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Abstract: The mortality of COVID-19 patients in the intensive care unit (ICU) is influenced by
their state at admission. We aimed to model COVID-19 acute respiratory distress syndrome state
transitions from ICU admission to day 60 outcome and to evaluate possible prognostic factors.
We analyzed a prospective French database that includes critically ill COVID-19 patients. A six-
state multistate model was built and 17 transitions were analyzed either using a non-parametric
approach or a Cox proportional hazard model. Corticosteroids and IL-antagonists (tocilizumab and
anakinra) effects were evaluated using G-computation. We included 382 patients in the analysis:
243 patients were admitted to the ICU with non-invasive ventilation, 116 with invasive mechanical
ventilation, and 23 with extracorporeal membrane oxygenation. The predicted 60-day mortality was
25.9% (95% CI: 21.8%–30.0%), 44.7% (95% CI: 48.8%–50.6%), and 59.2% (95% CI: 49.4%–69.0%) for
a patient admitted in these three states, respectively. Corticosteroids decreased the risk of being
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invasively ventilated (hazard ratio (HR) 0.59, 95% CI: 0.39–0.90) and IL-antagonists increased the
probability of being successfully extubated (HR 1.8, 95% CI: 1.02–3.17). Antiviral drugs did not
impact any transition. In conclusion, we observed that the day-60 outcome in COVID-19 patients is
highly dependent on the first ventilation state upon ICU admission. Moreover, we illustrated that
corticosteroid and IL-antagonists may influence the intubation duration.

Keywords: intensive unit care; acute respiratory distress disease; survival

1. Introduction

The coronavirus disease 2019 (COVID-19) epidemic has been causing health concerns
worldwide since December 2019. By the end of September 2020, more than 30 million
cases around the globe were reported [1]. Although some patients can be asymptomatic,
in about 20% of inpatients, COVID-19 can lead to intensive care unit (ICU) admission [2].
COVID-19 acute respiratory distress syndrome (ARDS) progresses from hospital admission
oxygen requirement to severe ARDS, requiring in several cases extracorporeal membrane
oxygenation (ECMO), leading eventually to hospital discharge or death [3]. To date, factors
influencing the clinical path of patients in the ICU are not fully elucidated and several
trials are ongoing. For example, the impact of corticosteroids or tocilizumab on the need
for mechanical ventilation and mortality in observational studies remains debated [4].
Our objective was to model COVID-ARDS patients’ clinical path from intensive care
unit admission to the day-60 outcome via a multistate model considering discharge state,
death, need of non-invasive or invasive mechanical ventilation, and ECMO. Then, in an
exploratory analysis, we looked for signal factors that could influence the transition from
one state to another; subsequently, we evaluated the predicted impact of corticosteroid and
tocilizumab/anakinra on the final outcome.

2. Experimental Section
2.1. Study Design and Data Source

We conducted a prospective observational study using data from a multicenter French
database, OutcomeReaTM. Data from 10 French ICUs on admission features and diagnosis,
daily disease severity, iatrogenic events, nosocomial infections, vital state, and, since the
COVID-19 pandemic, several specific clinical and biological data for COVID-19 patients,
were prospectively recorded. Details on data collection and quality are described else-
where [5]. The OutcomeReaTM database was declared to the “Commission Nationale de
l’Informatique et des Libertés” (#999262), in accordance with French law, and this study
was approved by the Institutional Review Board of Clermont-Ferrand. Informed consent
was not necessary since the study did not modify patient management and data were
anonymously processed.

2.2. Study Population

COVID-19 patients aged at least 18, with a laboratory-confirmed SARS-CoV-2 in-
fection through a polymerase chain reaction (PCR) performed between 29 January 2020
and 28 May 2020, were considered for the current analysis. Patients with missing state
at admission and hospital-acquired COVID-19 patients were excluded from the analysis.
Patient life state was recorded daily. In addition, the following variables of ICU admis-
sion were recorded: age (year), body mass index (BMI, kg/m2), Charlson Comorbidity
Index, simplified acute physiology score (SAPS II), number of days in the hospital be-
fore the ICU, number of days from the first symptom to the ICU, leucocytes (109 per L),
lymphocytes (109 per L), C-reactive protein serum level (CRP, mg/L), sequential organ
failure assessment (SOFA) score, and body temperature > 39 ◦C. Moreover, data on the
following antimicrobials or immune-modulatory agents were routinely collected: corti-
costeroids, ritonavir/lopinavir, tocilizumab, anakinra, and hydroxychloroquine. The use
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of tocilizumab or anakinra was grouped in the same variable (i.e., IL-antagonists), due to
the low prevalence of single drug use in the ICU population. Patients were followed from
ICU admission for a maximum of 60 days until death, discharge alive from hospital, or
censoring. A patient was censored if he or she did not reach the maximum follow-up time,
death, or hospital discharge, and in case of missing state during the follow-up; in this case,
the patient was censored at the last available state.

2.3. Statistical Analysis

Categorical variables are reported as frequencies (percentages) and continuous vari-
ables as means (with SDs) or medians (with interquartile ranges (IQRs)), as appropriate.
Continuous variables were categorized according to clinical meaning or by quartiles, as
described in Table S1 of the Supplementary Material. Each category was coded as a nested
variable, i.e., a dummy variable that takes the value of 1 if the variable is at least higher
than the lowest cut-off of the category, and 0 otherwise. This coding was selected to better
interpret the results after the variable selection technique, since more categories can col-
lapse into a single one. Missing value imputations and details about which variable could
not be tested are shown in the Supplementary Material.

We built a multistate model that described the individual path across various states in
a continuous time (in days) setting [6,7]. The following six states were considered: (1) dis-
charge alive from the hospital; (2) discharge alive from the ICU; (3) ICU non-invasive (i.e.,
ICU without mechanical ventilation: high-flow nasal oxygenation (HFNO) or continuous
positive airway pressure (CPAP)); (4) ICU invasive, defined as in the ICU with invasive
mechanical ventilation (barometric and positive end-expiratory pressure (PEEP) ≤ 10 or
volumetric and PEEP > 10); (5) ECMO (i.e., in the ICU with ECMO); and (6) death (Figure 1).
Patients could start in states 3, 4, or 5. States 1 and 6 were called absorbing states, since
once the patient had entered one of them, he would not move anymore. Each day, each
patient was associated with the worst state s/he encountered within that day. Seventeen
possible transitions between states were modeled, using either the Nelson–Aalen estimator
for the cumulative intensities (along with the associated standard errors) in the primary
non-parametric analysis, or via a Cox proportional hazard model with the Breslow method
for handling ties, robust variance, and transitions stratification, in an exploratory semi-
parametric analysis to check possible covariate effect on transitions [8]. In this exploratory
analysis, due to the small sample size available for each transition, we did not perform a
formal causal inference; that is, methods such as inverse probability treatment weighting
(IPTW) were not considered. Single variable analysis was first performed and covariates
associated with a p-value lower or equal to 0.2 were retained for the multivariable analysis.
No interaction was tested (small sample size issue) and, therefore, an additive drug effect
was assumed. Covariates were added only to transitions with more than 10 events and
when all covariate categories could be represented (details in Supplementary Material). A
final parsimonious model was achieved using a stepwise backward–forward selection for
the multivariate analysis using the BIC criterion [9]. The proportional hazards assumption
was tested using the scaled Schoenfeld residuals. Due to the possible computation ap-
proximation instabilities for probabilities of state occupancy, estimated cumulative hazard
functions were linearly interpolated in order to have values in a denser time space. The
complete framework and formulas for probabilities of state occupancy are detailed in the
Supplementary Material. A hazard ratio (HR) with a 95% confidence interval and the
p-value were reported for the final model.
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Figure 1. Multistate model representation. Each arrow corresponds to a possible transition (n = 17).
The number of events associate with each transition is shown near to the corresponding arrow. ICU
= intensive care unit, ICU non-invasive: in the ICU without mechanical ventilation; ICU invasive: in
the ICU with mechanical ventilation, ECMO: extracorporeal membrane oxygenation.

The marginal effect of corticosteroids and IL-antagonists in the ICU population was
predicted using a G-computation “approach.” The probabilities of state occupancy were
computed for each ICU patient in the case of prescribed therapies at admission and in the
counterfactual case of no therapy administered [10]. The average marginal population
effect was then estimated in each of the four possible cases, i.e., corticosteroids and IL-
antagonists given to the ICU population, only corticosteroids, only IL-antagonists, and
neither corticosteroids nor IL-antagonists, along with the corresponding difference in state
occupancy probabilities.

To compute confidence intervals for probabilities of state occupancy resulting from
the exploratory analysis, a probabilistic sensitivity analysis was performed via a Monte
Carlo approximation [11]. Maximum likelihood estimates by the Cox proportional hazard
model were sampled from an asymptotic multivariate distribution, with the mean equal
to the estimated parameters and the variance–covariance matrix given by the estimation
process. One hundred Monte Carlo runs were performed, and confidence intervals were
obtained using 0.025 and 0.975 percentiles. The mean sojourn time (i.e., the average length
of stay at each state) was also computed.

R software (version 3.5), and SAS software (version 9.4) were used for the data analysis.
The survival and mstate [12] R packages were used for the analytic statistics.

3. Results

From a population of 423 recorded COVID-19 patients in the OutcomeReaTM database,
35 patients were excluded since their state was missing at admission and six others were
excluded since COVID-19 was hospital acquired. Thus, 382 patients were included in
the final analysis (Table 1). Overall, 297 were male (77.7%) and their median age was
60.5 (52–70) years. The median duration from first symptoms to ICU admission was
10 (7–12) days, and the median number of days in the hospital before ICU admission was
2 (1–4) days. The patients’ characteristics and drugs administered at ICU admission are
depicted in Table 1. The initial oxygenation state at ICU admission was non-invasive
oxygenation for 243 (63.6%) patients, invasive ventilation for 116 (30.4%) patients, and
ECMO for 23 (6.0%) patients. One hundred and twenty-five (32.7%) patients died before
day 60.
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Table 1. Characteristics in the ICU population (n = 382).

Variable N = 382

Gender, male 297 (77.75%)

Age (year), median [Q1; Q3] 60.5 [52;70]

BMI > 30 kg/m2 136 (35.60%)

SAPS II, median [Q1; Q3] 33 [25;44]

Charlson score > 0 234 (61.26%)

Number of days in hospital before ICU, median [Q1; Q3] 2 [1;4]

Number of days from first symptom to ICU, median [Q1; Q3] 10 [7;12]

SOFA median [Q1;Q3] 5 [4;8]

Minimum PaO2/FiO2 ratio day 1–2, median [Q1; Q3] 105 [77;153.03]

Respiratory system compliance median [Q1; Q3]
(invasively ventilated patients) 36.22 [26.61;49.03]

Leucocytes (×109 per L), median [Q1; Q3] 9000 [6600;12400]

CRP (mg/L), median [Q1; Q3] 158 [95.2;243]

Lymphocytes (×109 per L) median [Q1; Q3] 900 [600;1250]

Temperature > 39 ◦C 107 (28.01%)

Treatments at Day 1

Corticosteroids 97 (25.39%)
Low dose (≤10 mg DXM or equivalent) 30 (7.85%)
High dose (20 mg DXM or equivalent) 67 (17.54%)

Ritonavir/lopinavir 130 (34.03%)

Tocilizumab 26 (6.81%)

Anakinra 24 (6.28%)

Hydroxychloroquine 39 (10.21%)

Heparin (therapeutic) 102 (26.70%)

State at ICU Admission

Non-invasive (Optiflow, CPAP) 243 (63.61%)
Invasive (barometric, volumetric) 116 (30.37%)
ECMO 23 (6.02%)

Mortality Rate
Overall day-60 mortality 125 (32.72%)

Legend: BMI: body mass index, SAPS: Simplified Acute Physiology Score, ICU: intensive care unit, SOFA:
sequential organ failure assessment score, CRP: C-reactive protein level in serum, DXM: dexamethasone, CPAP:
continuous positive airway pressure, PaO2: arterial oxygen partial pressure, FiO2: fractional inspired oxygen.

The stacked probabilities of state occupancy resulting from the non-parametric anal-
ysis are displayed in Figure 2. The predicted probability of being dead at day 60 was
25.9% (95% CI: 21.8–30.0%), 44.7% (95% CI: 48.8–50.6%), and 59.2% (95% CI: 49.4–69.0%)
for a patient starting in ICU with non-invasive oxygenation, with invasive mechanical
ventilation, and with ECMO, respectively. Regarding the whole ICU population, weighting
mean and computing the standard deviation results according to proportion of entrance
states, the predicted probability to be dead at day 60 was 33.6% (95% CI: 28.5–38.7%).
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Figure 2. Stacked plots of predicted probability of state occupancy when starting from ICU non-
invasive, ICU invasive, and ECMO, and in the total ICU population. Legend: ICU: intensive care unit.
ICU non-invasive: in ICU without mechanical ventilation. ICU invasive: in ICU with mechanical
ventilation. ECMO: extracorporeal membrane oxygenation.

Regarding the semi-parametric exploratory analysis, all results were reported in
Table 2. No covariate was significantly associated with the transition from ICU invasive
to hospital discharge or from ECMO to death. Briefly, age, sex, severity scores (i.e., SAPS
II, SOFA, and Charlson score), inflammatory markers, and temperature were associated
with several transitions. Interestingly, corticosteroids decreased the risk of being invasively
ventilated (HR 0.59, 95% CI: 0.39–0.90) and IL-antagonists increased the probability of
being successfully extubated (HR 1.8, 95% CI: 1.02–3.17).

Table 2. Results in term of univariable analysis and final multivariable model.

Variable Transition Univariable Selection
Final Multivariable Model

Transition Hazard Ratio (95% CI) p-Value

Sex 16 None

Age > 50 16 None

Age > 60 6, 11, 12, 13, 14, 16, 17 13 0.14 (0.04, 0.48) 0.002
14 1.55 (0.99, 2.41) 0.054
16 9.84 (4.41, 21.97) <0.001

Age > 70 9 9 7.5 (2.47, 22.76) <0.001

BMI > 25 6, 7, 9 6 1.8 (1.22, 2.66) 0.003

BMI > 30 6, 13 6 0.67 (0.48, 0.93) 0.016
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Table 2. Cont.

Variable Transition Univariable Selection
Final Multivariable Model

Transition Hazard Ratio (95% CI) p-Value

SAPS II > 25 1, 6, 7, 10, 11, 12, 13, 16 1 0.66 (0.51, 0.85) 0.001
6 0.58 (0.41, 0.82) 0.002
7 1.66 (1.11, 2.47) 0.014
13 5.86 (1.24, 27.64) 0.026
16 0.23 (0.08, 0.61) 0.003

SAPS II > 33 7, 13 13 0.4 (0.16, 1.03) 0.058

SAPS II > 44 1, 9, 14 14 1.6 (1.06, 2.41) 0.025

Charlson > 0 1, 6, 10, 14 1 0.75 (0.59, 0.95) 0.017
6 0.64 (0.49, 0.84) 0.001
14 2.23 (1.34, 3.70) 0.002

Charlson > 2 9, 10 None

Number of days in hospital before ICU > 2 6, 7, 11, 12, 14, 16, 17 None

Number of days from first symptoms to ICU> 10 7, 16, 17 None

SOFA > 4 7 7 2.39 (1.71, 3.35) <0.001

SOFA > 5 1, 7, 17 None

SOFA > 8 1, 11, 14, 17 11 0.19 (0.04, 0.78) 0.022
14 1.84 (1.21, 2.81) 0.004

Leucocytes > 6000 (×109 per L) 12, 14, 17 None

Leucocytes > 10,000 (×109 per L) 10, 14, 17 14 0.57 (0.36, 0.89) 0.014

CRP > 150 6, 12 12 0.53 (0.34, 0.81) 0.004

Lymphocytes > 1000 (×109 per L) 1, 6, 10, 12, 14 6 1.49 (1.13, 1.96) 0.005

Temperature > 39 ◦C 7 7 1.98 (1.41, 2.77) <0.001

Corticosteroids 6, 7, 11, 14 7 0.59 (0.39, 0.90) 0.016

Ritonavir/lopinavir 1, 12 None

Hydroxychloroquine 1, 12, 17 None

Tocilizumab/anakinra 1, 11, 12 12 1.8 (1.02, 3.17) 0.043

Heparin (therapeutic) 6 6 0.58 (0.42, 0.81) 0.001

Legend: In the second column, the transitions in which each variable was selected as a risk factor (p-value < 0.2 in univariate analysis)
are shown. Transition coding: (1) from ICU discharge to hospital discharge, (2) from ICU discharge to ICU non-invasive (no covariate
tested), (3) from ICU discharge to ICU invasive (no covariate tested), (4) from ICU discharge to death (no covariate tested), (5) from ICU
non-invasive to hospital discharge (no covariate tested), (6) from ICU non-invasive to ICU discharge, (7) from ICU non-invasive to ICU
invasive, (8) from ICU non-invasive to ECMO (no covariate tested), (9) from ICU non-invasive to death, (10) from ICU invasive to hospital
discharge, (11) from ICU invasive to ICU discharge, (12) from ICU invasive to ICU non-invasive, (13) from ICU invasive to ECMO, (14)
from ICU invasive to death, (15) from ECMO to ICU non-invasive (no covariate tested), (16) from ECMO to ICU invasive, and (17) from
ECMO to death. ICU: intensive care unit. ECMO: extracorporeal membrane oxygenation. ICU non-invasive: in ICU without mechanical
ventilation. ICU invasive: in ICU with mechanical ventilation. BMI: body mass index. SAPS: Simplified Acute Physiology Score. SOFA:
sequential organ failure assessment score. CRP: C-reactive protein.

Stacked probabilities of state occupancy resulting from the G-computation “approach”
for corticosteroid and IL-antagonists are displayed in Figure S1 (Supplementary Material).
The marginal difference in the probability of death at day 60 was 6.1% (95% CI: 1.8–10.1%),
2.8% (95% CI: 0.9–4.6%), and 3.7% (95% CI: 0.5–6.3%) for corticosteroids/IL-antagonists
administered together, only corticosteroids, and only IL-antagonists, respectively, with
respect to the cases without corticosteroid or IL-antagonist administration. The marginal
predicted 60-day mortality probability was 27.3% (95% CI: 21.2–33.8%) and 33.4% (95% CI:
27.1–39.3%) when corticosteroids and IL-antagonists were administered and without their
administration, respectively. When only corticosteroids were administered, the marginal
probability of day-60 mortality was 30.6% (95% CI: 25–36.1%), whereas when only IL-
antagonists were administered, it was 29.7% (95% CI 23.1–36.2%). The probability of state
occupancy at days 10, 28, and 60 are displayed in Table 3 along with the mean sojourn time.
Moreover, plots representing the probability of state occupancy along all follow-up with
confidence intervals are shown in Figure S2.
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Table 3. State occupancy probability and mean sojourn time resulting from the G-computation.

With Corticosteroids and
Tocilizumab/Anakinra

Without Corticosteroids and
Tocilizumab/Anakinra

With Corticosteroids and without
Tocilizumab/Anakinra

Without Corticosteroids and with
Tocilizumab/Anakinra

State Occupation
Probability

(95% CI)

Mean Sojourn in
Days (95% CI)

State Occupation
Probability

(95% CI)

Mean Sojourn in
Days (95% CI)

State Occupation
Probability

(95% CI)

Mean Sojourn in
Days (95% CI)

State Occupation
Probability

(95% CI)

Mean Sojourn in
Days (95% CI)

Day 10
Hospital discharge 13.6 (11, 17.4) 0.5 (0.1, 0.6) 12.3 (10.2, 15.7) 0.5 (0.4, 0.6) 13.5 (10.9, 17.2) 0.5 (0.4, 0.7) 12.4 (10.3, 15.8) 0.5 (0.4, 0.6)

ICU discharge 27 (21.8, 32.5) 1.4 (0.6, 1.8) 22.5 (19.2, 26.1) 1.2 (1, 1.5) 26.2 (21.4, 31.3) 1.4 (1.1, 1.7) 23.5 (19.8, 27.5) 1.2 (1, 1.6)
ICU non-invasive 11 (6.6, 15.2) 3.2 (2.7, 4.8) 7.8 (5, 10.7) 2.8 (2.4, 3.1) 9.4 (5.8, 13.5) 3.2 (2.7, 3.6) 9.7 (6.1, 13.5) 2.9 (2.5, 3.2)

ICU invasive 31.2 (22, 36.6) 3.8 (3.2, 4.3) 39.5 (31.6, 43.4) 4.5 (3.9, 4.8) 33.7 (25.3, 38.8) 3.9 (3.3, 4.4) 36.6 (27.8, 41.8) 4.4 (3.8, 4.8)
ECMO 5.7 (4.1, 11.1) 0.6 (0.5, 0.8) 6 (4.2, 12.2) 0.6 (0.5, 0.9) 5.7 (4.2, 11.2) 0.6 (0.5, 0.9) 5.9 (4.2, 12.1) 0.6 (0.5, 0.9)
Death 11.5 (9.1, 15.4) 0.5 (0.1, 0.7) 11.9 (9.6, 15.5) 0.5 (0.4, 0.7) 11.6 (9.2, 15.5) 0.5 (0.4, 0.7) 11.8 (9.6, 15.5) 0.5 (0.4, 0.7)
Day 28

Hospital discharge 52.2 (44.3, 60.5) 7.3 (2.8, 8.6) 45 (39.4, 51.1) 6.4 (5.5, 7.6) 48.9 (42.5, 55.5) 7 (6, 8.3) 48.8 (41.8, 57.3) 6.8 (5.8, 8)
ICU discharge 13.5 (9.3, 18.4) 4.8 (3.8, 5.8) 11.6 (8.1, 15.8) 4 (3.4, 4.8) 11.8 (8.1, 16.2) 4.4 (3.7, 5.4) 13.5 (9.3, 18.4) 4.4 (3.6, 5.4)

ICU non-invasive 1.7 (0.7, 2.8) 4.2 (3.4, 7.1) 1.3 (0.7, 2.1) 3.5 (2.9, 4.1) 1.3 (0.7, 2.2) 3.9 (3.3, 4.7) 1.7 (0.7, 2.7) 3.9 (3.1, 4.6)
ICU invasive 6.5 (3.5, 10) 6.5 (5, 9.6) 11.3 (8, 14) 8.4 (7, 9.4) 9.6 (6.5, 12.2) 7.3 (5.7, 8.3) 7.8 (4.5, 12.3) 7.6 (6.1, 8.9)

ECMO 1.5 (0.4, 5.2) 1.1 (0.8, 2.2) 2 (0.6, 6.4) 1.2 (0.8, 2.4) 1.8 (0.6, 5.8) 1.1 (0.8, 2.3) 1.6 (0.5, 5.6) 1.1 (0.8, 2.3)
Death 24.6 (19.4, 30.4) 4 (1.9, 5.1) 28.8 (23.4, 34.1) 4.4 (3.6, 5.5) 26.6 (21.7, 31.7) 4.2 (3.4, 5.2) 26.6 (21.1, 32.2) 4.2 (3.4, 5.3)
Day 60

Hospital discharge 68.4 (60.9, 75.1) 27.5 (17.1, 31.2) 60.9 (54.1, 67.3) 24.1 (21.1, 27) 64.2 (57.5, 69.9) 25.8 (22.8, 28.7) 65.7 (58.1, 73.4) 26 (22.6, 29.9)
ICU discharge 3.2 (1.6, 5.5) 6.7 (5.1, 9.8) 3.4 (1.8, 5.8) 5.9 (4.6, 7.6) 3.2 (1.7, 5.6) 6.3 (4.9, 8.1) 3.4 (1.7, 5.8) 6.4 (4.9, 8.3)

ICU non-invasive 0.3 (0.1, 0.6) 4.6 (3.7, 8.3) 0.3 (0.1, 0.6) 3.9 (3.2, 4.6) 0.3 (0.1, 0.6) 4.3 (3.5, 5.1) 0.3 (0.1, 0.6) 4.2 (3.3, 5)
ICU invasive 0.6 (0.2, 1.4) 7.4 (5.5, 13) 1.7 (1.1, 2.6) 10.1 (8.3, 11.4) 1.5 (1, 2.2) 8.7 (6.8, 10) 0.7 (0.2, 1.7) 8.6 (6.8, 10.6)

ECMO 0.2 (0, 1.7) 1.3 (0.8, 3.2) 0.3 (0, 2) 1.5 (0.9, 3.6) 0.3 (0, 1.8) 1.4 (0.9, 3.3) 0.2 (0, 1.8) 1.4 (0.8, 3.3)
Death 27.3 (21.2, 33.8) 12.5 (8.6, 15.4) 33.4 (27.1, 39.3) 14.6 (11.9, 17.4) 30.6 (25, 36.1) 13.5 (11.1, 16.2) 29.7 (23.1, 36.2) 13.4 (10.6, 16.4)

Legend. ICU: intensive care unit. ECMO: extracorporeal membrane oxygenation. ICU non-invasive: in ICU without mechanical ventilation. ICU invasive: in ICU with mechanical ventilation. CI: confidence
interval. Mean sojourn time: mean number of days spent in each state.
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4. Discussion

In a multicenter prospective cohort of ICU patients admitted during the first COVID-
19 pandemic phase in France, using a multistate model, we found that the day-60 outcome
is highly dependent on the first ventilation state upon ICU admission. The day-60 death
rate estimate was 33.6%, varying from 25.9% in patients with non-invasive oxygenation
on admission, 46.1% in patients under invasive mechanical ventilation on admission,
and 60.3% in patients under ECMO. We found that transitions could be associated with
well-known risk factors (i.e., age, Charlson score, SOFA score, inflammatory parameters).
Moreover, corticosteroids seemed to decrease the risk of being invasively ventilated, and IL-
antagonists to increase the chance of being successfully extubated. Using a G-computation
approach, we also estimated the beneficial effect of corticosteroid and IL-antagonist therapy
on day-60 mortality. The day-60 predicted estimate of mortality was 33.4% (95% CI: 27.1–
39.3%) without immune-modulatory therapy and 27.3% (95% CI: 21.2–33.8) with the
combination of corticosteroids and IL-antagonists.

Multistate models provide a reliable analysis of outcomes in severely ill patients and
a clear visual presentation of the clinical path of COVID-19 patients [13]. This modeling
approach also permits an understanding of possible influencing factors and in which part
of the path they may intervene. Two recent meta-analyses revealed that approximatively
28% and 30% of patients admitted to ICU with a severe form of COVID-19 died [14,15]. Our
findings were in line with the results of these meta-analyses, with an estimated mortality
of 33.6% in this specific setting. Moreover, our results were similar to a recent nationwide
analysis from U.S. hospitals that illustrated that the variability in mortality was associated
with various clinical state at ICU admission and several specific patient characteristics (e.g.,
age and sex) or severity of illness score (i.e., SOFA score [16]).

We used a new statistical approach based on high-quality collected data to provide
further evidence of signals in favor of immune-modulating therapies in severely ill COVID-
19 patients. First, corticosteroids appeared to reduce the probability of invasive mechanical
ventilation. This is in line with two randomized control trials (RCTs) that investigated
corticosteroids versus a placebo and showed a benefit of corticosteroids in patients regard-
ing the probability of being intubated [17,18]. The effect on mortality of corticosteroids in
COVID-19 patients remains an open issue. On one hand, a recent meta-analysis showed
an advantage of corticosteroids on mortality [16]; the majority of the efficacy data on
corticosteroids came from a large RCT in the UK in which dexamethasone reduced the
28-day mortality among hospitalized patients compared to the standard of care alone [19].
On the other hand, several RCTs and a large cohort showed a non-significant impact on
mortality of corticosteroids [18,20,21].

Second, IL-antagonists given at ICU admission appeared to increase the probability
of being successfully extubated. Although blocking the inflammatory pathway has been
hypothesized to prevent COVID-19 progression, the efficacy of IL-antagonists in COVID-19
remains debated in the literature. A recent meta-analysis including RCTs and observational
studies showed that tocilizumab may reduce the risk of mechanical ventilation [4]. Low-
certainty evidence from observational studies suggests an association between tocilizumab
and lower mortality [4] that was then confirmed in a preliminary report by an RCT [22].
This was confirmed by other previous meta-analyses, including mostly observational
studies [23,24]. Observational studies that investigated anakinra in COVID-19 patients
showed that use was associated with lower mortality [25]. To our knowledge, there are no
published data assessing a link between the number of ventilator-free days and anakinra.

Third, our study suggested that interrupting the inflammatory cascade may be a
potential therapeutic target for severe COVID-19. Immunomodulation may influence cy-
tokine release syndrome: In this context, an elevated serum concentration of interleukin-6
was observed and was associated with higher levels of SARS-CoV-2 viremia, progression
to mechanical ventilation, and death [26–29]. Indeed, pooling data on immunomodulatory
agents (i.e., corticosteroid, tocilizumab, and anakinra), we predicted a 6% survival benefit.
This effect was already described in another small trial that showed that a course of high-
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dose methylprednisolone, followed by tocilizumab if needed, may accelerate respiratory
recovery, lower hospital mortality, and reduce the likelihood of invasive mechanical venti-
lation [30]. Moreover, another large cohort study showed that the use of corticosteroids
in addition to tocilizumab therapy decreased in-hospital mortality [31]. By contrast, a
meta-analysis on tocilizumab that included mostly observational studies did not show any
additive effects if corticosteroids and tocilizumab were administered together [24]. Our
findings should be interpreted with caution: We performed an observational study and
residual confounding factors cannot be excluded. However, we are convinced that the
combination of immunomodulatory agents should be prioritized in RCT.

Fourth, we observed that therapeutic heparin decreased the probability of being
discharged from ICU non-invasive to ICU discharge. This result should be interpreted
with caution. COVID-19 causes an endothelial dysfunction following endotheliitis after the
direct invasion of endothelial cells [32,33] and, moreover, it can lead to a prothrombotic
state secondary to the strong inflammatory response to infection [34]. These mechanisms
lead to an extensive immunothrombosis: For these reasons, especially severe patients
are more prone to developing thrombosis or pulmonary embolism [33,35,36], which are
associated with severe COVID-19 and high mortality. Therefore, it is not surprisingly that
anticoagulated (i.e., treated with heparin) COVID-19 patients in our analysis may have a
worse prognosis.

Our study has several limitations. First, our analysis was carried on a small sample
size regarding the limited number of events for each transition. For this reason, (i) several
variables were not represented in all transitions; (ii) we were not able to test any interaction,
especially between the various treatments, and, therefore, an additive drug effect was
supposed; and (iii) formal causal inference techniques, such as the IPTW, were not consid-
ered. Indeed, the G-computation approach was used to predict the possible magnitude
of the variable effect on day-60 mortality, and not to generate counterfactual data to be
re-analyzed. Second, the model included only covariates measured at ICU admission (or
at the first two days of ICU when missing at baseline), thus excluding time-dependent
covariates. In this setting, as potential therapy initiation, discontinuation, or switches that
may occur later during follow-up are ignored, we focused on an “intent-to-treat” effect.
Third, the center effect could not be tested since it would lead to an over-parameterization.
Fourth, we did not test differences between the different doses of corticosteroids; moreover,
tocilizumab and anakinra were pooled in the same category, thus simplifying categories
of immunomodulatory agents. We did not pool together IL-antagonists and corticos-
teroids, since corticosteroids influence a wider range of pathophysiological processes than
IL-antagonists and could bring a very dispersive variable. Fifth, we used an underlying
Markov assumption when defining the transition intensity; the probability of transition
depends only on the time and the actual state. This hypothesis was considered a reasonable
compromise between the complexity of the model and the small sample size of the cohort
with respect to the number of transitions. Sixth, we could not investigate the D-dimer
effects due to the high percentage of missing data in our dataset.

Finally, all results (G-computation included) should be interpreted in the context of a
large cohort of ICU in France, thus mitigating the generalization of our results.

5. Conclusions

Using a multistate model based on prospectively collected data from 10 ICUs, we
observed that the day-60 outcome in COVID-19 patients is highly dependent upon the first
ventilation state upon ICU admission. Moreover, we illustrated that corticosteroids and
IL-antagonists may influence the intubation duration and, when administered together,
may favorably impact the 60-day mortality.

Supplementary Materials: The following are available online at https://www.mdpi.com/2077-038
3/10/3/544/s1, Statistical methods details, missing values and imputation procedures, covariate cat-
egorization table and supplementary result figures: Supplementary Material of “Multistate modeling
of COVID-19 patients using a large multicentric prospective cohort of critically ill patients.” Table S1:
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Patients’ characteristic and missing data, Figure S1: Stacked plot of predicted probabilities of state
occupancy resulting from G-computation, Figure S2: Probability of state occupancy plots.
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