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Abstract: Parkinson’s disease (PD) is the second most common neurodegenerative disease. Patients
show deposits of pathological, aggregated α-synuclein not only in the brain but throughout almost
the entire length of the digestive tract. This gives rise to non-motor symptoms particularly within the
gastrointestinal tract and patients experience a wide range of frequent and burdensome symptoms
such as dysphagia, bloating, and constipation. Recent evidence suggests that progressive accumula-
tion of gastrointestinal pathology is underway several years before a clinical diagnosis of PD. Notably,
constipation has been shown to increase the risk of developing PD and in contrast, truncal vagotomy
seems to decrease the risk of PD. Animal models have demonstrated gut-to-brain spreading of
pathological α-synuclein and it is currently being intensely studied whether PD begins in the gut
of some patients. Gastrointestinal symptoms in PD have been investigated by the use of several
different questionnaires. However, there is limited correspondence between subjective gastrointesti-
nal symptoms and objective dysfunction along the gastrointestinal tract, and often the magnitude
of dysfunction is underestimated by the use of questionnaires. Therefore, objective measures are
important tools to clarify the degree of dysfunction in future studies of PD. Here, we summarize the
types and prevalence of subjective gastrointestinal symptoms and objective dysfunction in PD. The
potential importance of the gastrointestinal tract in the etiopathogenesis of PD is briefly discussed.

Keywords: Parkinson’s disease; autonomic; gastrointestinal; constipation; alpha-synuclein; parasym-
pathetic

1. Introduction

Parkinson’s disease (PD) is the second most common neurodegenerative disease
affecting 2–3% of the population above 65 years of age [1]. Slowness of movements
(bradykinesia) in combination with rigidity or tremor constitute the motor symptoms
necessary for a clinical diagnosis [2] but non-motor symptoms (NMS) are numerous and
often burdensome [3].

NMS attributable to the digestive system are particularly common and dysfunction
along the entire length of the digestive tract give rise to symptoms such as dysphagia,
bloating, early satiety, and constipation [4]. Interestingly, constipation may precede PD by
more than a decade [5], supporting the relatively recent hypothesis that PD may in fact
originate in the enteric nervous system and spread to the CNS via the vagus nerve [6].
In support, pathological aggregates of α-synuclein have been detected in gastrointestinal
tissues removed several years prior to clinical diagnosis of PD [7], and epidemiological
studies have shown that truncal vagotomy decreases the risk of PD by 40–50% [8,9]. In
addition, injections of preformed α-synuclein fibrils into the gut wall of rodents leads to
initiation and gut-to-brain spreading of α-synuclein aggregates in a pattern highly similar
to that seen in human patients—and similar findings were seen after exposing the stomach
to the pesticide rotenone [10,11].

Therefore, it is of considerable importance to unravel the etiopathogenic role of the
gastrointestinal tract in PD, and to improve our understanding and assessment methods of
subjective gastrointestinal symptoms and objective gastrointestinal dysfunction.
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This review provides a brief summary of gastrointestinal pathophysiology of PD
and highlights specific gastrointestinal symptoms and objective measures of dysfunction
relevant for further research. The current approaches to treatment of gastrointestinal
symptoms in PD will also be briefly touched upon.

2. Gastrointestinal Pathology in PD

The loss of dopaminergic neurons in the substantia nigra of the brainstem plays a
pivotal role in onset and progression of motor symptoms [2]. The distinctive aggregates of
α-synuclein, now termed Lewy pathology (LP), were first identified by Friedrich Lewy in
1912 and since then, the distribution of LP in PD has been extensively studied [12].

In most patients, the dorsal motor nucleus of vagus (DMV) in the medulla oblongata is
severely affected by LP with a 50% loss of neurons [13–15] and the vagal nerve containing
the visceromotor fibers from the DMV also shows involvement [13]. The density of LP in
the gastrointestinal tract follows a rostro-caudal gradient corresponding to the density of
vagal motor terminals [16] with the lower esophagus and the stomach representing the
most affected areas, while the upper esophagus is spared corresponding to its innervation
by somatomotor fibers from the relatively unaffected ambiguus nucleus [13,17,18]. Only
sparse pathology is found throughout the colon including the distal third of the colon
and rectum that are not innervated by the vagal nerve but by fibers from sacral nuclei
in which LP is also found [13,17,18]. Notably, this rostro-caudal gradient of pathology
is in sharp contrast to the relative magnitude of reported symptoms as constipation and
defecatory problems are more prevalent than dysphagia especially in early disease [19,20].
Constipation may present more than a decade prior to clinical diagnosis [5,21].

The link between the gastrointestinal tract and development of PD is also supported
by the finding that truncal vagotomy lowers the risk of PD when compared to a super-
selective vagotomy in which only a few fibers to the stomach are cut [8,9]. Naturally, these
are observational studies, but the idea of retrograde spreading of pathology in PD, as
initially postulated Braak et al. [6,22,23], has found additional support in animal models
capable of reproducing a formation and spreading of α-synuclein aggregates after injection
of either preformed α-synuclein fibrils into the gut wall or by exposing the gut to the
pesticide rotenone [10,11].

In vivo studies of human intestinal biopsies have found α-synuclein to be frequent
in PD patients compared to controls [24–26]. Interestingly, the appendix vermiformis is a
hot spot of α-synuclein aggregation in healthy adults [27], but conflicting epidemiological
studies of appendectomized individuals’ risk of PD later in life has raised doubts about the
importance of appendicular α-synuclein aggregation in the development of PD [28–30].
Importantly, the pathological studies have been cross-sectional and do not clarify whether
the pathology is spreading from one gastrointestinal hot spot prior to disease as in the
aforementioned animal models. Additionally, the specificity and sensitivity of α-synuclein
staining may be suboptimal and further limited by insufficient availability of full-thickness
gastrointestinal tissue making such human longitudinal in vivo studies difficult [31,32].

The intestinal mucosa, only millimeters away from the enteric nervous system (ENS),
is exposed to not only environmental toxins but also potentially toxic microbial metabolites
creating high demands for the epithelial barrier, which could be potential trigger factors
for initiating PD [33]. Interestingly, exposure to Escherichia coli producing the protein
curli enhances the aggregation of α-syn in aged Fischer rats [34]. Furthermore, in a
transgenic mouse model of PD with overexpression of α-synuclein it was demonstrated
that colonization of germ-free mice with microbiota transplants from PD patients enhance
the development of physical impairments compared to microbiota transplants from healthy
volunteers [35]. Studies of the human microbiome in PD have recently been reviewed
elsewhere [36] and although some studies point to interesting differences suggestive of a
pro-inflammatory microbiome in PD patients the findings are heterogenous and mainly
from cross-sectional studies of manifest PD. Elevated levels of pro-inflammatory markers
such as IL-1α have also been found in stool samples when comparing PD patients with
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controls [37]. Furthermore, levels of zonulin in stool samples were also found to be elevated
in PD indication a degradation of intestinal tight junctions in PD [38]. Signs compatible
with increased intestinal permeability (leaky gut) in PD was demonstrated in a small sample
of 9 PD patients and 7 controls. That study found that the gastrointestinal permeability for
sucralose, but not lactulose or mannitol, was increased in the PD group [39]. In support
of the role for gastrointestinal inflammation in PD is the finding that inflammatory bowel
disease increases the risk of PD later in life [40]

Ideally, these hypotheses about the etiology of PD should be tested in longitudinal
human studies, but as it is inherently difficult to study the silent onset of pathology this has
so far not been possible. However, a peculiar sleep disorder characterized by disruption of
the normal atonia during REM-sleep together with dream enactment has gained interest.
Nearly all people with this sleep disorder, called REM-sleep behavior disorder (RBD),
progresses to manifest PD or the highly similar condition dementia with Lewy bodies
(DLB) within 15 years [41]. The disorder arises as a consequence of damage to certain nuclei
in the pons and is the strongest prodromal marker of PD [42]. Remarkably, patients with
RBD display a greater density of gastrointestinal LP than patients without [43]. Likewise,
loss of cardiac sympathetic innervation and colonic acetylcholinesterase in RBD cases have
been shown to be comparable to that of diagnosed PD patients, although the dopaminergic
system in the RBD cases was still intact [44]. Consequently, it has been proposed that RBD
represents a prodromal biomarker of a gastrointestinal, body-first onset of PD [45].

Overall, widespread pathology of the gastrointestinal tract is indeed present already
in prodromal stages of PD at least in a considerable fraction of cases. Yet, there are no
longitudinal studies in humans to confirm the idea of a gastrointestinal onset of disease,
but the relevance of gastrointestinal symptoms and objectives measures of dysfunction is
clearly present.

3. Gastrointestinal Symptoms in PD

A wide range of NMS in PD arise from the gastrointestinal tract and several question-
naires have been developed to quantify the symptoms including the Scales for Outcomes
in Parkinson’s Disease—Autonomic [19,46] (SCOPA-AUT), the Non-Motor Symptoms
Scale [47,48] (NMSS) and the Non-motor Symptoms Questionnaire [49] (NMSQuest). These
are validated for use in PD and all include a section on gastrointestinal symptoms.

3.1. Upper Gastrointestinal Symptoms

Dysphagia in PD involves difficulty in the initiation and efficient completion of
swallowing leading to decreased pace and comfort of eating and a reduction in quality of
life [50,51]. Swallowing impairments might also contribute to malnutrition and weight loss
and the occurrence of aspiration pneumonia constitute a major cause of death in PD [50].

Swallowing can be divided into an oral, pharyngeal, and esophageal phase. Generally,
complaints of oropharyngeal dysphagia, e.g., difficulties swallowing or choking, are present
in 35% of patients with a clear tendency to increase in prevalence and severity with disease
progression [52]. Thus, marked dysphagia is often considered a late symptom of PD
while severe dysphagia in early disease raises the suspicion of an atypical Parkinsonian
disorder [2]. The presence of substantial dysphagia is not always reported by patients,
but significant predictors of dysphagia include advanced clinical disease stage, drooling,
significant weight loss, or body mass index below 20 [53]. Notably, drooling is a very
common and troublesome feature of PD. However, it is not a consequence of hypersecretion
of saliva, as the secretion is often decreased, but occurs when swallowing is impaired or
infrequent causing accumulation of saliva in the mouth [54].

Oropharyngeal dysfunction includes inadequate mastication, poor formation of the
bolus, difficulties in initiating swallowing, and choking as a sign of aspiration. As such, it
has been considered as a motor symptom rather than a non-motor symptom. Accordingly,
it often improves upon initiating medication [55] and it also improves during the on-state
of medication even in the presence of dyskinesias [56,57]. Whether isolated esophageal
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dysfunction gives rise to distinct symptoms is unclear, although dysfunction of the lower
esophageal sphincter might contribute to gastroesophageal reflux [52].

Symptoms attributed to gastroparesis are common in PD. Bloating and abdominal
fullness has been reported by up to 50% of patients, while nausea and vomiting are reported
by 15% [58,59]. Yet, rapid gastric emptying known as gastric dumping has also been
reported [60]. Gastroparesis and gastric dumping are possible etiologies for unpredictable
absorption of L-dopa with delayed onset of effect from anti-Parkinson medications as well
as rapid effect resulting in dyskinesias.

Small intestinal bacterial overgrowth (SIBO) is a condition with increased bacterial
density in the small intestines and has also been associated with disturbances in absorption
and effect of anti-Parkinson medications. Furthermore, the condition is suspected to cause
bloating, abdominal discomfort, and diarrhea [61]. However, these symptoms can also
arise directly because of progressive neurodegeneration of the enteric and autonomic
nervous system in PD, and the relative contribution from SIBO to the development of such
symptoms is unclear.

3.2. Lower Gastrointestinal Symptoms

Infrequent bowel movements and straining during defecation are key symptoms of
constipation [62]. Additionally, the perception of incomplete rectal emptying, abdominal
discomfort, and pain that may be relieved by defecation are also attributable to consti-
pation [63]. Studies of constipation are hampered by the lack of standardization and
more than 10 different definitions of constipation have been applied in the PD literature
alone [62].

The most frequently used definition of constipation is “less than 3 bowel movements
per week,” which is used by the SCOPA-AUT and NMSS questionnaires, while “straining”
alone is sufficient to fulfill the definition of constipation in the NMSQuest. A common
feature of these widely used questionnaires is the aim of measuring the full burden of NMS
in PD and not constipation in detail. Better suited for the latter is the Rome Functional
Constipation questionnaires [63,64]. Although it has not been validated for use in PD, it
provides a more detailed and quantifiable measure of constipation symptoms as is also the
case with the Cleveland Constipation Scoring System [65].

A recent meta-analysis found that 40–50% of PD patients report less than 3 bowel
movements per week compared to ~15% of matched controls [62]. However, the prevalence
estimates in individual studies ranged from 8% to 70% in patients and from 0% to 34% in
healthy controls underlining the questionable reliability associated with symptom-based
investigations of constipation. This substantial variance is not only a consequence of
different settings and questionnaires but possibly also aggravated by individuals slowly
getting accustomed to symptoms as they develop over time. A significant recollection
bias when reporting bowel movement frequencies as found by Ashraf et al. [66] may
also contribute to the variance. Notably, a definition based purely on bowel movement
frequency will also tend to overlook the presence of constipation if the patient suffers from
co-existing diarrhea as seen when watery stools leak around a blockage of hard stool in
cases of fecal impaction [67].

Interestingly, a meta-analysis has found that constipation in otherwise healthy adults
increases the risk of subsequent PD diagnosis [5]. This association was present with an
OR of 2.13 even in those patients whose constipation preceded the diagnosis of PD by
more than 10 years [5]. The finding is supported by a more recent study of a large Danish
cohort [21]. Similarly, constipation is frequent in RBD cases [68] and the prevalence is
higher in PD patients with RBD than those without [69]. The causal mechanisms behind
this association are unclear but might be related to pathological processes affecting the
ENS and the DMV prior to recognizable loss of motor function.

Anorectal symptoms are very common in PD with straining being one of the most
commonly reported gastrointestinal symptoms in PD. The prevalence of straining is ~70%
in PD compared to around 40% in controls while incomplete emptying is reported by ~55%
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of patients and 28–42% of controls [19,20]. The considerable burden of anorectal symptoms
in PD is further substantiated by the finding that 66% of early PD patients report defecatory
symptoms, whereas only 29% reported a weekly bowel movement frequency of fewer than
3 times [70].

In summary, PD patients frequently suffer from a variety of gastrointestinal symptoms,
although these symptoms remain difficult to define and measure using questionnaires.
Consequently, objective measures are needed to assess functional disturbances of the
gastrointestinal tract in order to advance our understanding of the underlying pathologies.

4. Objective Measures of Gastrointestinal Dysfunction

Gastrointestinal dysfunction can sometimes be subclinical, so measurable dysfunction
is often more frequent than the corresponding subjective symptoms assessed by ques-
tionnaires. The following section covers the principles behind the most useful objective
measures and summarizes key findings.

4.1. Swallowing Dysfunction

Successful swallowing involves complex voluntarily initiated movements followed by
reflexes involving motor as well as sensory neurons of somatic and visceral origin [50,71].
As such, the basal ganglia are involved primarily in the oral and pharyngeal phase of
swallowing during which the bolus is formed and by coordinated effort of striated mus-
cles transported to the top of the esophagus [50,71]. The visceral fibers of the vagal
nerve innervate the lower third of the esophagus [72]. The DMV and the vagal nerve are
among the earliest and most severely affected structures in PD and show marked involve-
ment in most patients [13]. LP has also been found in the peripheral pharyngeal nerve
fibers [73,74] although the ambiguus nucleus innervating the pharyngeal muscles and
the upper esophagus is relatively unaffected by LP [13,72]. Consequently, oropharyngeal
and lower esophageal dysfunction are inherently different from a functional as well as a
neuropathological perspective in the context of PD.

Oropharyngeal dysfunction can be visualized using fiberoptic endoscopic evaluation
of swallowing (FEES) and by videofluoroscopic swallowing studies (VFSS). These methods
are suitable for evaluating risk of aspiration in relation to different food consistencies and
liquids being swallowed during visualization [50]. In PD, abnormalities during FEES are
reported in as many as 95% of patients with residues being the most common finding (93%)
but also with a significant finding of aspiration in 16% of asymptomatic PD patients [75].

These methods do not sufficiently evaluate esophageal dysfunction and thus, high-
resolution manometry (HRM) compliments the use FEES and VFSS. HRM is performed
by passing a thin pressure-sensitive tube through the nose to the stomach. Using HRM
and FEES Suttrup et al. examined 65 PD patients of different disease stages and reported
that 95% of cases had measurable impairments of esophageal motility [76]. These changes
were seen almost evenly across all stages of disease and was without clear association
to the FEES scores of oropharyngeal dysphagia [76]. Esophageal motility can also be
evaluated by esophageal scintigraphy where a radioactively labeled bolus is swallowed
during the dynamic recording of gamma emission. Using this principle Potulska et al.
found significantly prolonged lower esophageal transit times suggestive of dysfunctional
esophageal peristalsis in agreement with the findings of Suttrup et al. [77].

4.2. Stomach Dysfunction

Symptoms of gastroparesis are commonly associated with PD but the results from
studies of objective gastroparesis are conflicting and methodological differences make
individual studies difficult to compare [60].

Solid meal scintigraphy is considered the gold standard for estimating gastric empty-
ing time (GET) [74]. After ingestion of a standardized meal containing 99mTc the emitted
gamma radiation is measured by serial images recorded by a gamma camera (Figure 1) [78].
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Figure 1. Gastric scintigraphy images at 0, 30 and 120 min after ingestion of a radioactive solid meal.
(A). Healthy control with normal gastric emptying time. (B). Parkinson’s disease (PD) patient with
severely delayed gastric emptying time compatible with gastroparesis. (C). PD patient with rapid
gastric emptying suggestive of ”gastric dumping” (compare the image taken at 30 min. to the image
from A taken at 120 min.).

A meta-analysis of studies using gastric scintigraphy in PD found a non-significant
trend towards prolonged GET in PD patients [60]. However, the trend reached statistical
significance after post-hoc exclusion of one outlier study.

Scintigraphy requires specialized facilities and exposes the patient to radiation but
provides a reliable biomechanical measure of gastric emptying rate. Alternatively, a
breath test using a meal containing 13C-sodium octanoate is an indirect measure of gastric
emptying based on the subsequent measurements of expired 13CO2 [61]. This estimate is
dependent not only on gastric emptying but also on small intestinal absorption and hepatic
metabolism of the tracer [60]. This notion is supported by a comparative study of healthy
individuals which found that the results of the breath test could not simply be adjusted
to fit the results of the scintigraphy even though both methods are reproduciable within
each subject [79]. Theoretically, small intestinal dysmotility and malabsorption, bacterial
overgrowth, and changes in liver metabolism can all interfere with results of the breath
test [60]. In this light, it is worth noting that most studies using the breath test reported
prolonged GET in PD patients compared to controls [60].

Interestingly, the breath test has been used to study a broader spectrum of disease
stages. Unger et al. found prolonged GET estimates in untreated PD but not in iRBD [80]
whereas Epprecht et al. found no difference between early-stage PD patients in the off-state
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and controls [81]. Collectively, this suggests that the disturbances giving rise to pathological
parameter estimates on breath tests are not a feature of prodromal PD but develops at later
disease stages.

The GET may also be influenced by anti-Parkinson medications, and administration
of levodopa to healthy individuals have been shown to delay GET [82,83]. A solid meal
scintigraphy study by Hardoff et al. found no difference in GET between mild and moderate
disease stage PD patients and likewise, no difference between treated and untreated PD
patients [84]. However, studies investigating the association between GET and motor
fluctuations in PD patients treated with levodopa have yielded conflicting results [84,85].
In a study using breath tests to compare GET before and 3 months following initiation
of deep brain stimulation in the subthalamic nucleus (STN-DBS) found no significant
difference when comparing the pre-operative, off medication condition with the pre-
operative on medication condition—indicating that levodopa administration does not
affect GET [86]. However, a marked decrease in GET was demonstrated in the post-
postoperative on medication-on stimulation condition compared to the pre-operative on
medication condition suggesting a positive effect of STN-DBS on gastric emptying.

Whether the heterogenicity in gastric emptying time is influenced by more distal
dysfunction has not been investigated, but chronic rectal distension due to defecatory
disturbances could induce a cologastric reflex causing a delay in GET. To our knowledge,
this has only been demonstrated in individuals without PD [87,88].

Novel methods to study stomach dysfunction in PD have introduced new measures
of dysfunction and shown promising results. An MRI-based imaging study observed
decreased emptying of gastric volume in PD patients with early satiety and dyspepsia.
Additionally, decreased total gastric volume and decreased gastric motility was reported in
patients with dyspepsia [89]. Another study used an electromagnetic capsule system to
study gastric motility in PD patients and found prolonged GET compared to controls but
similar frequency of gastric contractions indicating normal functioning of the intestinal
cells of Cajal [90]. These methods are yet to be validated in PD but offer the possibility of
repeated measurements in the same individuals without exposure to radiation.

In summary, it is not possible to make firm conclusions about the frequency and
magnitude of gastric dysmotility in PD, since the seemingly compelling results from
13C-sodium octanoate breath tests are prone to measuring other disturbances different
from gastric emptying per se. However, the disturbances underlying these findings are
noteworthy and further studies are needed to shed light on the association with symptoms
and small intestinal dysfunction.

4.3. Small Intestinal Dysfunction

In comparison to the stomach and colon, very few studies have explored small intesti-
nal dysfunction in PD.

Bacterial overgrowth of the small intestines is most often defined as above 105 colony
forming units (CFU) per milliliter of jejunal fluid acquired by endoscopic aspiration [61].
Alternatively, breath tests can demonstrate the presence of bacteria in small intestine by
measuring the concentration of H2 in expired air following the intake of glucose or lactulose.
Breath test provides a lower sensitivity (60–70%) and specificity (40–80%) when compared
to jejunal aspiration [91] but are non-invasive and therefore used very frequently. However,
the interpretation of breath test results is an area of ongoing discussion and the method is
not fully validated [61].

In a study of PD patients, the prevalence of SIBO was investigated using both glucose
and lactulose breath tests. Here, the SIBO prevalence was 54.5% in PD patients and 20% in
controls with most cases being positive on only one of the two tests [92]. Another study
used only glucose breath tests but reported a similar prevalence among PD patients and
a prevalence of 8% among controls [93]. Interestingly, the former study found a higher
frequency of delayed-on and increased daily off times [92] in patients with SIBO suggesting
that SIBO could contribute to abnormal absorption of levodopa. Furthermore, a study by
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Tan et al. found the presence of SIBO to be associated with worse motor symptoms [94].
A possible contributing factor to this is the finding that small intestinal enterococcus
species may inactivate levodopa via decarboxylases [95,96]. Along the same line, infection
with helicobacter pylori (HP) is associated with worse motor symptoms [97,98] and in
epidemiological studies, HP infection has been linked to development of PD later in life [99].
Substantially improved motor function has been observed after eradication [98,100], but
a recent randomized, controlled trial of HP eradication in infected PD patients did not
find any improvement of motor or nonmotor symptoms at weeks 12 and 52 following
eradication [101].

Small intestinal transit has been investigated using different ambulatory systems
comprised of an ingestible capsule and a wireless data receiver [102–104]. These studies
reported a delay in small intestinal transit time in PD compared to matched controls,
although the magnitude of delayed transit was less marked than that seen in the colon. In
support, studies of colonic transit time which uses ingested radiopaque plastic markers
(ROM) sometimes report the presence of ROM in the small intestine 24 h after ingestion of
the last capsule [105]. Such findings are a clear indication that upper GI tract transit can be
severely impaired in some PD patients.

4.4. Colonic and Anorectal Dysfunction

Mechanistically, constipation can be separated into slow transit constipation due to
prolonged colonic transit time (CTT) and outlet obstruction caused by dyssynergia of rectal
muscles [106]. Presumably, outlet constipation is related to anorectal symptoms such as
straining and incomplete emptying while prolonged colonic transit may be closer related
to decreased frequency of bowel movements.

Objective measures of CTT are widely available and the most commonly used tech-
nique is based on the visualization of ingested radio-opaque markers (ROM) using ab-
dominal x-ray (Figure 2) [107]. Typically, one capsule containing 10 ROMs is ingested
for 6 consecutive days (a total of 60 markers) followed by an abdominal x-ray on day 7
revealing the number of retained markers. When this protocol was used with a cut-off of 25
markers for males and 29 markers for females, 80% of Parkinson’s patients had prolonged
CTT [105]. Specifically, the retention of markers is predominantly in the rectosigmoid part
of the colon suggesting that outlet obstruction is a substantial contributor to the finding
of CTT in PD [108,109]. Importantly, the correlation between objectively prolonged CTT
and subjective symptoms as measured by questionnaires is generally poor [105,110,111].
Notably, the frequency of bowel movements seems to be a worse predictor of prolonged
CTT than other symptoms such as bloating and use of an enema or manual evacuation of
feces [109].
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Figure 2. Abdominal x-ray topograms visualizing the retention of radio-opaque markers in the gastrointestinal tract as
an objective measure of colonic transit time (CTT). (A). Healthy control with an estimated CTT within the normal range.
(B). Parkinson’s disease (PD) patient with an estimated CTT near the mean for PD patients. (C). PD patient with severely
prolonged CTT.

Similarly, a study using a magnetic 3D-Transit system found no correlation between
constipation and neither small intestinal nor colonic transit times, although both measures
of intestinal transit were prolonged in the PD group compared to controls [102]. Evaluation
of total and regional colonic volumes is possible when an abdominal CT-scan is performed,
and with this method increased total colonic volume was demonstrated in a group of
22 iRBD cases compared to 26 controls [68]. Notably, the difference in total colonic volume
was statistically stronger than the corresponding difference in colonic transit times as
measured by radio-opaque markers as well as magnetic 3D-Transit capsule. The robustness
of colonic volumetric measures was also utilized in a study comparing newly diagnosed
PD patients. Here, a highly significant increase in colonic volume was detected in PD
patients with RBD when comparing to PD patients without RBD [45].

Anorectal dysfunction in isolation or in combination with prolonged CTT is proba-
bly a major contributor to constipation in PD. Several approaches have been utilized to
study different aspects of anorectal dysfunction including defecography, electromyography
(EMG), balloon distension tests, and rectal manometry. Generally, studies of anorectal
dysfunction in PD have used heterogeneous methods, small sample sizes, and often with-
out control groups. In brief, incomplete emptying with dysfunction of the puborectalis
muscles and paradoxical contraction of the external anal sphincter or lack of inhibition has
been demonstrated by defecography and manometry, respectively [112,113]. Paradoxical
sphincter contraction on defecation together with incomplete emptying have also been
demonstrated in another study using rectoanal videomanometry [108]. Rectal sensitivity of
urge was found to be normal in a study of unselected PD patients [113,114], while another
study points to the possibility of rectal hypersensitivity in constipated PD patients [110].
Balloon expulsion tests in 35 PD patients, who did not fulfill the ROME-III criteria for
defecatory dysfunction (DD), demonstrated abnormal expulsion in 27 of 35 cases compared
to 24 of 35 in otherwise healthy adults fulfilling the criteria for DD [115]. Once again, these
findings highlight the often poor correlation between subjective symptoms and objective
measures [62]. Interestingly, no differences were found on manometry between early and
late PD patients suggesting that significant dysfunction is present early in the disease [115].
In support, another study used manometry and reported a similar prevalence of pelvic
floor dyssynergia of approximately 60% in early as well as in late PD [114].

Recent studies used 11C-donepezil PET/CT (Figure 3) to measure cholinergic den-
ervation in the GI tract of PD patients and reported decreased cholinergic signal in the
small intestine and particularly in the colon [116,117]. Interestingly, similar magnitudes of
decreased colonic signal are seen in iRBD patients, suggesting that cholinergic denervation
is already manifest in the prodromal phase [44]. Although 70% of enteric neurons are
cholinergic, the loss of cholinergic PET signal in the intestines is best compatible with
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parasympathetic denervation, since it is known that the DMV shows severe pathology and
cell loss in PD, whereas no significant loss of enteric neurons has been detected [118].
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It is well documented that PD patients show very dramatic sympathetic denervation
of the heart [119,120]. Nearly all iRBD patients show the same profound loss of cardiac
sympathetic signal, signifying that this subtype of prodromal PD show involvement of
the autonomic system before the brain is markedly affected [45,121–123]. However, the
importance of sympathetic denervation for gastrointestinal dysfunction is presently unclear
and no studies have documented sympathetic denervation of the intestines in PD.

5. Treatment of Gastrointestinal Symptoms in PD

Recent review papers have provided detailed recommendations for treatment of
gastrointestinal symptoms in PD [124,125]. Thus, treatment strategies will only be briefly
summarized here.

For the treatment of drooling, behavioral modifications such as chewing gum have
been suggested [54] as this may increase the rate of swallowing. An anticholinergic such
as glycopyrrolate may give or exacerbate constipation and urinary retention, and local
treatment options including oral atropine solutions and hyoscine patches as well as parotid
and submandibular botulinum toxin injections are therefore often favored [124,125]. Other
medications with anticholinergic properties might also be useful although evidence of their
efficacy is limited.

For oropharyngeal dysphagia, the positive effects of optimized anti-Parkinson treat-
ment on symptom severity is well established [55–57]. If symptoms persist, a speech and
language therapist may initiate swallowing treatment with the use of methods aimed at
the individual patient’s difficulties—often based on objective evaluations such as fiberoptic
endoscopic evaluation of swallowing [50].

Treatment of gastroparesis in PD is complex as the diagnosis cannot be made from
symptoms alone and since pharmacological treatment is associated with a substantial
risk of adverse effects. The prokinetic dopamine receptor antagonist domperidone is
possibly useful for treatment of nausea and delayed gastric emptying in PD, since it does
not cross the blood-brain barrier in contrast to metoclopramide [124]. Future treatment
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options might include the use of a gastric pacemaker as this has shown promising results
in scintigraphy-confirmed gastroparesis caused by diabetic neuropathy [126].

SIBO is treatable with antibiotics and can lead to a reduction in motor fluctuations in
some patients [61,92]. Eradication of SIBO using empirical antibiotic treatment has been
demonstrated in populations without PD although recurrence rates of up to 44% after
9 months have been reported [61]. Theoretically, antibiotic treatments of SIBO impose a risk
of generating resistant gastrointestinal infections and disturbance of colonic microbiota [61].
Clearly, there is a need for further studies evaluating the effects of SIBO eradication in PD.

For constipation, lifestyle modifications such as exercise and gradually increased fiber
and fluid intake are often advised for the general population with functional constipa-
tion [127]. Although this has not been specifically investigated in PD patients, it is often
recommended for this population as well [124]. Several studies have investigated the
effects of pharmacological treatments of constipation in PD [124] and support the use of
the bulk-forming psyllium [110], PEG (Macrogol) containing osmotic laxatives, and the
chloride channel activator Lubiprostone [124]. Recently, a randomized controlled trial
investigated the effects of a daily capsule containing a multi-strain probiotic supplement in
PD patients and demonstrated an increase in spontaneous bowel movements in the treated
group [128]. Furthermore, the patient-reported treatment satisfaction was 65.6% in the
treated group compared to 21.6% in the placebo group supporting not only the feasibility of
probiotic supplements in PD but also the possible interconnection between the microbiome
and constipation. Specifically aimed at outlet constipation, biofeedback therapy has shown
promising results in other patient populations [129,130] and ultimately, botulinum toxin
injections into the puborectalis muscle have been found to be effective in PD patients with
outlet constipation [131,132].

6. Conclusions

In conclusion, subjective gastrointestinal symptoms are common in PD and the preva-
lence of objectively measured dysfunction is even higher. Oropharyngeal dysphagia is
often asymptomatic during the early stages, and since it improves with levodopa treatment,
it is often viewed as a motor symptom. The prevalence and magnitude of delayed gastric
emptying is unclear since findings in solid meal scintigraphy studies indicate that gastric
emptying is only marginally delayed in early-to-moderate stage PD. Breath test studies
generally report a more significant delay in gastric emptying of PD patients, but further
studies are needed to clarify the extent to which small intestinal dysfunction and perturbed
liver metabolism contribute to these observations.

Small intestinal bacterial overgrowth and altered microbiome in PD patients are
active fields of investigation and highlight the complex interplay between microbiota
and gastrointestinal dysfunction. Constipation is among the most common non-motor
symptoms in PD, but research in this field is hampered by a lack of standardization and
the symptoms of anorectal dysfunction are often missed. Additionally, the prevalence of
objective colonic dysfunction in terms of delayed colonic transit and anorectal dysfunction
far exceeds the reported frequency of subjective constipation and indicates that the gut is
affected in the vast majority of PD patients.

Looking forward, studies of prodromal cases such as those with iRBD may provide
important insights into the sequence of events behind the development and progression of
PD. Additionally, further clinical trials are needed that specifically test tailored treatments
of gastrointestinal symptoms in well characterized groups of PD patients.
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