cardiovascular disorders
Emergence of Hypertension c

Global incidence 5 (8%)
Emergence of Hypokinetic Cardiomyopathy d

Global incidence 1 (1%)

No patients developed skeletal complications and no patients developed muscle or
joint diseases.
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3.4. GVHD

All patients were off MMF on day+28, and the median day of tacrolimus discontinua-
tion was +110 (range, 50–333). Immunosuppression had to be restarted for 4 (5%) patients
absent disease progression.

The cumulative incidence across all aGVHD grades was 12% (95% CI; range, 5–19%).
Across aGVHD grades II to III, it was 6% (95% CI; 1 to 11%). There were no grade IV cases
of aGVHD. The median onset of aGVHD was +52 days (range, 22–99) with no cases of
late-onset aGVHD (Figure 1A). All patients with aGVHD were treated with glucocorticoids,
for which the median discontinuation was day+136 (range, 30–409).J. Clin. Med. 2021, 10, x FOR PEER REVIEW 11 of 21 
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Figure 1. Transplant-related complications. (A) Cumulative incidence of acute graft-versus-host
disease (aGVHD). (B) Cumulative incidence of chronic graft-versus-host disease (cGVHD). (C)
Non-relapse mortality.
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The cumulative incidence of classical cGVHD was 7% (95% CI; range, 2–13%). Of
6 patients with cGVHD, 2 had limited and 4 had extensive forms. According to NIH-
defined criteria, 5 patients had cGVHD: 3 qualified for mild, 1 for moderate, and 1 for
severe. The cumulative incidence of NIH-defined cGVHD was 6% (95% CI; range, 2–15%).
Overall, the cumulative incidence of patients diagnosed with cGVHD requiring systemic
immunosuppressive treatment at one year was 7% (95% CI; range, 2–13%) (Figure 1B).
Median time of onset of cGVHD was +193 days (range, 140–268).

All patients with cGVHD were treated with glucocorticoids and a secondary immuno-
suppressive (IS) treatment (tacrolimus or methotrexate), with all but one discontinued IS at
a median of +313 days (range, 215–817). No patient died of GVHD.

Multistate modeling was used to assess the longitudinal immunosuppressive burden.
In our cohort of survivors, the probability for surviving patients of being off IS at 12, 24, and
36 months was 92% (75% of total study population), 96% (68% of total study population),
and 96% (65% of total study population), respectively. Throughout the follow-up, the off IS
state was maintained for all but 5% of patients who required IS restart (Figure 2A,B).
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Figure 2. Immunosuppression Burden (A) Reversible multistate modeling the instantaneous prob-
ability of being in 1 of 3 states: (1) alive, off immunosuppression (off immunosuppression, yellow
zone), (2) alive, on immunosuppression (immunosuppression, green zone), or (3) dead (death, orange
zone). All patients begin in state 1 on day +5 after transplant, after receiving cyclophosphamide
50 mg/kg on days +3 and +4. Patients may have reversible transition between states (1) and (2) but
death was an absorbing state. (B) Nonreversible multistate modeling the instantaneous probability
of being in 1 of five states: (1) alive, on immunosuppression (IS), (2) alive, off first IS, (3) alive, on
second IS, (4) alive, off subsequent IS, or (5) Dead.
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3.5. Outcomes

The estimated cumulative incidence of NRM at one year was 4% (95% CI; range, 0–7%)
(Figure 1C). The one-year EFS and OS values for all patients were estimated as 65% (95% CI;
range, 55–75%) and 82% (95% CI; range, 74–90%), respectively. The two-year estimations
were 59% (95% CI; range, 51–67%) and 71% (95% CI; range, 62–80%) (Figure 3A,B), respec-
tively. The entire patient cohort has yet to reach the point at which median EFS and OS
values can be determined. Rates of cGVHD-EFS at 1-year were estimated as 57% (95% CI;
range, 46–68%); at 2-years, 53% (95% CI; range, 45–61%) (Figure 3C). The two-year cumu-
lative incidence of relapse was 38% (95% CI: 26–46%) across all patients, and 30% (95%CI:
18–41%) for patients undergoing HCT in complete response (CR) (Figure 3D). In terms of
risk, there was no difference between patients transplanted from siblings compared to those
transplanted from matched unrelated donors (MUD) (HR 1.67, 95% CI; range 0.82–3.41).
The same holds true for those transplanted from an identical donor compared to those
transplanted from a mismatch (HR 0.79, 95% CI; range 0.40–1.56). Most relapses occurred
within 8 months. Patients who achieved a first or subsequent CR before transplantation had
significantly higher EFS values (73% vs. 43% at 1 year; 69% vs. 32% at 2 years) (Figure 3F)
and OS values (88% vs. 65% at 1 year; 77% vs. 55% at 2 years) (Figure 3E), as compared to
patients who did not achieve CR.

Among acute myeloid leukemia (AML) patients (33), the cumulative incidence of re-
lapse was 46% overall (95% CI; range, 28–63%), with 34% (95% CI; range, 18–54%) for those
transplanted while in phenotypic remission. Among acute lymphoblastic leukemia (ALL)
patients, the cumulative incidence of relapse was 50% (95% CI; range, 23–77%), and 42%
(95% CI; range, 15–72%) for those in phenotypic remission. Among patients transplanted
for lymphoma (17 Non Hodgkin Lymphoma and 3 Hodgkin Lymphoma) the cumulative
incidence of relapse was 16% (95% CI; range, 3–40%), but only 1% (95% CI; range, 0,0–44%)
in those in complete remission. In multiple myeloma (13 patients), incidence of relapse was
75% (95% CI; range, 42–94%); of note, no patients were transplanted in first CR and almost
all patients (9 out of 13) underwent transplants while in stable disease.

Fourteen patients received DLI for disease relapse. Of the 14, 43% (6) were infused
from a matched sibling, while the other 57% (8) were infused from an HLA-MUD. The
median time between transplant and DLI was 10 months (range, 3–89). The median
number of DLI infusions per patient was three (range, 1–13). Seven (50%) patients received
systemic disease-specific therapy along with the courses of DLI, while 2 (14%) patients
received radiotherapy to focal lesions. Another 2 patients received DLI associated with
brentuximab-bendamustine or blinatumomab. Median follow-up after DLI for all patients
was 14.7 months (Table 4). The overall response rate (ORR) was 57%, (43CR% and 14PR%)
but in a further 3 patients (21%), disease control was achieved. After DLI treatment,
the incidence of aGVHD (grades I–II) was 31% with no grade III–IV cases. Only 1 (7%)
patient developed cGVHD. All patients with GVHD received a short course of systemic
immunosuppression treatment. Across all patients who received DLI, none died from an
adverse DLI event. The estimated rates of 1-year EFS and 1-year OS from the first DLI were
52% (95% CI; range 26–78%) and 71% (95% CI; range, 47–95%), respectively.
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Table 4. Donor Lymphocyte infusions indications and outcomes.

DLI (n = 14 Patients) *

Indication for treatment
disease relapse 14 (100%)

Source of DLI
matched sibling 6 (43%)

HLA-matched unrelated donors 8 (57%)

Median time between transplant and DLI
Median number of DLI infusions = 3

10 months (range 3–89)
3 months (range 1–13)

Overall response rate 57%
Disease control rate 78%

Incidence of acute GVHD grade I–II 33%
Incidence of acute GVHD grade III–IV 0%

Estimated 1-year EFS 52% (95% CI, 26–78%)
Estimated 1-year OS 71% (95% CI, 47–95%)

* Median follow-up post- donor lymphocyte infusions (DLI) for all patients was 14.7 months.

4. Discussion

It is likely that the treatment landscape of many hematological malignancies will pro-
foundly change in the coming years due to the introduction of sophisticated cell therapies
like chimeric antigen receptor (CAR) T cells [1,36–40].

Right now, allogeneic HCT remains the only potentially curative approach able
to handle the clonal heterogeneity of the disease and able to be scaled to all eligible
patients [41–43]. Hence, any efforts to improve the procedure’s safety and effectiveness
is highly relevant to the clinical community. This study with more patients and a longer
follow-up period confirmed the extreme benefit offered by combination PTCy/T/MMF
after allogeneic PBSC-HCT in controlling major transplant complications and maintaining
transplant-related mortality below 4%.

These results present several clinical benefits and development opportunities worthy
of consideration. Clinical benefits of the therapy include: low incidences of any GVHD
forms, limited need for steroid therapy or other IS forms, and high proportions of patients
who discontinue IS early and definitely. Here, the cumulative incidence of aGVHD (12%
with no grade IV cases) and cGVHD (7% with no extensive cases), regardless of donor type
or degree of HLA mismatching, compared quite favorably with standard CNI-based pro-
phylaxis, for which aGVHD rates are 60–80%, and cGVHD rates are 30–60% [5,8,11,12,21].
Although promising, new strategies appear to have less-pronounced activity levels. These
strategies include: PTCy after BMT-HCT (39–60% aGVHD and 6–21% cGVHD), ATG-based
regimens (23–56% aGVHD, and 16–31% cGVHD), and T/MMF/Sirolimus regimens (26%
aGVHD and 49% cGVHD) [13–16,18–20,33,44,45].

In the present study, most patients were freed from IS after a median of 4 months. This
condition persisted over the long term to become 92% probable for surviving patients (75%
of the entire patient cohort) at 12 months and 96% probable at 24 and 36 months, respec-
tively (68% and 65%, respectively, of the entire population). In traditional calcineurin-based
regimens, it is uncommon to discontinue IS (20%) and relatively common for other IS forms
(including steroids) to be used for long periods after transplantation. Additionally, in newer
strategies, the burden of IS persists— albeit significantly less pronounced [25,33,46,47]. Af-
ter PTCy-BMT, the cumulative incidence of steroid use at three years ranges between 46&
and 68%; the probability of being alive and free from IS ranges between 48–56%, with
10–20% of patients conditioned with busulfan/fludarabine still on IS at 3 years [33]. In
ATG regimens, grade II–IV aGVHD requires additional IS in one-third of patients, and the
rate of cGVHD at two years is approximately 30%, plateauing between 10 and 30% for
periods beyond two years [48,49]. In MUD transplants, the probability of being alive and
off IS lies between 50% and 55%, regardless of time (12, 24, or 36 months) [49].
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Recently, three studies reported on the activity of the PTCy/T/MMF approach. The
first was a retrospective European Bone Marrow Transplantation (EBMT) study in MUD
HLA-mismatched patients. The second represented the first phase III trial between the
two strategies (PTCy/T/MMF and conventional immunosuppression). The third was a
Blood and Marrow Transplant Clinical Trials Network (BMT/CTN) phase II study in which
PTCy/T/MMF was compared with other two experimental regimens, adopting a cohort
of patients treated with tacrolimus and methotrexate (T/MTX) as control for all the three
experimental arms. Overall, their results demonstrated that PTCy had the best profile for
controlling GVHD and immunosuppression length [50–52]. The present update, with the
most extended follow-up period, augments the data of these three large studies, enriching
them with additional detail on immunosuppression regimen modulation over time—likely
a foundational element for future development of the strategy.

Undoubtedly, another set of benefits that GVHD protection provided was evidenced
by the low incidence rates of late infections (LI) in our patients. A large retrospective
study by the Center for International Blood and Marrow Transplant Research reported that
approximately 21% of the deaths that occur two years post-transplant result from LI. To
date, none of the patients in our study who survived more than 24 months has died of a
cause other than disease relapse [53,54]. This result distinguishes the PTCy strategy from
classical CNI/MTX or CNI/MTX/ATG-ATLG regimens, considering the burden of serious
LI present in both of them even long after the date of transplant [11,12,48,49,55].

Control of GVHD, limited IS duration, and low LI rates all contribute to the low long-
term organ toxicity rates reported here [56–59]. Among our surviving and non-relapsing
patients, the onset of cardiovascular, respiratory, renal, or metabolic disease has been rare.
Indeed, a good proportion of our patients resumed their occupations between 9 and 12
months after transplant (verified by personal communication). This is the first time that
inpatients treated with PTCy have reported a descriptive snapshot regarding late organ
toxicity; while it is not possible to draw a comparison with other studies with PTCy and
a longer follow up is needed, the presented data compares well with those registered in
large registry cohorts [32].

Despite the major clinical achievements described here, disease relapse was the princi-
pal cause of treatment failure with PTCy/T/MMF. Compared to other GVHD prevention
methods, it was not associated with a higher risk of relapse (PTCy-BMT 22–44% ATG based
regimens 11–42%) [13–16,18–20]. The fact that most relapses were concentrated in the first
8 months, however, suggests that the balance between the search for tolerance and trigger
of graft versus tumour has to be better modulated. Two possible strategies may be pursued:
first, in patients affected by a high-risk malignancy, implementing a faster IS taper to be
free from IS at day +60; second, consider the robust and quick immunological tolerance that
PTCy/T/MMF often invokes and insert donor lymphocyte infusions (DLI) as part of the
strategy [60,61]. In this regard, the results and toxicity achieved with DLIs paves the way
for evaluation of their use early after transplant and for consideration of PTCy/T/MMF as
a basis from which to develop more selective forms of adoptive cell therapy.

While it is beyond the scope of this study of GVHD prevention to comment on the
outcomes (OS, EFS), their median values demonstrated a satisfactory temporal trend and
are worth noting. Moreover, GVHD-EFS (53% at 2 years) and NRM (4%) portend potential
activity and safety benefits. They may also be beneficial when considering allo-HCT
for diseases with strong evidence of graft-versus-tumor effects, but for which procedure
toxicity and novel forms of therapy have halted further investigations [62–64].

Last, the present study has methodological and translational limitations that cannot be
ignored, and which preclude definitive conclusions. Notwithstanding, it offers solid data
for future clinical trials and reinforces the philosophical transformation of allogeneic HCT
from chemo/radiotherapy-based approaches to more immunologically-safe platforms for
the cure of hematological malignancies.



J. Clin. Med. 2021, 10, 1173 15 of 19

5. Conclusions

The present study provides evidence that PTCy/T/MMF after allo-PBSCT allows a
fast engraftment, reduces GVHD substantially, and releases most patients from IS early
and definitely. Those factors not only positively impact LI and long-term posttransplant
complications, but do not appear to obstruct the onset of a sustained graft-versus-tumor
effect. Post-transplant relapses continue to represent a pitfall of the strategy. The limited
NRM described is noteworthy, and may contribute to continuing explorations of allogeneic
HCT as an effective cell-based therapy for the cure of hematological malignancies.

Author Contributions: F.C.-S. conceived of the idea, planned the clinical trial, wrote the protocol,
cared for patients, analyzed clinical data, and wrote the manuscript. D.C. wrote the protocol,
contributed to study design, coordinated the trial and day-to-day patient clinical management, and
participated in data analysis and manuscript writing. S.G.; P.B.; L.P.; S.P.; P.M.M.F. and M.F. assisted
with day-to-day clinical management, and participated in data analysis and manuscript writing.
A.S. participated in data analysis. D.G.; V.G.; A.C.; D.R.-S.; G.G.; L.D.A, and M.F. each contributed
to patient accrual, patient care and results analysis. E.V.; M.B.; R.P. and F.S. all took part in donor
selection, donor registry management, and results analysis. M.M.; M.S. and A.P. were involved
in donor selection, PBSC collection and processing, and results analysis. L.G. and D.S. obtained
peripheral blood lymphocytes, contributed to immune-reconstitution study and results analysis. I.F.
coordinated chimerism evaluation. F.F. and M.A. contributed equally to this study; they conceived
of the idea, obtained funding, analyzed results, and revised the paper. All authors had access to
the data and vouch for the completeness and accuracy of the data and analyses. The corresponding
author (F.C.-S.) had final responsibility for the decision to submit for publication. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was supported by FPRC ONLUS-5 × 1000 Ministero della Salute 2015 Ricerca
DS-321 (F.C.-S.); ADISCO Sezione Piemonte (F.F. and M.A.).

Institutional Review Board Statement: The study was conducted according to the guidelines of
the Declaration of Helsinki and approved by the Clinical Research Council of of IRCCS Candiolo
Cancer Institute-FPO and Ethics Committee of A.O.U. San Luigi Gonzaga Orbassano (protocol code
124/2013; 1644/FPO; date of approval 30 July 2013, #NCT02300571).

Informed Consent Statement: Written informed consent was obtained from all parents of the
patients involved in the study.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: The authors thank the personnel of Turin Metropolitan Transplant Network,
AVIS/I.R.C.C.S. Blood Service, the Pharmacy Department, and all medical, nursing, laboratory, and
clinical staff for their daily help and support during the conduction of this study. We deeply thank
Joan C. Leonard for her enlightened support in reviewing and editing the manuscript. Above all,
we are indebted to the patients and their caregivers for the courage and dedication shown during
the study.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. June, C.H.; O’Connor, R.S.; Kawalekar, O.U.; Ghassemi, S.; Milone, M.C. CAR T cell immunotherapy for human cancer. Science

2018, 359, 1361–1365. [CrossRef] [PubMed]
2. Storb, R.; Gyurkocza, B.; Storer, B.E.; Sorror, M.L.; Blume, K.; Niederwieser, D.; Chauncey, T.R.; Pulsipher, M.A.; Petersen, F.B.;

Sahebi, F.; et al. Graft-versus-host disease and graft-versus-tumor effects after allogeneic hematopoietic cell transplantation. J.
Clin. Oncol. 2013, 31, 1530–1538. [CrossRef]

3. Appelbaum, F.R. Hematopoietic-cell transplantation at 50. N. Engl. J. Med. 2007, 357, 1472–1475. [CrossRef] [PubMed]
4. Gooley, T.A.; Chien, J.W.; Pergam, S.A.; Hingorani, S.; Sorror, M.L.; Boeckh, M.; Martin, P.J.; Sandmaier, B.M.; Marr, K.A.;

Appelbaum, F.R.; et al. Reduced mortality after allogeneic hematopoietic-cell transplantation. N. Engl. J. Med. 2010, 363,
2091–2101. [CrossRef]

5. McDonald, G.B.; Sandmaier, B.M.; Mielcarek, M.; Sorror, M.; Pergam, S.A.; Cheng, G.S.; Hingorani, S.; Boeckh, M.; Flowers,
M.D.; Lee, S.J.; et al. Survival, Nonrelapse Mortality, and Relapse-Related Mortality After Allogeneic Hematopoietic Cell
Transplantation: Comparing 2003–2007 Versus 2013–2017 Cohorts. Ann. Intern. Med. 2020, 172, 229–239. [CrossRef]

http://doi.org/10.1126/science.aar6711
http://www.ncbi.nlm.nih.gov/pubmed/29567707
http://doi.org/10.1200/JCO.2012.45.0247
http://doi.org/10.1056/NEJMp078166
http://www.ncbi.nlm.nih.gov/pubmed/17928594
http://doi.org/10.1056/NEJMoa1004383
http://doi.org/10.7326/M19-2936


J. Clin. Med. 2021, 10, 1173 16 of 19

6. Gratwohl, A.; Pasquini, M.C.; Aljurf, M.; Atsuta, Y.; Baldomero, H.; Foeken, L.; Gratwohl, M.; Bouzas, L.F.; Confer, D.;
Frauendorfer, K.; et al. One million haemopoietic stem-cell transplants: A retrospective observational study. Lancet Haematol.
2015, 2, e91–e100. [CrossRef]

7. Shouval, R.; Fein, J.A.; Labopin, M.; Kröger, N.; Duarte, R.F.; Bader, P.; Chabannon, C.; Kuball, J.; Basak, G.W.; Dufour, C.; et al.
Outcomes of allogeneic haematopoietic stem cell transplantation from HLA-matched and alternative donors: A European Society
for Blood and Marrow Transplantation registry retrospective analysis. Lancet Haematol. 2019, 6, e573–e584. [CrossRef]

8. Flowers, M.E.; Inamoto, Y.; Carpenter, P.A.; Lee, S.J.; Kiem, H.P.; Petersdorf, E.W.; Pereira, S.E.; Nash, R.A.; Mielcarek, M.; Fero,
M.L.; et al. Comparative analysis of risk factors for acute graft-versus-host disease and for chronic graft-versus-host disease
according to National Institutes of Health consensus criteria. Blood 2011, 117, 3214–3219. [CrossRef] [PubMed]

9. Penack, O.; Marchetti, M.; Ruutu, T.; Aljurf, M.; Bacigalupo, A.; Bonifazi, F.; Ciceri, F.; Cornelissen, J.; Malladi, R.; Duarte, R.F.;
et al. Prophylaxis and management of graft versus host disease after stem-cell transplantation for haematological malignancies:
Updated consensus recommendations of the European Society for Blood and Marrow Transplantation. Lancet Haematol. 2020, 7,
e157–e167. [CrossRef]

10. Harris, A.C.; Levine, J.E.; Ferrara, J.L. Have we made progress in the treatment of GVHD? Best Pract. Res. Clin. Haematol. 2012, 25,
473–478. [CrossRef]

11. Storb, R.; Deeg, H.J.; Whitehead, J.; Appelbaum, F.; Beatty, P.; Bensinger, W.; Buckner, C.D.; Clift, R.; Doney, K.; Farewell, V.
Methotrexate and cyclosporine compared with cyclosporine alone for prophylaxis of acute graft versus host disease after marrow
transplantation for leukemia. N. Engl. J. Med. 1986, 314, 729–735. [CrossRef]

12. Nash, R.A.; Antin, J.H.; Karanes, C.; Fay, J.W.; Avalos, B.R.; Yeager, A.M.; Przepiorka, D.; Davies, S.; Petersen, F.B.; Bartels,
P.; et al. Phase 3 study comparing methotrexate and tacrolimus with methotrexate and cyclosporine for prophylaxis of acute
graft-versus-host disease after marrow transplantation from unrelated donors. Blood 2000, 96, 2062–2068.

13. Finke, J.; Bethge, W.A.; Schmoor, C.; Ottinger, H.D.; Stelljes, M.; Zander, A.R.; Volin, L.; Ruutu, T.; Heim, D.A.; Schwerdtfeger, R.;
et al. Standard graft-versus-host disease prophylaxis with or without anti-T-cell globulin in haematopoietic cell transplantation
from matched unrelated donors: A randomised, open-label, multicentre phase 3 trial. Lancet Oncol. 2009, 10, 855–864. [CrossRef]

14. Kröger, N.; Solano, C.; Bonifazi, F. Antilymphocyte Globulin for Chronic Graft-versus-Host Disease. N. Engl. J. Med. 2016, 374,
1894–1895. [CrossRef]

15. Soiffer, R.J.; Kim, H.T.; McGuirk, J.; Horwitz, M.E.; Johnston, L.; Patnaik, M.M.; Rybka, W.; Artz, A.; Porter, D.L.; Shea, T.C.; et al.
Prospective, Randomized, Double-Blind, Phase III Clinical Trial of Anti-T-Lymphocyte Globulin to Assess Impact on Chronic
Graft-Versus-Host Disease-Free Survival in Patients Undergoing HLA-Matched Unrelated Myeloablative Hematopoietic Cell
Transplantation. J. Clin. Oncol. 2017, 35, 4003–4011. [CrossRef]

16. Walker, I.; Panzarella, T.; Couban, S.; Couture, F.; Devins, G.; Elemary, M.; Gallagher, G.; Kerr, H.; Kuruvilla, J.; Lee, S.J.; et al.
Pretreatment with anti-thymocyte globulin versus no anti-thymocyte globulin in patients with haematological malignancies
undergoing haemopoietic cell transplantation from unrelated donors: A randomised, controlled, open-label, phase 3, multicentre
trial. Lancet Oncol. 2016, 17, 164–173. [CrossRef]

17. Strauss, G.; Osen, W.; Debatin, K.M. Induction of apoptosis and modulation of activation and effector function in T cells by
immunosuppressive drugs. Clin. Exp. Immunol. 2002, 128, 255–266. [CrossRef]

18. Luznik, L.; O’Donnell, P.V.; Symons, H.J.; Chen, A.R.; Leffell, M.S.; Zahurak, M.; Gooley, T.A.; Piantadosi, S.; Kaup, M.; Ambinder,
R.F.; et al. HLA-haploidentical bone marrow transplantation for hematologic malignancies using nonmyeloablative conditioning
and high-dose, posttransplantation cyclophosphamide. Biol. Blood Marrow Transplant. 2008, 14, 641–650. [CrossRef]

19. Kanakry, C.G.; Tsai, H.L.; Bolaños-Meade, J.; Smith, B.D.; Gojo, I.; Kanakry, J.A.; Kasamon, Y.L.; Gladstone, D.E.; Matsui, W.;
Borrello, I.; et al. Single-agent GVHD prophylaxis with posttransplantation cyclophosphamide after myeloablative, HLA-matched
BMT for AML, ALL, and MDS. Blood 2014, 124, 3817–3827. [CrossRef]

20. Luznik, L.; Bolaños-Meade, J.; Zahurak, M.; Chen, A.R.; Smith, B.D.; Brodsky, R.; Huff, C.A.; Borrello, I.; Matsui, W.; Powell,
J.D.; et al. High-dose cyclophosphamide as single-agent, short-course prophylaxis of graft-versus-host disease. Blood 2010, 115,
3224–3230. [CrossRef]

21. Anasetti, C.; Logan, B.R.; Lee, S.J.; Waller, E.K.; Weisdorf, D.J.; Wingard, J.R.; Cutler, C.S.; Westervelt, P.; Woolfrey, A.; Couban, S.;
et al. Peripheral-blood stem cells versus bone marrow from unrelated donors. N. Engl. J. Med. 2012, 367, 1487–1496. [CrossRef]
[PubMed]

22. Alousi, A.M.; Brammer, J.E.; Saliba, R.M.; Andersson, B.; Popat, U.; Hosing, C.; Jones, R.; Shpall, E.J.; Khouri, I.; Qazilbash, M.; et al.
Phase II Trial of Graft-versus-Host Disease Prophylaxis with Post-Transplantation Cyclophosphamide after Reduced-Intensity
Busulfan/Fludarabine Conditioning for Hematological Malignancies. Biol. Blood Marrow Transplant. 2015, 21, 906–912. [CrossRef]
[PubMed]

23. Holtick, U.; Chemnitz, J.M.; Shimabukuro-Vornhagen, A.; Theurich, S.; Chakupurakal, G.; Krause, A.; Fiedler, A.; Luznik, L.;
Hellmich, M.; Wolf, D.; et al. OCTET-CY: A phase II study to investigate the efficacy of post-transplant cyclophosphamide as
sole graft-versus-host prophylaxis after allogeneic peripheral blood stem cell transplantation. Eur. J. Haematol. 2016, 96, 27–35.
[CrossRef]

http://doi.org/10.1016/S2352-3026(15)00028-9
http://doi.org/10.1016/S2352-3026(19)30158-9
http://doi.org/10.1182/blood-2010-08-302109
http://www.ncbi.nlm.nih.gov/pubmed/21263156
http://doi.org/10.1016/S2352-3026(19)30256-X
http://doi.org/10.1016/j.beha.2012.10.010
http://doi.org/10.1056/NEJM198603203141201
http://doi.org/10.1016/S1470-2045(09)70225-6
http://doi.org/10.1056/NEJMoa1506002
http://doi.org/10.1200/JCO.2017.75.8177
http://doi.org/10.1016/S1470-2045(15)00462-3
http://doi.org/10.1046/j.1365-2249.2002.01777.x
http://doi.org/10.1016/j.bbmt.2008.03.005
http://doi.org/10.1182/blood-2014-07-587477
http://doi.org/10.1182/blood-2009-11-251595
http://doi.org/10.1056/NEJMoa1203517
http://www.ncbi.nlm.nih.gov/pubmed/23075175
http://doi.org/10.1016/j.bbmt.2015.01.026
http://www.ncbi.nlm.nih.gov/pubmed/25667989
http://doi.org/10.1111/ejh.12541


J. Clin. Med. 2021, 10, 1173 17 of 19

24. Moiseev, I.S.; Pirogova, O.V.; Alyanski, A.L.; Babenko, E.V.; Gindina, T.L.; Darskaya, E.I.; Slesarchuk, O.A.; Bondarenko, S.N.;
Afanasyev, B.V. Graft-versus-Host Disease Prophylaxis in Unrelated Peripheral Blood Stem Cell Transplantation with Post-
Transplantation Cyclophosphamide, Tacrolimus, and Mycophenolate Mofetil. Biol. Blood Marrow Transplant. 2016, 22, 1037–1042.
[CrossRef]

25. Mielcarek, M.; Furlong, T.; O’Donnell, P.V.; Storer, B.E.; McCune, J.S.; Storb, R.; Carpenter, P.A.; Flowers, M.E.; Appelbaum, F.R.;
Martin, P.J. Posttransplantation cyclophosphamide for prevention of graft-versus-host disease after HLA-matched mobilized
blood cell transplantation. Blood 2016, 127, 1502–1508. [CrossRef]

26. Carnevale-Schianca, F.; Caravelli, D.; Gallo, S.; Coha, V.; D’Ambrosio, L.; Vassallo, E.; Fizzotti, M.; Nesi, F.; Gioeni, L.; Berger,
M.; et al. Post-Transplant Cyclophosphamide and Tacrolimus-Mycophenolate Mofetil Combination Prevents Graft-versus-Host
Disease in Allogeneic Peripheral Blood Hematopoietic Cell Transplantation from HLA-Matched Donors. Biol. Blood Marrow
Transplant. 2017, 23, 459–466. [CrossRef]

27. Choi, S.W.; Reddy, P. Current and emerging strategies for the prevention of graft-versus-host disease. Nat. Rev. Clin. Oncol. 2014,
11, 536–547. [CrossRef] [PubMed]

28. Przepiorka, D.; Weisdorf, D.; Martin, P.; Klingemann, H.G.; Beatty, P.; Hows, J.; Thomas, E.D. 1994 Consensus Conference on
Acute GVHD Grading. Bone Marrow Transplant. 1995, 15, 825–828.

29. Lee, S.J.; Vogelsang, G.; Flowers, M.E. Chronic graft-versus-host disease. Biol. Blood Marrow. Transplant. 2003, 9, 215–233.
[CrossRef]

30. Filipovich, A.H.; Weisdorf, D.; Pavletic, S.; Socie, G.; Wingard, J.R.; Lee, S.J.; Martin, P.; Chien, J.; Przepiorka, D.; Couriel, D.; et al.
National Institutes of Health consensus development project on criteria for clinical trials in chronic graft-versus-host disease: I.
Diagnosis and staging working group report. Biol. Blood Marrow Transplant. 2005, 11, 945–956. [CrossRef]

31. Armand, P.; Kim, H.T.; Logan, B.R.; Wang, Z.; Alyea, E.P.; Kalaycio, M.E.; Maziarz, R.T.; Antin, J.H.; Soiffer, R.J.; Weisdorf, D.J.;
et al. Validation and refinement of the Disease Risk Index for allogeneic stem cell transplantation. Blood 2014, 123, 3664–3671.
[CrossRef] [PubMed]

32. Majhail, N.S.; Rizzo, J.D.; Lee, S.J.; Aljurf, M.; Atsuta, Y.; Bonfim, C.; Burns, L.J.; Chaudhri, N.; Davies, S.; Okamoto, S.; et al.
Recommended screening and preventive practices for long-term survivors after hematopoietic cell transplantation. Bone Marrow
Transplant. 2012, 47, 337–341. [CrossRef]

33. Kanakry, C.G.; Bolaños-Meade, J.; Kasamon, Y.L.; Zahurak, M.; Durakovic, N.; Furlong, T.; Mielcarek, M.; Medeot, M.; Gojo, I.;
Smith, B.D.; et al. Low immunosuppressive burden after HLA-matched related or unrelated BMT using posttransplantation
cyclophosphamide. Blood 2017, 129, 1389–1393. [CrossRef] [PubMed]

34. Inamoto, Y.; Flowers, M.E.; Sandmaier, B.M.; Aki, S.Z.; Carpenter, P.A.; Lee, S.J.; Storer, B.E.; Martin, P.J. Failure-free survival after
initial systemic treatment of chronic graft-versus-host disease. Blood 2014, 124, 1363–1371. [CrossRef]

35. Kaplan, E.L.; Meier, P. Nonparametric estimation from incomplete observations. J. Am. Stat. Assoc. 1958, 53, 457–481. [CrossRef]
36. Maude, S.L.; Laetsch, T.W.; Buechner, J.; Rives, S.; Boyer, M.; Bittencourt, H.; Bader, P.; Verneris, M.R.; Stefanski, H.E.; Myers, G.D.;

et al. Tisagenlecleucel in Children and Young Adults with B-Cell Lymphoblastic Leukemia. N. Engl. J. Med. 2018, 378, 439–448.
[CrossRef]

37. Schuster, S.J.; Bishop, M.R.; Tam, C.S.; Waller, E.K.; Borchmann, P.; McGuirk, J.P.; Jäger, U.; Jaglowski, S.; Andreadis, C.; Westin,
J.R.; et al. Tisagenlecleucel in Adult Relapsed or Refractory Diffuse Large B-Cell Lymphoma. N. Engl. J. Med. 2019, 380, 45–56.
[CrossRef]

38. Raje, N.; Berdeja, J.; Lin, Y.; Siegel, D.; Jagannath, S.; Madduri, D.; Liedtke, M.; Rosenblatt, J.; Maus, M.V.; Turka, A.; et al.
Anti-BCMA CAR T-Cell Therapy bb2121 in Relapsed or Refractory Multiple Myeloma. N. Engl. J. Med. 2019, 380, 1726–1737.
[CrossRef]

39. Kantarjian, H.; Jabbour, E.; Topp, M.S. Blinatumomab for Acute Lymphoblastic Leukemia. N. Engl. J. Med. 2017, 376, e49.
[CrossRef]

40. Kantarjian, H.; Stein, A.; Gökbuget, N.; Fielding, A.K.; Schuh, A.C.; Ribera, J.M.; Wei, A.; Dombret, H.; Foà, R.; Bassan, R.;
et al. Blinatumomab versus Chemotherapy for Advanced Acute Lymphoblastic Leukemia. N. Engl. J. Med. 2017, 376, 836–847.
[CrossRef]

41. Amirouchene-Angelozzi, N.; Swanton, C.; Bardelli, A. Tumor Evolution as a Therapeutic Target. Cancer Discov. 2017. [CrossRef]
42. Campbell, J.D.; Whittington, M.D. Paying for CAR-T Therapy Amidst Limited Health System Resources. J. Clin. Oncol. 2019, 37,

2095–2097. [CrossRef]
43. Khera, N.; Deeg, H.J.; Kodish, E.; Rondelli, D.; Majhail, N. Allogeneic Hematopoietic Cell Transplantation and Other Expensive

Cellular Therapies: A Miracle for the Few but Off Limits to Many? J. Clin. Oncol. 2020, 38, 1268–1272. [CrossRef]
44. Kanakry, C.G.; O’Donnell, P.V.; Furlong, T.; de Lima, M.J.; Wei, W.; Medeot, M.; Mielcarek, M.; Champlin, R.E.; Jones, R.J.;

Thall, P.F.; et al. Multi-institutional study of post-transplantation cyclophosphamide as single-agent graft-versus-host disease
prophylaxis after allogeneic bone marrow transplantation using myeloablative busulfan and fludarabine conditioning. J. Clin.
Oncol. 2014, 32, 3497–3505. [CrossRef]

45. Sandmaier, B.M.; Kornblit, B.; Storer, B.E.; Olesen, G.; Maris, M.B.; Langston, A.A.; Gutman, J.A.; Petersen, S.L.; Chauncey, T.R.;
Bethge, W.A.; et al. Addition of sirolimus to standard cyclosporine plus mycophenolate mofetil-based graft-versus-host disease
prophylaxis for patients after unrelated non-myeloablative haemopoietic stem cell transplantation: A multicentre, randomised,
phase 3 trial. Lancet Haematol. 2019, 6, e409–e418. [CrossRef]

http://doi.org/10.1016/j.bbmt.2016.03.004
http://doi.org/10.1182/blood-2015-10-672071
http://doi.org/10.1016/j.bbmt.2016.12.636
http://doi.org/10.1038/nrclinonc.2014.102
http://www.ncbi.nlm.nih.gov/pubmed/24958183
http://doi.org/10.1053/bbmt.2003.50026
http://doi.org/10.1016/j.bbmt.2005.09.004
http://doi.org/10.1182/blood-2014-01-552984
http://www.ncbi.nlm.nih.gov/pubmed/24744269
http://doi.org/10.1038/bmt.2012.5
http://doi.org/10.1182/blood-2016-09-737825
http://www.ncbi.nlm.nih.gov/pubmed/28049637
http://doi.org/10.1182/blood-2014-03-563544
http://doi.org/10.1080/01621459.1958.10501452
http://doi.org/10.1056/NEJMoa1709866
http://doi.org/10.1056/NEJMoa1804980
http://doi.org/10.1056/NEJMoa1817226
http://doi.org/10.1056/NEJMoa1609783
http://doi.org/10.1056/NEJMoa1609783
http://doi.org/10.1158/2159-8290.CD-17-0343
http://doi.org/10.1200/JCO.19.01113
http://doi.org/10.1200/JCO.19.02232
http://doi.org/10.1200/JCO.2013.54.0625
http://doi.org/10.1016/S2352-3026(19)30088-2


J. Clin. Med. 2021, 10, 1173 18 of 19

46. Pidala, J.; Martens, M.; Anasetti, C.; Carreras, J.; Horowitz, M.; Lee, S.J.; Antin, J.; Cutler, C.; Logan, B. Factors Associated with
Successful Discontinuation of Immune Suppression after Allogeneic Hematopoietic Cell Transplantation. JAMA Oncol. 2019.
[CrossRef]

47. Mielcarek, M.; Furlong, T.; Storer, B.E.; Green, M.L.; McDonald, G.B.; Carpenter, P.A.; Flowers, M.E.; Storb, R.; Boeckh, M.; Martin,
P.J. Effectiveness and safety of lower dose prednisone for initial treatment of acute graft-versus-host disease: A randomized
controlled trial. Haematologica 2015, 100, 842–848. [CrossRef]

48. Bonifazi, F.; Solano, C.; Wolschke, C.; Sessa, M.; Patriarca, F.; Zallio, F.; Nagler, A.; Selleri, C.; Risitano, A.M.; Messina, G.; et al.
Acute GVHD prophylaxis plus ATLG after myeloablative allogeneic haemopoietic peripheral blood stem-cell transplantation
from HLA-identical siblings in patients with acute myeloid leukaemia in remission: Final results of quality of life and long-term
outcome analysis of a phase 3 randomised study. Lancet Haematol. 2019, 6, e89–e99. [CrossRef]

49. Finke, J.; Schmoor, C.; Bethge, W.A.; Ottinger, H.; Stelljes, M.; Volin, L.; Heim, D.; Bertz, H.; Grishina, O.; Socie, G. Long-term
outcomes after standard graft-versus-host disease prophylaxis with or without anti-human-T-lymphocyte immunoglobulin in
haemopoietic cell transplantation from matched unrelated donors: Final results of a randomised controlled trial. Lancet Haematol.
2017, 4, e293–e301. [CrossRef]

50. Bolaños-Meade, J.; Reshef, R.; Fraser, R.; Fei, M.; Abhyankar, S.; Al-Kadhimi, Z.; Alousi, A.M.; Antin, J.H.; Arai, S.; Bickett, K.;
et al. Three prophylaxis regimens (tacrolimus, mycophenolate mofetil, and cyclophosphamide; tacrolimus, methotrexate, and
bortezomib; or tacrolimus, methotrexate, and maraviroc) versus tacrolimus and methotrexate for prevention of graft-versus-
host disease with haemopoietic cell transplantation with reduced-intensity conditioning: A randomised phase 2 trial with a
non-randomised contemporaneous control group (BMT CTN 1203). Lancet Haematol. 2019, 6, e132–e143. [CrossRef] [PubMed]

51. Battipaglia, G.; Labopin, M.; Kröger, N.; Vitek, A.; Afanasyev, B.; Hilgendorf, I.; Schetelig, J.; Ganser, A.; Blaise, D.; Itälä-Remes,
M.; et al. Posttransplant cyclophosphamide vs. antithymocyte globulin in HLA-mismatched unrelated donor transplantation.
Blood 2019, 134, 892–899. [CrossRef] [PubMed]

52. De Jong, C.N.; Meijer, E.; Bakunina, K.; Nur, E.; van Marwijk Kooij, M.; de Groot, M.R.; van Gelder, M.; Maertens, J.A.; Kuball, J.H.;
Deeren, D.; et al. Post-Transplantation Cyclophosphamide after Allogeneic Hematopoietic Stem Cell Transplantation: Results of
the Prospective Randomized HOVON-96 Trial in Recipients of Matched Related and Unrelated Donors. Blood 2019, 134 (Suppl. 1).
[CrossRef]

53. Norkin, M.; Shaw, B.E.; Brazauskas, R.; Tecca, H.R.; Leather, H.L.; Gea-Banacloche, J.; Kamble, R.T.; DeFilipp, Z.; Jacobsohn, D.A.;
Ringden, O.; et al. Characteristics of Late Fatal Infections after Allogeneic Hematopoietic Cell Transplantation. Biol. Blood Marrow
Transplant. 2019, 25, 362–368. [CrossRef]

54. Foord, A.M.; Cushing-Haugen, K.L.; Boeckh, M.J.; Carpenter, P.A.; Flowers, M.E.D.; Lee, S.J.; Leisenring, W.M.; Mueller, B.A.;
Hill, J.A.; Chow, E.J. Late infectious complications in hematopoietic cell transplantation survivors: A population-based study.
Blood Adv. 2020, 4, 1232–1241. [CrossRef]

55. Walker, I.; Panzarella, T.; Couban, S.; Couture, F.; Devins, G.; Elemary, M.; Gallagher, G.; Kerr, H.; Kuruvilla, J.; Lee, S.J.; et al.
Addition of anti-thymocyte globulin to standard graft-versus-host disease prophylaxis versus standard treatment alone in
patients with haematological malignancies undergoing transplantation from unrelated donors: Final analysis of a randomised,
open-label, multicentre, phase 3 trial. Lancet Haematol. 2020, 7, e100–e111. [CrossRef]

56. Socié, G.; Stone, J.V.; Wingard, J.R.; Weisdorf, D.; Henslee-Downey, P.J.; Bredeson, C.; Cahn, J.Y.; Passweg, J.R.; Rowlings, P.A.;
Schouten, H.C.; et al. Long-term survival and late deaths after allogeneic bone marrow transplantation. Late Effects Working
Committee of the International Bone Marrow Transplant Registry. N. Engl. J. Med. 1999, 341, 14–21. [CrossRef]

57. Wingard, J.R.; Majhail, N.S.; Brazauskas, R.; Wang, Z.; Sobocinski, K.A.; Jacobsohn, D.; Sorror, M.L.; Horowitz, M.M.; Bolwell, B.;
Rizzo, J.D.; et al. Long-term survival and late deaths after allogeneic hematopoietic cell transplantation. J. Clin. Oncol. 2011, 29,
2230–2239. [CrossRef]

58. Martin, P.J.; Counts, G.W.; Appelbaum, F.R.; Lee, S.J.; Sanders, J.E.; Deeg, H.J.; Flowers, M.E.; Syrjala, K.L.; Hansen, J.A.; Storb,
R.F.; et al. Life expectancy in patients surviving more than 5 years after hematopoietic cell transplantation. J. Clin. Oncol. 2010, 28,
1011–1016. [CrossRef] [PubMed]

59. Chow, E.J.; Cushing-Haugen, K.L.; Cheng, G.S.; Boeckh, M.; Khera, N.; Lee, S.J.; Leisenring, W.M.; Martin, P.J.; Mueller, B.A.;
Schwartz, S.M.; et al. Morbidity and Mortality Differences Between Hematopoietic Cell Transplantation Survivors and Other
Cancer Survivors. J. Clin. Oncol. 2017, 35, 306–313. [CrossRef]

60. Castagna, L.; Sarina, B.; Bramanti, S.; Perseghin, P.; Mariotti, J.; Morabito, L. Donor lymphocyte infusion after allogeneic stem cell
transplantation. Transfus. Apher. Sci. 2016, 54, 345–355. [CrossRef] [PubMed]

61. McSweeney, P.A.; Niederwieser, D.; Shizuru, J.A.; Sandmaier, B.M.; Molina, A.J.; Maloney, D.G.; Chauncey, T.R.; Gooley, T.A.;
Hegenbart, U.; Nash, R.A.; et al. Hematopoietic cell transplantation in older patients with hematologic malignancies: Replacing
high-dose cytotoxic therapy with graft-versus-tumor effects. Blood 2001, 97, 3390–3400. [CrossRef]

62. Bruno, B.; Rotta, M.; Patriarca, F.; Mordini, N.; Allione, B.; Carnevale-Schianca, F.; Giaccone, L.; Sorasio, R.; Omedè, P.; Baldi,
I.; et al. A comparison of allografting with autografting for newly diagnosed myeloma. N. Engl. J. Med. 2007, 356, 1110–1120.
[CrossRef] [PubMed]

http://doi.org/10.1001/jamaoncol.2019.2974
http://doi.org/10.3324/haematol.2014.118471
http://doi.org/10.1016/S2352-3026(18)30214-X
http://doi.org/10.1016/S2352-3026(17)30081-9
http://doi.org/10.1016/S2352-3026(18)30221-7
http://www.ncbi.nlm.nih.gov/pubmed/30824040
http://doi.org/10.1182/blood.2019000487
http://www.ncbi.nlm.nih.gov/pubmed/31270102
http://doi.org/10.1182/blood-2019-124659
http://doi.org/10.1016/j.bbmt.2018.09.031
http://doi.org/10.1182/bloodadvances.2020001470
http://doi.org/10.1016/S2352-3026(19)30220-0
http://doi.org/10.1056/NEJM199907013410103
http://doi.org/10.1200/JCO.2010.33.7212
http://doi.org/10.1200/JCO.2009.25.6693
http://www.ncbi.nlm.nih.gov/pubmed/20065176
http://doi.org/10.1200/JCO.2016.68.8457
http://doi.org/10.1016/j.transci.2016.05.011
http://www.ncbi.nlm.nih.gov/pubmed/27216544
http://doi.org/10.1182/blood.V97.11.3390
http://doi.org/10.1056/NEJMoa065464
http://www.ncbi.nlm.nih.gov/pubmed/17360989


J. Clin. Med. 2021, 10, 1173 19 of 19

63. Giaccone, L.; Storer, B.; Patriarca, F.; Rotta, M.; Sorasio, R.; Allione, B.; Carnevale-Schianca, F.; Festuccia, M.; Brunello, L.; Omedè,
P.; et al. Long-term follow-up of a comparison of nonmyeloablative allografting with autografting for newly diagnosed myeloma.
Blood 2011, 117, 6721–6727. [CrossRef] [PubMed]

64. Dreger, P.; Fenske, T.S.; Montoto, S.; Pasquini, M.C.; Sureda, A.; Hamadani, M.; the European Society for Blood and Marrow Trans-
plantation (EBMT) and the Center for International Blood and Marrow Transplant Research (CIBMTR). Cellular Immunotherapy
for Refractory Diffuse Large B Cell Lymphoma in the Chimeric Antigen Receptor-Engineered T Cell Era: Still a Role for Allogeneic
Transplantation? Biol. Blood Marrow Transplant. 2020, 26, e77–e85. [CrossRef] [PubMed]

http://doi.org/10.1182/blood-2011-03-339945
http://www.ncbi.nlm.nih.gov/pubmed/21490341
http://doi.org/10.1016/j.bbmt.2019.12.771
http://www.ncbi.nlm.nih.gov/pubmed/31917272

	Introduction 
	Materials and Methods 
	Conditioning Regimen, Postgraft Immunosuppression, and Supportive Care 
	Monitoring after Transplant 
	Long Term Follow-Up 
	Statistical Analyses 

	Results 
	Engraftment 
	Infections 
	Long-Term Toxicity 
	GVHD 
	Outcomes 

	Discussion 
	Conclusions 
	References

