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Abstract: Background: The aim of this study was to evaluate the performance of an automated
COVID-19 detection method based on a transfer learning technique that makes use of chest computed
tomography (CT) images. Method: In this study, we used a publicly available multiclass CT scan
dataset containing 4171 CT scans of 210 different patients. In particular, we extracted features from
the CT images using a set of convolutional neural networks (CNNs) that had been pretrained on
the ImageNet dataset as feature extractors, and we then selected a subset of these features using
the Information Gain filter. The resulting feature vectors were then used to train a set of k Nearest
Neighbors classifiers with 10-fold cross validation to assess the classification performance of the
features that had been extracted by each CNN. Finally, a majority voting approach was used to
classify each image into two different classes: COVID-19 and NO COVID-19. Results: A total of
414 images of the test set (10% of the complete dataset) were correctly classified, and only 4 were
misclassified, yielding a final classification accuracy of 99.04%. Conclusions: The high performance
that was achieved by the method could make it feasible option that could be used to assist radiologists
in COVID-19 diagnosis through the use of CT images.
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1. Introduction

In March 2020, the new coronavirus (COVID-19) pandemic was declared by the World
Health Organization (WHO). As of now, there have been about 239 million confirmed cases
of COVID-19, including more than 4 million deaths, according to the WHO [1]. The main
common symptoms of COVID-19 include fever, dry cough, and tiredness. Since the virus
may cause pneumonia as well as breathing difficulties or shortness of breath, chest pain or
pressure, and loss of speech or movement in more aggressive infections, many healthcare
systems around the world have suffered a breakdown, especially in terms of their intensive
care units [2,3]. The gold standard for COVID-19 diagnosis is the nucleic acid kit for
reverse transcription-polymerase chain reaction (RT-PCR) [4]. However, this method has
several limitations, including false negatives (low sensitivity) [5,6], variability in diagnostic
accuracy over the disease course [7], and a limited testing capacity in many countries [8].
Additionally, the ability of RT-PCR to detect COVID-19 strictly depends on the viral load.
Medical imaging methods such as chest X-rays (CXR) and computer tomography (CT) can
play a significant role in the diagnosis of COVID-19 [9,10], especially when they are used in
combination with RT-PCR. In fact, they are very useful for monitoring disease progression
and thus for optimizing the treatment strategy for the patient. CXR is a fast, cheap imaging
method that is commonly used for the diagnosis of pneumonia worldwide [8,9]. It is less
invasive than CT since it requires a lower dose of radiation. CXR is essential to evaluate
pneumonia, pleural effusion, or pulmonary edema in COVID-19 patients, but its sensitivity
in diagnosing COVID-19 is quite low [11]. CT is a medical imaging method that is based on
X-rays and consists of many two-dimensional slices that allow high-resolution 3D images
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of the investigated body tract to be obtained through the application of a reconstruction
algorithm. Chest CT is also widely used to diagnose COVID-19 because it seems to provide
better diagnostic accuracy compared to CXR [12]. Although it is a new emerging disease,
the intense research activity on the imaging data that can be obtained from COVID-19
patients that has been performed since the beginning of this pandemic has identified
the imaging characteristics of COVID-19 [10]. CT findings include bilateral pulmonary
parenchymal ground-glass and consolidative pulmonary opacities, sometimes with a
rounded morphology. Furthermore, chest-CT scans have revealed incidental findings that
are consistent with COVID-19, even in patients without respiratory symptoms [13]. The
analysis of a CT scan requires an expert radiologist and takes about 10 min. This is a
tedious and repetitive task that may cause doctors to experience mental fatigue, and it does
not allow fast detection or screening in large-scale investigations. Furthermore, it has been
demonstrated that the interpretation of CT images for COVID-19 diagnosis that have been
made by radiologists do not have high sensitivity [14]. For these reasons, novel approaches
have been proposed in order to find automated methods to detect COVID-19 in CT images.
All of these approaches use artificial intelligence (AI) techniques, particularly those that
are derived from machine learning (ML), which are considered to be a prominent tool for
the prediction and diagnosis of numerous diseases [15]. In recent years, many research
groups have tried to address the need for automated COVID-19 detection by proposing
machine learning approaches that are based on clinical neuroimaging data. Although there
are many studies that make use of CXR [16–18] or both image types (CXR and CT) [19,20],
we only reported studies that make use of chest CT images, because these images are more
accurate in COVID-19 diagnosis [12]. Shan et al. [21] proposed a deep learning-based
segmentation system for quantitative infection assessment. The method includes the auto
contouring of infection regions and the estimation of shape, volume, and percentage of
infection, achieving Dice similarity coefficients of 91.6 ± 10.0% between automatic and
manual segmentations, demonstrating a dramatic reduction in the time needed to delineate
the infection compared to the manual approach. Alshazly et al. [22] used a number of
different deep network architecture with transfer learning and conducted extensive sets
of experiments to optimize the performance of the models on two different CT image
datasets; the best model achieved an average accuracy of 99.4% and 92.9% on the two
datasets. Xu et al. [23] used multiple CNN models to classify CT image datasets in two
classes, namely COVID-19 and Influenza-A viral pneumonia, and to calculate the infection
probability of COVID-19, achieving an overall accuracy of 86.7%. Wang et al. [24] proposed
a deep learning algorithm using CT images to screen for COVID-19 during the influenza
season using a transfer learning neural network that was based on the Inception network.
Gozes et al. [25] presented a system that utilized both 2D and 3D deep learning models,
modifying and adapting existing AI models to classify coronavirus and non-coronavirus
cases. These authors achieved classification results of 0.996 AUC (Area Under the ROC
Curve), with a sensitivity ranging from 96.4% to 98.2% and specificity from 92.2% to 98%.
Hasan et al. [26] proposed a DenseNet-121 Convolutional Neural Network to classify
and identify COVID-19 patients from CT images, achieving an accuracy of 92% with 95%
recall. Rohila et al. [27] presented a method that could be used to detect varying degrees of
COVID-19 infection from full chest CT scans by using a deep CNN model with ResNet-
101, achieving an overall accuracy of 94.9%. Soares et al. [28] proposed an eXplainable
Deep Learning approach (xDNN) that used a dataset that contained 2482 CT scans in
total, 1252 CT scans that were positive for SARS-CoV-2 infection, and 1230 CT scans for
patients who were not infected with SARS-CoV-2, achieving an F1 score of 97.31%. Loddo
et al. [29] presented a method in which they first compared different architectures on a
public and extended reference dataset to find the most suitable one, and then proposed
a patient-oriented investigation to determine which network had the best performance.
Finally, they evaluated their robustness in a real-world scenario, which was represented by
cross-dataset experiments. They achieved 98.87% accuracy in their network comparison,
95.91% accuracy for patient status classification, and 70.15% accuracy in the real-world
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scenario. In this paper, we present a method that makes use of chest CT images taken
from a publicly available dataset [28] in order to conduct an automated classification of the
images in two classes, namely COVID-19 and NO_COVID-19. The method consists of the
following steps:

1. A feature extraction step using a set of convolutional neural networks that have been
pretrained on the ImageNet dataset [30]. ImageNet is a large, publicly available
database of natural images with 1000 object classes that was specifically created for
computer vision and, more recently, has been widely used for deep learning and
transfer learning research. There are more than 1.2 million training images, 50,000
validation images, and 100,000 test images that are available in the database with
relative annotations. The images are mostly in the JPG file format and vary in size.

2. A feature selection step that uses the information gain filter.
3. Training of the generated models using machine learning approaches.
4. A model selection step.
5. Classification of CT images into one of two classes using a majority voting approach.

2. Materials and Methods
2.1. Dataset

In this study, we used a publicly available multiclass CT scan dataset [28] that con-
tained 4171 CT scans of 210 different patients, out of which 2167 correspond to 80 patients
who were infected with SARS-CoV-2, a diagnosis that had been confirmed by RT-PCR.
These data were collected at the Public Hospital of the Government Employees of Sao Paulo
(HSPM) and the Metropolitan Hospital of Lapa, both in Sao Paulo, Brazil. The dataset is
composed of CT scans in the png format that have been divided into 757 CT scans from
healthy patients (15 CT scans per patient on average), 2167 CT scans from patients infected
by SASR-CoV-2 (27 CT scans per patient on average), and 1247 CT scans from patients
with other pulmonary directions (16 CT scans per patient on average). As our goal was to
develop a method that would be able to distinguish CT images of COVID-19 patients from
those of NO_COVID-19 patients, we decided to gather CT scans of healthy patients and
of patients with other pulmonary diseases together in one group in order to simplify the
training step. As a result, we created a balanced dataset that composed of 2167 CT scans
with the COVID-19 label and 2004 CT scans with the NO_COVID-19 label.

2.2. Proposed Approach

The analysis of the whole dataset with all the 4171 CT images began with the separate
use of N Deep Neural Architectures that had been pretrained on the ImageNet dataset,
which is freely available through the TensorFlow framework [31], with the main goal
of extracting different N sets of features. We chose to use the ImageNet dataset and
transfer learning due to their increasing use in deep learning research and in many papers
describing automated COVID-19 detection methods [25,28]. Once the N sets of features
had been obtained, we performed a feature selection step, which was useful to reduce
the dimensions of the dataset, by using the information gain filter [32], which is based on
information entropy, which is widely used in ML. This filter will be described in detail in
Section 3.1.

Then, a model was induced, where 90% of each set of features was used for the training
set; its performances, e.g., its accuracy, was evaluated by applying the cross-validation
method [32] with 10 folds, which allows models to be trained and evaluated when using
small datasets. The remaining 10% of the examples was used for the final evaluation. In
order to select the best deep neural architectures, the k-nearest neighbors (k = 1) (k-NN)
algorithm was applied to the different N datasets of features by using the 10-fold cross
validation technique. The M (M ≤ N) selected k-NN results were thus used for the final
tests on the M Test Sets. Finally, the M k-NN classifications were included in an ensemble
for a majority vote, and the performances of a set of independent images (the remaining
10% of the whole dataset) was presented for final testing; in particular, each image of the
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test set was classified according to the M k-NN, and it was assigned to the cored class
(COVID-19 or NO_COVID-19) by majority. A summary of the steps that were used in our
method is shown in Figure 1.
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2.3. Transfer Learning

Transfer learning (TL), also called inductive transfer, knowledge transfer, or learning
to learn [33], is an ML method that allows the domains, tasks, and/or data distributions
that are used in training and testing phases to be differentiated. TL is a method that utilizes
the knowledge that is achieved by a learning model after considering a specific problem
to solve a distinct but similar task [34]. This transferred knowledge can be applied to a
new dataset, the size of which is usually insufficient to train a new accurate model from
scratch. Some authors [35] have defined three main different TL sub fields that are based
on different conditions among the sources and the target domains and tasks, as reported in
Table 1.

Table 1. Transfer learning subsettings.

Subsetting
Name Description Label Information

1 Inductive TL the target task is different, but related,
from the source task

comes from the target
domain

2 Transductive
TL

the source and target tasks are the same,
while the source and target domains are

different

comes from the source
domain

3 Unsupervised
TL

the target is different from, but related to,
the source task, and the focus is on solving
unsupervised learning tasks in the target

domain

is always unknown for both
the source and the target

domains

TL approaches can be divided into four main groups [33]:

1. Instance-based: Mainly refers to instance weighting strategy.
2. Feature-based: Transforms the original features to create a new feature representation.
3. Parameter-based: Transfers the knowledge at the model/parameter level.
4. Relational-based: Focuses on the problems in relational domains. This approach

transfers the logical relationship or rules learned in the source domain to the target
domain.

TL has been applied in many domains and application fields for many tasks. In recent
studies, TL has been used in combination with the use of deep learning [36], for example,
by means of convolutional networks (CNNs), where the method needs an initial training of
a net for a given task using a large dataset. For example, in [17], the authors proposed an
application of a TL method in the medical field that was aimed at the automatic detection
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of a COVID-19 infection from chest X-ray images. Since few chest images from infected
patients were publicly available, the authors used different architectures of CNNs to apply
a TL method.

The architectures of the networks were trained on ImageNet [30], and after being
adapted to be feature extractors for the chest X-ray images, the proposed method achieved
an accuracy of 98.5% by combining the extracted features with a classifier based on a sup-
port vector machine algorithm. This approach is called feature extraction for TL [37], where
the extracted features are used in a new model later on that will process its classification.
As such, the accessibility of a considerable set of data is the main factor that can guarantee
the success of the training phase, and the use of large datasets for the initial training of the
neural networks enables high performance in smaller or poorer datasets. Moreover, the
feature extraction that is achieved with TL allows a large number of features to be extracted
by generalizing the problem and by avoiding excessive customizations and adjustments.

2.4. Convolutional Neural Networks (CNNs)

Currently, CNNs have achieved state-of-the-art performance in computer vision tasks
such as object recognition, image classification, and image segmentation. In these networks,
the analysis of the input image proceeds through several layers of convolutional filters.
The elements of the matrices that are implementing these filters are calculated during the
training process, maximizing the performance of the network on the training dataset. In
this adaptation lies the strength and flexibility of convolutional networks. A convolutional
layer extracts those characteristic elements, called features, which are useful in the analysis
process, from its input. A layer of the network implements many different convolutional
filters and collects them into a so-called feature map. A convolutional layer may be followed
by a pooling layer: a window of a predetermined size is scrolled along the layer output,
and the values that are contained in it are replaced by their average (average pooling)
or by the maximum element (max pooling). The pooling layers make the network more
robust with respect to translations and reduce its output size. After the last convolutional
or pooling layer, the feature maps are collected into a single one-dimensional vector of
features that can be used as a unique descriptor of the content of the entire image. This
vector is then used as the input of a classical, fully connected neural network that can be
used for classification. The typical architecture of a CNN is showed in Figure 2.
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Varying the number of convolutional and pooling layers, the number of filters in the
feature maps and the way in which the layers are connected results in a wide variety of
CNN architectures [38–45].

In general, training a CNN from scratch requires a large number of labelled images
that can be used for training that may not be available for the problem at hand. This
limitation can be at least partially overcome by using a network that has already been
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trained on a large dataset and that has been deprived of the final classification layers as a
feature extractor (transfer learning).

In this work, we use a number of different CNN architectures that have been pre-
trained as features extractors on the ImageNet dataset for the classification of CT scans in
COVID and non-COVID classes. The dataset that we used contains images of different
sizes. This is not a problem for convolutional and pooling layers, but it does produce
vectors of features with different lengths as the output. Since classification algorithms
expect the input vectors to be of a fixed size, we added a global max-pooling layer to every
CNN that we used after removing the classification layers, which gives the max output
values of the feature maps in the last layer of the convolutional network, fixing the size of
the output vectors of the features.

2.5. K-Nearest Neighbor and Majority Voting Approach

The classifications were compared, and a majority voting rule was defined for the
assignment of the final class. Therefore, instead of running the risk of picking an unsuitable
or not very accurate classifier, an ensemble model can be used to achieve “better” results.
The idea is that no single model or criterion can truly capture the optimal classification
(or class separation rules), but a collective of models can provide a more robust final
classification. As is often quoted in the literature [32,46,47], a classifier that is based on the
majority voting method often achieves better performance than the performance of a single
component method.

In this work, the classifiers (or the ensemble components) were trained using the
k-NN algorithm, fixing k = 1, by considering different datasets of extracted features. For
the sake of clarity, k-NN is instance-based or a lazy learner, and it does not require model
training: all pf the samples that belong to the training set are memorized, and all of
them are considered to classify every test sample, computing the distances individually
between the test and all of the training samples. For this reason, k-NN is also classified
as a memory-based learner, and the procedure does not gain a classifier as output. In
more detail, it only starts working during the testing phase to compare the given test
observations with the nearest training observations. The k-NN algorithm is one of the most
commonly used methods in data mining (DM) due to its simplicity and high performance
in many applications. It has gained popularity through the work of Aha [48]. k-NN
is widely used in many ML and DM tasks, such as classification, motif discovery, and
anomaly detection. It has shown excellent results in several application domains and in
a large number of classification problems, including satellite image scenes, handwritten
digits, ECG patterns, web search, spell checking, and fraud detection. It is often successful
cases where the decision boundaries are very irregular [49]. The algorithm represents a
classification method that is based on learning by analogy, in which a new object is labeled
based on its closest (k) neighboring objects (points). It is based on the simple assumption
that similar inputs are usually related to similar outputs. In other words, in the simplest
case where k = 1, the class of the instance that is most similar, or close, to the new vector
is used as the output class. If k > 1 and k is odd, then the output class is assigned to the
new instance by considering the majority of the k class of the k nearest instances. The
algorithm computes the distances between each point in the test set and all of the points
of the training set in order to achieve its nearest-neighbor list. “Analogy” (or “closeness”,
or “nearness”) is usually defined in terms of Euclidean distance, but other choices are
possible [50].

3. Results
3.1. Feature Extraction and Selection

The analysis of the whole dataset containing the 4171 CT images begins with the
separate use of 26 deep neural architectures, which are listed in Table 2, with the main
goal of extracting 26 different sets of features. Once we obtained these 26 sets of features,
we performed a feature selection step, which was useful to reduce the dimensions of the
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datasets. This was performed using the information gain (IG) filter, which evaluates the
worth of an attribute by measuring the information gain with respect to the class. We
chose all of the features X for which IG(X) > 0. The IG can be calculated by the following
formula [32]:

IG(Class,Attribute) = H(Class) − H(Class|Attribute)

where H is the information entropy (or Shannon entropy), which can be calculated with
the following formula:

H(X) = −
n

∑
i=1

p(xi) log(p(xi))

Table 2. Number of selected features by information gain for each deep neural network.

N Deep Neural
Network

Maximum Value
of Information

Gain

N. of
Original
Features

N. of
Selected
Features

Percentage
Reduction of

Features by IG

1 DenseNet121 0.145 1025 930 9.27%
2 DenseNet169 0.162 1665 1488 10.63%
3 DenseNet201 0.165 1921 1669 13.12%
4 EfficientNetB0 0.203 1281 1159 9.52%
5 EfficientNetB1 0.160 1281 1202 6.17%
6 EfficientNetB2 0.187 1409 1314 6.74%
7 EfficientNetB3 0.207 1537 1431 6.90%
8 EfficientNetB4 0.141 1793 1598 10.88%
9 EfficientNetB5 0.164 2049 1903 7.13%
10 EfficientNetB6 0.181 2305 2074 10.02%
11 EfficientNetB7 0.157 2561 2315 9.61%
12 InceptionResNetV2 0.126 1737 1533 11.74%
13 InceptionV3 0.186 2049 1899 7.32%
14 MobileNet 0.175 1025 829 19.12%
15 MobileNetV2 0.144 1281 889 30.60%
16 MobileNetV3Large 0.116 1281 1080 15.69%
17 MobileNetV3Small 0.111 1025 849 17.17%
18 ResNet50 0.333 2049 1735 15.32%
19 ResNet50V2 0.150 2049 955 53.39%
20 ResNet101 0.204 2049 1717 16.20%
21 ResNet101V2 0.183 2049 797 61.10%
22 ResNet152 0.284 2049 1665 18.74%
23 ResNet152V2 0.206 2049 1518 25.92%
24 VGG16 0.156 513 404 21.25%
25 VGG19 0.184 513 440 14.23%
26 Xception 0.138 2049 1071 47.73%

The minimum value of IG for each dataset was equal to 0. The reduction in the
number of features varied from 6.17% for EfficientNetB0 to 61.1% for ResNet101V2. Table 2
summarizes the number of features that was selected by applying the IG for each deep
neural network (and therefore for each dataset).

3.2. Model Training

The hold-out method was applied. In this strategy, each of 26 feature datasets with
labeled examples was partitioned into two disjoint subsets, called the training set and
the test set. A model was induced from each training set, which comprised 90% of the
whole dataset; its performances, e.g., its accuracy, which is the ratio between the number of
correctly classified instances and the total amount of instances, was evaluated by applying
the cross-validation method with 10 folds, which allows models with small datasets to be
evaluated. The remaining 10% of the examples was used for the final evaluation. For the
sake of clarity, the test sets were made up of feature vectors that resulted from the same
set of images. In order to select the best deep neural architectures, the k-NN (fixing k = 1)
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algorithm was applied for the training phase on the 26 different datasets of features by
using the 10-fold cross validation technique.

The average accuracies of the 26 classifiers are showed in Table 3.

Table 3. Average accuracies of the 26 classifiers.

Average Accuracy
= 90.4548%

Average Accuracy
= 91.5502% (without
InceptionResNetV2)

N Name Accuracy of k-NN (k = 1)
10-Fold Cross Validated

Accuracy of k-NN (k = 1) on
10% Test Set

1 DenseNet121 93.4186% 93.3014%
2 DenseNet169 92.5926% 94.7368%
3 DenseNet201 91.3403% 90.1914%
4 EfficientNetB0 95.2038% 95.933%
5 EfficientNetB1 96.7493% 96.6507%
6 EfficientNetB2 93.6318% 94.7368%
7 EfficientNetB3 93.7393% 96.1722%
8 EfficientNetB4 92.8058% 93.5407%
9 EfficientNetB5 91.8732% 91.3876%
10 EfficientNetB6 88.5159% 87.5598%
11 EfficientNetB7 92.3261% 94.0191%
12 InceptionResNetV2 78.737% 77.2727%
13 InceptionV3 88.5425% 88.756%
14 MobileNet 90.9406% 90.6699%
15 MobileNetV2 91.3669% 93.7799%
16 MobileNetV3Large 88.5425% 90.1914%
17 MobileNetV3Small 84.3858% 83.7321%
18 ResNet50 95.3637% 96.1722%
19 ResNet50V2 81.1617% 81.5789%
20 ResNet101 94.1913% 93.5407%
21 ResNet101V2 86.2776% 84.9282%
22 ResNet152 94.1114% 96.89%
23 ResNet152V2 84.0927% 85.6459%
24 VGG16 94.7509% 93.3014%
25 VGG19 94.5377% 95.933%
26 Xception 82.6272% 85.4067%

3.3. Model Selection

The k-NN algorithm was used also to select the best M (M ≤ N) neural architectures or,
equivalently, the M datasets of the features. Thus, the M datasets were selected through the
use of an arbitrarily selected accuracy threshold of 80% of correctly classified instances. As
such, the k-NN algorithm was applied with a dual purpose: to obtain the M classification
rules using the concept of proximity and also to select the best M neural architectures and
therefore the M datasets of features. Only one of the neural architectures (InceptionRes-
NetV2) among those that were considered did not meet the chosen criterion (accuracy
threshold of 80%). The accuracy of the remaining 25 classifiers on the independent test
set (10% of the whole dataset of CT images) varied from 81.5789% to 96.6507%, with an
average accuracy of 91.5502%. These 25 k-NNs were used for final tests on the 25 test sets.

3.4. Classification

Finally, the 25 k-NN classifiers were included in an ensemble for a majority vote,
and the performances of a set of 414 independent images (the remaining 10% of the
whole dataset) were presented for final testing; in particular, each image of the test set
was classified by each of the 25 k-NNs, and its final class (COVID-19 or NO_COVID-
19) was assigned by majority. Considering the 25 k-NNs as components of an ensemble
classification model and by assigning the class label with the majority voting method, we
obtained a meta-classifier (ensemble classifier) of 99.0431% accuracy, a value that was higher
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than those of the accuracies of the singular components (Table 3). In particular, 414 images
from the test set (10% of the complete dataset) were correctly classified, and only 4 were
misclassified. In particular, the final model showed two false positives (two false alarms
or two CT scans incorrectly classified as containing COVID-19 infection) and two false
negatives (two CT scans incorrectly classified as not containing COVID-19 infection). The
confusion matrix of the final ensemble model is shown in Table 4, where TP is the number of
true positives, FP is the number of false positives, FN is the number of false negatives and,
finally, TN is the number of true negatives. As reported in Tables 3 and 4, the ensemble
meta-classifier produces better results than the individual classification components do.
Many performance metrics [32] can be calculated from the confusion matrix. The most
common as well as the most useful for model comparisons are shown in Table 5, where the
values of our meta-classifier are also reported.

Table 4. Confusion matrix on test set.

YES NO Classified as

YES TP = 215 FN = 2
NO FP = 2 TN = 199

Meta-Classifier Accuracy 99.04%

Table 5. Performance metrics of the meta-classifier on test set.

Symbol Performance Metric Definition as What Does It Measure? Value

CCR Correctly Classified
instance Rate—Accuracy

(TP + TN)/(TP + TN + FP +
FN)

How good the model is at
correctly predicting both positive

and negative cases
0.9904

TPR True Positive
Rate—Sensitivity—Recall TP/(TP + FN) How good the model is at

correctly predicting positive cases 0.9908

FPR False Positive
Rate—Fall-out FP/(FP + TN) Proportion of incorrectly classified

negative cases 0.010

PPV Positive Predictive
Value—Precision TP/(TP + FP)

Proportion of correctly classified
positive cases out of total positive

predictions
0.9908

AUC ROC Area Area under the ROC curve Area under plot of TPR against
FPR 0.997

4. Discussion

The described study presents an automated method that can be used to detect COVID-
19 infections from chest CT scans by using deep learning-based approaches. Specifically, we
used 26 pre-trained deep neural architectures for feature extractions, an information gain
filter to select a subset of the previously extracted features for each dataset, and the k nearest
neighbors (k = 1) algorithm for target class detection and model comparison and selection.
A total of 25 of the 26 models achieved the arbitrarily determined accuracy threshold for
correctly classified instances of 80%. The selected 25 k nearest neighbors classifications
were also used as the ensemble components for a majority voting approach that was able
to classify each input image into two different classes: COVID-19 and NO_COVID-19.
Although the dataset contained three different classes of subjects (COVID-19, healthy, and
subjects with other pulmonary diseases), we decided to group the images of healthy subject
and those of patients with other pulmonary diseases into one class (NO_COVID-19) in order
to have a balanced dataset. Thus, we did not test the ability of this method to discriminate
between COVID-19 and other pulmonary disease. We achieved an ensemble classification
accuracy of 99.04%, which is greater than the accuracies of each of the models 25 individual
components. Moreover, the results that were achieved by the proposed method (Table 5)
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exceed the results of all of the other works that make use of chest CT images. In particular,
our technique appears to be better since it exhibits a very low percentage of misclassified
images (see Table 6).

Table 6. Related works for COVID-19 infection detection.

Author ML Approach Data Source Transfer
Learning

Achieved
Performance

Alshazly et al. [22]

Pre-trained SqueezeNet,
Inception, ResNet, ResNeXt,

Xception, ShuffleNet and
DenseNet CNN with fine tuning

2482 CT images + 746
CT images Not Declared

Accuracy: 99.4% and
92.9% on the two

datasets

Xu et al. [23]
ROI segmentation with 3D CNN

+ Classification with ad hoc
ResNet-18 CNN

618 CT images No Accuracy: 86.7%

Wang et al. [24] Pre-trained Inception CNN with
fine tuning 1065 CT images Not Declared

Accuracy: 79.3%
Recall: 83%

Specificity: 67%
AUC: 0.81

Gozes et al. [25] Pre-trained ResNet-50 CNN
with fine tuning 206 patients CT scans ImageNet AUC: 0.996

Hasan et al. [26] DenseNet-121 CNN 2482 CT images No Accuracy: 92%
Recall: 95%

Rohila et al. [27] Ad hoc deep learning network
based on ResNet-101

1110 patients CT
scans

Yes, but no
ImageNet Accuracy: 94.9%

Soares et al. [28] xDNN (eXplainable Deep
Neural Network) 2482 CT images ImageNet

Accuracy: 97.4%
Recall: 95.53%

Precision: 99.16%
AUC: 0.9736

Loddo et al. [29]

Pre-trained AlexNet, Residual
Networks, ResNet18, ResNet50,

ResNet101, GoogLeNet,
ShuffleNet, MobileNetV2,

InceptionV3, VGG16 and VGG19

470 + 194,122 Chest
CT images No

Accuracy: 98.87% (nets
comparison)

95.91% (patient status
classification)

Our
approach

Pre-trained CNNs, k Nearest
Neighbors with 10-fold cross
validation, majority voting

approach

2482 CT images Yes ImageNet

Accuracy: 99.04%
Recall: 99.08%

Precision: 99.08%
AUC: 0.997

Our approach is different with respect to other similar approaches since we used CNN
models that had been pretrained using the ImageNet dataset alone and without any fine
tuning and simple KNN models in an ensemble, which greatly reduced the computational
burden of the training phase, which is a critical parameter in a clinical setting. In fact,
the time needed for the analysis of a single CT image was about 19 s on average, with a
minimum of 8 s for the smallest images to a maximum of 28 s for the largest. The CNNs that
were used were implemented using the TensorFlow framework on a laptop with Intel(R)
Core (TM) i7-8665U CPU, 16 GB RAM, with no discrete graphic card. Considering the very
high performance that was achieved by our method and the very low computational times,
we strong believe that with a few improvements, it could provide a reliable and accurate
method that could help radiologists and clinicians during the diagnostic process. First,
our method does not perform any kind of pre-processing on the input images, and this
could affect the performance of the method because it is well-known that it is important
to pre-process imaging data in order for the model to provide more efficient analysis and
better consistency. Furthermore, the proposed method did not perform any fine tuning,
which could greatly improve the performance of the model; thus, in future developments of



J. Clin. Med. 2021, 10, 5982 11 of 13

our methodology, we will include an ad hoc fine-tuning feature for all or for a subset of the
considered neural architectures. We did not perform any fine tuning in order to reduce the
computational time that was required to make a decision because our goal was to search
for a method with a good trade-off between performance and computational burden. Since
our method is useful for the selection of the most promising neural architectures that are
able to detect COVID-19 infection, we plan to only consider the neural architectures with
the highest performances in future work in order to apply a fine-tuning step, which would
also serve to evaluate the use of a different machine learning algorithm, instead of the KNN
approach. In our work, the ensemble of pre-trained neural architectures showed better
performances (Tables 4 and 5) than those of the singular components (Table 3). This result
could suggest that the high performances that were achieved by our methodology could
also be due to the choices that were made via majority voting; moreover, this approach also
differentiates our method from those that were examined in related works (Table 6). Finally,
the dataset that was used in this study is not big since it contains about 4000 CT images,
and the number of the patients to which such images belong to is limited. Increasing the
amount of data would improve any deep learning model. Thus, in the future, we plan to
test our method in larger COVID-19 research databases acquired from different sources in
order to improve the performance of the model and to make the methods more generalized.
In fact, for the feature extraction step, we used 26 deep neural architectures that had been
trained on the ImageNet dataset. Since this dataset is not specific for the diagnosis of
COVID-19, we think that training these architectures on a large dataset that is specifically
designed for COVID-19 diagnosis would improve the performance of our method. Finally,
the lack of clinical data that are associated with the images did not allow us to investigate
the effects of the clinical characteristics of the patients on the performance of the method,
and we plan to carry out such an investigation in future studies.
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