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Abstract: The future of healthcare is an organic blend of technology, innovation, and human con-
nection. As artificial intelligence (AI) is gradually becoming a go-to technology in healthcare to
improve efficiency and outcomes, we must understand our limitations. We should realize that our
goal is not only to provide faster and more efficient care, but also to deliver an integrated solution to
ensure that the care is fair and not biased to a group of sub-population. In this context, the field of
cardio-cerebrovascular diseases, which encompasses a wide range of conditions—from heart failure
to stroke—has made some advances to provide assistive tools to care providers. This article aimed
to provide an overall thematic review of recent development focusing on various AI applications
in cardio-cerebrovascular diseases to identify gaps and potential areas of improvement. If well
designed, technological engines have the potential to improve healthcare access and equitability
while reducing overall costs, diagnostic errors, and disparity in a system that affects patients and
providers and strives for efficiency.

Keywords: healthcare; artificial intelligence; cerebrovascular diseases; cardiovascular diseases;
cardio-cerebrovascular diseases; machine learning

1. Introduction

Artificial intelligence (AI) focuses on how computers learn from large and complex
datasets by mimicking the human thought process. AI has the potential to accelerate
the field of precision medicine by helping practitioners to calculate the risk, guide the
treatment, predict the outcome, and close the care gap using scalable computational
resources and advanced algorithms applied to a growing body of data and knowledge.
AI can be specifically designed to improve clinical care and increase efficiency in drug
discovery [1]. Carefully designed and implemented electronic health record (EHR)-AI
embedded tools and applications can save valuable time and assist practitioners with
critical decision-making at the point of care. AI can potentially improve health disparity
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and address implicit bias. Machine learning (ML), an application of AI, provides systems
with the ability to learn from data and experiences [2].

Cardio-cerebrovascular diseases, a leading cause of mortality and disability in the
United States and worldwide [3,4], have been targeted by big data science and AI ap-
plications. Furthermore, with growing vascular risk factors, trends in mortality and
complications will be increasing [5]. Many large studies in cardiovascular medicine use AI
to provide a promising set of assistive tools to cardiologists and push the boundaries of
translational science. Cardiovascular and cerebrovascular diseases share many predictors,
pathophysiology processes, among others [6–8]. However, big data and advanced predic-
tion modeling have not been studied in the same way in the cardio and cerebrovascular
fields. Our intent in this work was to perform a review of the recent AI-enabled applica-
tions developed for cardiovascular and cerebrovascular conditions for different stages of
care management (Figure 1).

Figure 1. Stages of the care management where artificial intelligence (AI) can add value in cardio and cerebrovascular fields.

2. Methods

We conducted a comprehensive literature search to extract original contributions
in the various areas of AI application in cardio-cerebrovascular diseases published be-
tween 2017–2020. We defined cardiovascular diseases as ischemic heart disease, heart
failure, myocardial infarction, and hypertrophic diseases, excluding arrhythmias, infiltra-
tive cardiomyopathies, and genomics. Cerebrovascular diseases were defined as stroke
(hemorrhagic/ischemic), thrombosis, and cerebral aneurysmal disorders, excluding ge-
nomics. The detailed search criterion is outlined in Figure 2. We examined 256 articles in
the field of cardiovascular medicine and included 44 studies in this review article. Similarly,
we reviewed 235 studies in cerebrovascular diseases and included 29 studies in this review.
We assessed the reporting quality of the studies based on the TRIPOD (transparent report-
ing of a multivariable prediction model for individual prognosis or diagnosis) statement
for including studies in this review [9]. We further divided the studies based on the clinical
application; pre-diagnostic, diagnostic/ imaging, and post-diagnostic. Other developing
areas of AI research, such as AI in clinical trials and subtyping, AI-powered clinical decision
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support systems, as well as application of AI in reducing health disparity and implicit bias,
have also been briefly discussed.

Figure 2. Flowchart for inclusion of studies in the review article.

3. Results

A total of 73 cardio-cerebrovascular studies were identified and included in this review.
More specifically, 29 studies were cerebrovascular, while 44 studies included cardiovascular
diseases (Tables 1 and 2), with the majority of the cerebrovascular study designs being
single-center and retrospective. The reviewed studies were divided into the following
categories: Risk stratification modeling (11 cardiovascular, 5 cerebrovascular), Diagnostic
studies (4 cardiovascular, 5 cerebrovascular), Outcome prediction and prognosis (18 car-
diovascular, 6 cerebrovascular), Treatment strategies (3 cardiovascular, 2 cerebrovascular),
and Diagnostic imaging studies (8 cardiovascular, 10 cerebrovascular). Tables 1 and 2
provide a detailed description of the included studies categorized as mentioned above.
The text that follows will further subcategorize the studies to better dissect the various
fields of application of AI. The pertinent subsections are also mentioned in the tables to
improve readability.

3.1. Application of AI in Pre-Diagnosis Modeling: Primary Prevention

(a) Risk Estimation

Risk assessment tools are becoming more salient in the era of precision medicine.
EHR and administrative databases in conjunction with advanced applications of AI have
been the driving force behind primary prevention strategies for cardiovascular and related
conditions (Table 1). Some of the noteworthy applications using ML for risk estimation
included an improved prediction of cardiovascular risk factors in patients with no prior risk
factors [10], prediction models of long-term risk of MI and cardiac death in asymptomatic
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patients [11], and using ML to identify cardiovascular disease risk factors in patients with
no initial indications [12,13]. Researchers also looked at the association of biomarkers such
as hemoglobin A1c (HbA1c) and thyroid-stimulating hormones, and the use of machine
learning (support vector machine, SVM) to identify participants who later developed
coronary heart disease [14]. Another study utilized AI-enabled tools in imaging to evaluate
the prediction of major cardiovascular events in asymptomatic patients [15]. Predicting sur-
vival via ML utilizing echocardiography and CT angiogram (CTA) has also been attempted
with promising results [16,17]. Four large-scale studies, mainly from Asian countries, have
focused on estimating the risk of cerebrovascular disease (Table 2) [18–21]. These studies
have sought to estimate the risk of stroke in patients with atrial fibrillation. Cerebrovascular
studies on risk stratification are mostly retrospective and suffer from limited diversity and
smaller sample sizes compared to cardiovascular studies. For instance, in some cardiovas-
cular studies, existing clinical trials have been leveraged (MESA cohort [22] and EISNER
trial [23]) with rich extended longitudinal follow-up data (up to ten years); cerebrovascular
studies, on the other hand, have a relatively narrower timeline (up to two years).

(b) Clustering and Patient Profiling Before Event

Researchers have used ML to group cardiovascular patients based on coronary artery
disease (CAD) severity [24], ischemia scoring [25], obstructive disease [26], and coronary
stenosis [27]. ML has also been used to discriminate between healthy individuals and pa-
tients with impaired functional reserve due to heart failure with preserved ejection fraction
(HFpEF) [28]. With regard to cerebrovascular disease, investigators have implemented
ML to improve aneurysm detection with time-of-flight MR angiography [29]. Patient
clustering has numerous potential benefits for the patients and the health system. Besides
cardiovascular and cerebrovascular diseases, patient profiling has been valuable in other
complex diseases [30–34].

(c) Care Gap Identification and Personalized Prevention

Identification of care gaps in medical management is an important potential field
for ML with high clinical value. This field is not fully developed in either cardio or
cerebrovascular diseases and can be a potential new venue for exploration and advanced
application of AI for improving the quality of care and resource optimization.

In the period of studies collected for this article, only four studies were identified
to concentrate on minimizing the healthcare gap. On the cardiovascular front, ML has
been used to develop a risk calculator to aid with the initiation of statin therapy for CAD,
which can potentially minimize future cardiovascular events in the affected patients [13].
By reclassifying CTA results, ML has been successful in better predicting existing ischemia
and distinguishing that from subclinical coronary stenosis [27]. One cerebrovascular study
to use ML for closing the care gap focused on better detection of cerebral aneurysms in MR
angiography image data [29]. Karlsson et al. assessed an ML-powered clinical decision
support system (CDSS) for stroke prevention in a randomized clinical trial on patients
with atrial fibrillation (AF). The study corroborated that the CDSS can increase guideline
adherence for anticoagulation therapy among these patients [35].

Personalized prevention is another area with potential clinical value. Thus far, ML
has only been utilized to predict obstructive coronary disease on myocardial perfusion
imaging as a directive for preventive action at an individual level [26].

3.2. Application of Computational Algorithms in Diagnosis and Acute Phase Treatment

(a) Emergency Medical Services (EMS) Proper Referral

Quality of recovery, in both MI and stroke patients, is dependent on the time from
symptoms to intervention [36–38]. AI can aid in shortening this time window and im-
proving treatment outcomes. However, there are technological barriers, including access
to real-time patient data for model prediction, that make this space complex in terms
of its implementation. For instance, in a study by Potter and colleagues, computational
algorithms were used for developing an AI-aided system to more promptly identify and
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refer STEMI patients for cardiac catheterization during the EMS encounter [39]. Using this
method for "physician-less" cardiac catheterization lab activation was safe and effective
in improving treatment delay with sustainable results over time. To this end, investment
in this emerging application of AI can help save lives while reducing systemwide cost
and physician burnout due to stress that is due to the patient’s higher risk for disability
and death.

(b) Acute Diagnosis

ML can be an essential tool to guide physicians in the acute diagnosis of cardio- and
cerebrovascular disease. Most ECG recording devices now possess computational abilities
to calculate measurements and “read” ECGs in real-time with variable accuracy [40]. With
recent advances in computational algorithms, ML has been used to develop advanced
diagnostic systems that can make predictions and direct the pre-hospital diagnosis of acute
coronary syndrome [39,41].

Timely diagnosis of ischemic and hemorrhagic stroke, while challenging for physicians,
is invaluable for the patient. ML has been explored by researchers for stroke screening [42],
detection of stroke and large vessel occlusion using CTA imaging [43,44], detection and
subtyping of hemorrhagic stroke on CT scans [45–48], and to predict post-stroke mor-
tality [49,50]. Researchers have also used ML to aid in the acute diagnosis of TIAs and
differentiate them from their mimics [51].

(c) Acute Imaging

The use of machine learning, especially deep learning in the field of imaging, has
grown exponentially in recent years, leading to improved prediction and diagnosis ability.
For cardiovascular disease, ML has been used to aid in the diagnosis and classification
of acute and subacute coronary stenosis. Researchers have used ECG data to identify
patients with chest discomfort who need urgent revascularization [41]. Other investigators
have developed algorithms to make similar diagnoses and classification from myocardial
perfusion imaging [26], CT angiography [52], and clinical and laboratory data [53] in
emergency settings.

The two main imaging modalities for the detection of stroke are CT scans and MRI. In
the past four years, many studies have been performed in stroke patients that used ML
to detect, quantify and subtype ICH on non-contrast CT [46–48,54] and MRI [55] in the
acute phase. Researchers have also used support vector machine (SVM) algorithms to
predict the expansion of hematoma in patients with spontaneous ICH [56]. In hemorrhagic
stroke, ML has shown to be promising in detecting large vessel occlusion on CTA [44]
and also predicting and quantifying the ischemic core [43,57]. In a different study, Fhager
and colleagues implemented binary classification on a broadband microwave imaging
technique that can potentially detect ICH outside of dedicated stroke centers [45].

Although advances in the application of machine learning for acute imaging had
significant progress in both fields, ML has been used more extensively in the quantification
of brain biomarkers when compared to markers from cardiovascular imaging. Nonetheless,
the field is at the stage of transitioning to prospective trials and effective implementation at
the bedside in multiple settings.

(d) Triaging and Acute Treatment

While diagnosis in cardio-and cerebrovascular fields is one of the first steps after hos-
pital admission, risk stratification during triage can help optimize the available resources
and tailor the care management. However, the need for rapid response also requires the
tools to interact in real-time with the output from the imaging device and the EHR data.
Therefore, the implementation of such tools can be complex and often require coordination
at different levels. For instance, the risk of in-hospital cardiac arrest has been predicted
using a decision tree [58], while other ML algorithms have been used for risk stratification
of chest pain patients using coronary CTA data [52]. These tools, once externally validated
and implemented to act in real-time in clinical settings, could help reduce the time for
treatment and help save lives.
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Using technologies to improve triaging during the acute phase has been more pro-
ductive in recent years in the cerebrovascular field. ML has been used for recognition
and differentiation of ischemic stroke using clinical data [42] and to predict the 90-day
mRS score to aid with thrombectomy [59]. MRI data has been used for the classification
of ischemic stroke onset time [60] and segmentation and phenotyping of acute ischemic
lesions [55]. Researchers have also used ML to estimate ICH volume on CT scan im-
ages [47]. The use of ML in triaging stroke patients has escalated further, and authors have
discussed the scope and limitations of an ML-based decision support system framework to
aid physicians in urgent settings.

In a real-world environment, initial patient notes can complement pre-event informa-
tion, if available, for the identification of patients at risk of stroke, and alert the physician to
take the guideline-compliant steps to improve the outcome [61]. However, the processing
of clinical notes requires advanced natural language processing (NLP) that is carefully
tailored for clinical applications. NLP has been mostly applied to reports (such as radiology
reports) with promising results [62]; NLP applied to clinical notes can have clinical utility
at improving the identification of patients for major vascular events [61].

3.3. Application of AI in Post-Diagnosis Outcome Prediction and Secondary Prevention

(a) Personalized Treatment

Patient subtyping is a central part of personalized patient care and can be a stand-
alone tool to classify patients with similar profiles based on the available information on
the patients and their family members.

Finding clusters of stroke patients can be helpful from the medical perspective as it
may lead to the discovery of new patterns and more effective ways to manage a specific
condition and its complications. Garg et al. [63] developed an automated stroke subtype
classification using radiology and progress reports and showed agreement with the manual
TOAST (Trial of ORG 10172 in acute stroke treatment) [64] classification. The challenge
of the study remains in its validation in an external cohort. Some other studies are at-
tempting to create a CDSS to help physicians classify stroke subtypes based on limited
clinical data. Keerthana [65] used Fuzzy C-Means clustering techniques for the segmen-
tation of brain stroke using MRI images. The study lacked technical details, including
the number of cases used in model development and testing. Subtyping in the field of
cardiovascular medicine is relatively new, with clinical applications that remain relatively
sparse [28,66–70]. Shah et al. predicted the survival of patients with HFpEF using an un-
supervised learning model and demonstrated the benefits of deep phenotyping in these
patients [71]. The researchers created an unsupervised learning model across 46 different
variables to identify intrinsic structures within patients with HFpEF; they identified three
distinct groups. The study needs to be replicated in external HFpEF cohorts to demonstrate
generalizability. Zhao et al. applied a constrained non-negative tensor factorization ap-
proach to classifying patients with the cardiovascular disease based on their longitudinal
EHR data [72]. The latter study is unique as it encompasses data from patients ten years
before their development of heart disease with the observation of emerging phenotypes of
12,380 cardiovascular diseases. In another study, Ahmad et al. [73] analyzed data from 1619
participants in the HF-ACTION (Heart Failure: A Controlled Trial Investigating Outcomes
of Exercise Training) to identify the subtypes of chronic heart failure. The study design ex-
cluded patients with incomplete data, thus limiting the true value of the predicting models
for clinical applications. Nonetheless, four subtypes were identified, and each patient in the
corresponding subtype responded distinctively to exercise therapy. In another study, Schu-
lam et al. [74] used Limestone, a non-negative tensor factorization algorithm, to identify
multiple candidate phenotypes of heart failure. Their clinical evaluation results showed
the potential ability of Limestone to produce the phenotypes that can identify disease
subtypes with potential clinical utility. Panahiazar et al. [75] used clustering techniques
to investigate the heart failure patients’ response to therapy. The authors used K-means
and hierarchical clustering to group heart failure patients that responded to medication.
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The similarity assessment of a new patient with each identified cluster could lead to the
determination of an appropriate medication plan. The major limitation in these studies
remains selection bias, given that in many cases, patients with a poor data footprint are
excluded from modeling. However, overall, these examples demonstrated the potential of
ML-enabled methods based on patient similarity as assistive tools.

(b) Outcome Prediction

Prediction of outcome after diagnosis was the most extensively investigated applica-
tion of ML among the categories included in this literature review. Here, the outcomes of
interest included, but were not limited to, disease severity, survival, mortality, length of hos-
pitalization, rehospitalization, and recurrence. In patients with confirmed coronary artery
disease (CAD), clinical and laboratory data have been used in addition to CTA [17,76], and
angiogram [77] to predict cardiovascular events or death with promising results. In one
study by Johnson and colleagues, ML algorithms proved superior to CAD reporting and
data system (CAD-RADS) scoring in predicting future cardiovascular events and mortality
in patients with positive CTA results [17]. In another study, the random forest-based model
was shown to better identify patients at risk of 30-day congestive heart failure rehospitaliza-
tion and 180-day cardiovascular mortality following a percutaneous coronary intervention,
compared to conventional methods [78]. Other studies have explored the application of
ML in patients admitted for acute coronary syndrome to predict in-hospital mortality [79],
30-day mortality [80], and long-term survival [81–84]. Duane et al. have proposed a deep
learning model using static and dynamic features in 2930 patients with acute coronary
syndrome to predict major adverse events in the future [85]. A major study from Sweden
used 39 survival predictor variables in 51,943 patients to develop various ML models that
could accurately predict two-year survival after the first MI event [82]. At the same time,
Pieszo et al. used laboratory values in MI patients to predict long-term mortality, while
Kwon and colleagues combined laboratory data with patient demographics to make similar
predictions [83,84].

Heart failure is yet another area where ML has shown promising results in the pre-
diction of outcomes [86,87]. In the study published by Kwon et al., machine learning
algorithms were able to predict in-hospital and long-term mortality following acute heart
failure more effectively than conventional scoring systems [88]. Survival in patients with
pulmonary hypertension has also been predicted using ML [89]. Distinguishing between
short-term vs. long-term mortality is equally beneficial for the patients and healthcare
system as it can help with resource optimization as well as more personalized care [50].

Ischemic and hemorrhagic stroke has been the main focus of cerebrovascular studies
with regard to secondary prevention and functional outcome as well as mortality pre-
diction. Researchers used deep learning on acute ischemic stroke imaging features to
predict lesion volume [90]. Two different teams of scientists have used ML algorithms
to predict three-month functional outcomes following ischemic stroke [91,92]. ML has
also been utilized to predict 90-day readmission [93] and one-year recurrence in patients
with ischemic stroke [94]. In patients undergoing endovascular treatment for ischemic
stroke, ML algorithms did not improve outcome prediction when compared to logistic
regression [95]. In hemorrhagic intracranial events, ML has been successful in predicting
hematoma expansion [56] and delayed ischemia [96].

As such, there has been an increasing number of successful applications of AI in
predicting outcomes in cardiovascular and cerebrovascular diseases, raising the question
of when these improvements can be evaluated for clinical utility and generalizability
to reach patients’ bedsides. In this context, the functional outcome in stroke patients is
primarily measured by the modified Rankin Scale (mRS) score [97], while the New York
Heart Association (NYHA) classification is used to categorize heart failure patients [98].
Using these scores as features in the machine learning models can be important for training
the models. However, the main limiting factor remains the lack of proper reporting of
functional classes and the level of missingness in these measurements across the different
healthcare systems. Incorporating functional outcomes in a structured form in EHR data to
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enable easier integration of these measures in machine learning models is an important
first step. Better, more consistent, and standardized reporting of functional class scores will
ultimately lead to better model predictions.

3.4. Application of AI in Rehabilitation

(a) Personalized Treatment

Studies on the use of ML in assisting with rehabilitation have been limited. In heart
failure patients, ML helped investigators to classify heart failure patients based on clinical
presentation and improve treatment response by directing personalized therapies [99]. In
the only cerebrovascular study, researchers used ML to predict activities of daily living
in post-stroke patients to better optimize clinical care [100]. Personalized treatment for
tertiary prevention is an area with great potential for the application of AI. Rehabilitation
in both cardio and cerebrovascular patients has a major financial burden on healthcare
systems [101,102]. Innovative use of ML in this field can lead to improved resource
optimization and personalized patient experience [103].

(b) Outcome Prediction

Outcome prediction using ML during rehabilitation in cardiovascular studies has
been mainly focused on cardiac resynchronization therapy outcomes in patients with
heart failure. Researchers have used ML to predict patient response to cardiac resynchro-
nization [104], outcome [105], and mortality [106]. ML has also been used to distinguish
different heart failure phenotypes [86] and predict survival with the aid of echocardiogra-
phy data [16]. In the only cerebrovascular study that we were able to identify, researchers
used ML to predict activities of daily living in post-stroke patients to better optimize clinical
care [100]. This field has great potential for future studies and trials to improve the recovery
and quality of life of patients.

Table 1. Cardiovascular studies using artificial intelligence.

Ref., Year—Category ** Study Details Sample
Size Algorithms

AI and Risk Stratification Modeling

[10], 2017—1a

Location: United Kingdom
Aim: Predicting the first CVD event over 10-years and comparing

that with the American College of Cardiology guidelines.
Variables: Routine clinical data from family practices

Strengths: Prospective; large sample size
Limitations: Unbalanced dataset

Findings: Highest achieving algorithm was NN: AUC 0.76,
predicted 4998/7404 cases (sensitivity 67.5%, PPV 18.4%) and

53,458/75,585 non-cases (specificity 70.7%, NPV 95.7%), correctly
predicting 7.6% more patients than the established algorithm

378,256 RF, LR, GBM, NN
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Table 1. Cont.

Ref., Year—Category ** Study Details Sample
Size Algorithms

[12], 2017—1a

Location: United States
Aim: Predict six cardiovascular outcomes in comparison to

standard risk scores.
Variables: 735 variables from imaging and non-invasive tests,

questionnaires, and biomarker panels
Strengths: Prospective; included participants from the MESA

(Multi-Ethnic Study of Atherosclerosis) [22]; 12-year follow-up;
four ethnicities

Limitations: Potential cause for biases due to imputation procedure
Findings: Age was the most important predictor for all-cause
mortality. Fasting glucose levels and carotid ultrasonography

measures were important predictors of stroke. CAC was the most
important predictor of coronary heart disease and all

atherosclerotic cardiovascular disease combined outcomes. Left
ventricular structure and function and cardiac troponin-T were

among the top predictors for incident heart failure. Creatinine, age,
and ankle-brachial index were among the top predictors of AF.
TNF-α and IL-2 soluble receptors and NT-proBNP levels were

important across all outcomes.
Notable facts: ML in conjunction with deep phenotyping improves

prediction accuracy in cardiovascular event prediction in an
initially asymptomatic population.

6814 RF

[11], 2019—1a, 1b

Location: United States
Aim: Predicting of long-term risk of MI and cardiac death in

asymptomatic subjects by integrating clinical parameters with
CAC, and automated EAT quantification.

Variables: Clinical co-variates, lipid panel, risk factors, CAC, aortic
calcium, and automated EAT measures

Strengths: Prospective; subjects from EISNER trial [23]; 14.5 years
follow-up

Limitations: Unbalanced data
Findings: AUC 0.82; Subjects with a higher ML score had high

hazard of suffering events (HR: 10.38, p < 0.001); the relationships
persisted in multivariable analysis including ASCVD-risk and CAC
measures (HR: 2.94, p = 0.005). Age, ASCVD-risk, and CAC were

prognostically important for both genders.
Notable facts: ML used to integrate clinical and quantitative

imaging-based variables significantly improves prediction of MI
and cardiac death.

1912 XGBoost

[14], 2017—>1a

Location: China
Aim: Identifying the association between the clinical reference

range of serum HbA1c and TSH, and the risk of CAD in
non-diabetic and euthyroid patients.

Variables: HbA1c and TSH levels
Strengths: Prospective; 10-year follow-up

Limitations: Small sample size
Findings: Baseline HbA1c and TSH within the reference range were
positively associated with CAD risk. No correlation and interaction
between the baseline HbA1c and TSH for the development of CAD.

The combination of these baselines showed sensitivity of 87.2%,
specificity of 92.7%, and accuracy of 92.3% for identifying the

participants who will later develop CAD.

538 SVM
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Table 1. Cont.

Ref., Year—Category ** Study Details Sample
Size Algorithms

[107], 2018—1a

Location: Lebanon
Aim: Comparing ANN-based prediction models to the other risk

models being used in practice (the Diamond–Forrester and the
Morise models).

Variables: Imaging-based stress test measures
Strengths: Prospective

Limitations: Small sample size
Findings: Compared to other models, the ANN model had higher

discriminatory power (DP) (1.61) for predicting ischemia, 98%
negative predictive value, 91% sensitivity, 65% specificity, 26%

positive predictive value, and a potential 59% reduction of
non-invasive imaging.

486 ANN

[28], 2018—1b, 3a

Location: United Kingdom, Italy, Norway
Aim: Discriminating between healthy and HFpEF subjects with
impaired functional reserve and identifying new descriptors to

better characterize HFpEF syndrome using basal myocardial
long-axis velocity patterns at rest and exercise.

Variables: Left ventricular long-axis myocardial velocity patterns
Strengths: Prospective, 6–60 months survival analysis

Limitations: Confounding effects (age, gender) not studied, small
sample size

Findings: ML-diagnostic zones differed for age, body mass index,
six-minute walk distance, B-type natriuretic peptide, and left

ventricular mass index. Correlation with diagnosis was 72.6%; ML
identified 6% of healthy controls as HFpEF. Blinded reinterpretation
of imaging from subjects with discordant clinical and ML diagnoses

revealed abnormalities not included in diagnostic criteria.

156 Clustering

[71], 2015—1b, 3a

Location: United States
Aim: Identify phenotypically distinct HFpEF categories.

Variables: Clinical, laboratory, ECG, and echocardiographic
phenotyping

(phenomapping)
Strengths: Prospective

Findings: Phenomapping classified study participants into three
risk-stratified groups.

Notable facts: A novel classification of HFpEF using
phenomapping that can define therapeutically homogeneous

patient subclasses.

397 Clustering

[16], 2019—1a, 3a, 4b

Location: United States
Aim: Predicting survival after echocardiography.

Variables: 90 cardiovascular-relevant ICD-10 codes, age, sex, height,
weight, heart rate, blood pressures, LDL, HDL, smoking,

physician-reported EF, 57 echocardiographic measurements
Strengths: Large sample size

Limitations: Retrospective, model derivation from EHR data
missing important variables

Findings: Overall AUC > 0.82 over common clinical risk scores. RF
outperformed LR. RF including all echocardiographic

measurements yielded the highest prediction accuracy. Ten
variables needed to achieve 96% maximum prediction accuracy, six

from echocardiography.

171,510 RF
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Table 1. Cont.

Ref., Year—Category ** Study Details Sample
Size Algorithms

[17], 2019—3a, 3b

Location: United States
Aim: Using ML to develop a model of vessel features to

discriminate between patients with and without subsequent death
or cardiovascular events and comparing to CAD-RADS.

Variables: Four CTA features for each of the sixteen coronary
segments

Strengths: Comparing four different ML methods
Limitations: Low MI incidence leading to possible misclassification

bias
Findings: ML all-cause mortality AUC = 0.77; ML CAD deaths

AUC = 0.85. For starting statin therapy (NNT = 45), use of ML score
ensures 93% of patients with events will be administered the drug;

compared to 69% with CAD-RADS.
Notable facts: Compared to CAD-RADS, ML better discriminated

patients who subsequently experienced an adverse event from
those who did not.

6892
Best models:

bootstrap-aggregated DTE,
KNN,

[13], 2018—1a, 1c

Location: United States
Aim: Developing a risk calculator for CAD incidence to aid

initiation of statin therapy.
Variables: Same as ACC/AHA risk calculator

Strengths: Model training by 13-year follow-up data from MESA
cohort [22] and validation by FLEMENGHO cohort [108]

Limitations: Retrospective
Findings: ML Risk Calculator recommended only 11.4% to take

statin, and only 14.4% of “Hard CVD” events occurred in those not
recommended statin, resulting in sensitivity 0.86, specificity 0.95,

and AUC 0.92.
Notable facts: ML Risk Calculator outperformed the ACC/AHA
Risk Calculator by recommending less drug therapy yet missing

fewer events.

10,291 SVM

[109], 2019—1a, 1b

Location: Iran
Aim: Compare ANN and SVM algorithms for predicting CAD.

Variables: 25 variables affecting CAD including laboratory values
Strengths: Data collected from three hospitals

Limitations: Retrospective; no detail provided regarding
missingness, or lack thereof

Findings: SVM model had higher AUC, higher sensitivity, higher
Hosmer–Lemeshow test’s result and lower MAPE compared to
ANN. Variables affecting CAD yielded better goodness of fit in

SVM model and provided more accurate result than ANN.

1324 ANN, SVM
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AI-enabled Diagnostic Studies

[76], 2016—3b

Location: Multi-national
Aim: Predicting five-year all-cause mortality in patients

undergoing CCTA and comparing to existing prediction algorithms.
Variables: 25 clinical and 44 CCTA parameters, SSS, SIS, DI, number
of segments with non-calcified, mixed or calcified plaques, age, sex,

gender, standard cardiovascular risk factors, and FRS
Strengths: Data from CONFIRM registry [110]; large sample size

Limitations: Selection bias; only LogitBoost was evaluated for
efficacy.

Findings: ML exhibited a higher area-under-curve compared with
the FRS or CCTA severity scores alone (SSS, SIS, DI) for predicting
all-cause mortality (ML: 0.79 vs. FRS: 0.61, SSS: 0.64, SIS: 0.64, DI:

0.62; p < 0.001).
Notable facts: ML combining clinical and CCTA data was found to

predict five-year all-cause mortality significantly better than
existing clinical or CCTA metrics alone.

10,030 LogitBoost

[77], 2019—3a, 3b

Location: Korea
Aim: Developing an angiography-based supervised ML algorithm
with five-fold cross-validation to classify coronary lesions based on

fractional flow reserve (≤0.80 vs. >0.80).
Variables: 24 computed angiographic features based on the

diameter plot and four clinical features (age, sex, body surface area,
and involve segment)

Strengths: Randomized controlled trial; external validation in 79
patients

Limitations: Data, analytic methods, and study materials not
available to other researchers; model limited to left main disease,

side branch, and diffuse and tandem lesions
Findings: ML model predicted fractional flow reserve ≤ 0.80 with
overall diagnostic accuracy of 78% (AUC = 0.84). Using 12 main

angiography features, the ML predicted fractional flow reserve ≤
0.80 in the test set with sensitivity of 84%, specificity of 80%, and
overall accuracy of 82% (AUC = 0.87). The averaged diagnostic
accuracy in bootstrap replicates was 81% (AUC = 0.87). External

validation showed accuracy of 85% (AUC = 0.87).

1501 XGBoost

[39], 2017—2a, 2b

Location: Canada
Aim: Automating the diagnosis of STEMI at the time of first contact

with healthcare system and pre-hospital CCL activation.
Variables: ECG reading data

Limitations: Retrospective analysis of real-time automated
diagnosis; only ECG data used; small sample size

Findings: Algorithm modification resulted in a 42% relative
decrease in the rate of inappropriate activations (12% vs. 7%)

without a significant effect on treatment delay.

466

Automated STEMI
diagnosis and

“physician-less” CCL
activation
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[41], 2019—2b, 2c, 2e

Location: Japan
Aim: Making an AI prediction model for the need for urgent

revascularization from 12-lead ECG in patients presenting with
chest pain in the ER.

Variables: ECG reading data
Limitations: Retrospective; only ECG data used, small sample size
Findings: Predictive value of the c-statistics 0.88 (95% CI 0.84–0.93)

for detecting patients who required urgent revascularization.

362 LSTM

AI in Outcome Prediction/Prognosis

[89], 2017—3b

Location: United Kingdom
Aim: Predicting patient survival in pulmonary hypertension using

3D patterns of systolic cardiac motion.
Variables: Conventional imaging; hemodynamic, functional, and

clinical markers; 3D motion pattern of right ventricle
Strengths: Prospective

Limitations: Limited patient selection including non-congenital
cases of PH. Model trained to measure excursion rather than

contractility.
Findings: Survival prediction AUC 0.73; difference in median

survival time between high- and low-risk groups was 13.8 years.

256
Supervised ML using

nested multivariable risk
prediction

[111], 2019—3a

Location: United States
Aim: Testing generalizability and precision in imaging biomarker

analysis by comparing scan:rescan data.
Variables: MR-measured left ventricular chamber volumes, mass,

and ejection fraction
Strengths: Prospective

Limitations: Data from five institutions, but scans performed at the
same institution; one-week interval between scans limited the

ability to assess long-term changes
Findings: Expert, trained junior, and automated scan:rescan

precision were similar (coefficient of variation 6.1 vs. 8.8).
Automated analysis was 186× faster than humans.

110 CNN

[82], 2017—3b

Location: Sweden
Aim: Predicting two-year survival vs. non-survival after first MI.

Variables: 39 survival predictors
Strengths: Large sample size
Limitations: Retrospective

Findings: SVM had the highest performance (AUC = 0.845, PPV =
0.280, NPV = 0.966) outperforming Boosted C5.0 (AUC = 0.841), but

not significantly higher than LR or RF. Models converged to the
point of algorithm indifference with increased sample size and

predictors.

51,943SVM, RF, LR, Boosted C5.0

[86], 2018—3b, 4b

Location: Sweden
Aim: Using mixture of supervised and unsupervised approach to
predict outcome and identify distinct phenotypes of heart failure.
Variables: Demographic, clinical, laboratory, and medication data

Strengths: Large sample size
Limitations: Retrospective

Findings: RF demonstrated excellent calibration and discrimination
for survival (C-statistic = 0.83) whereas LVEF did not (C-statistic =
0.52). Cluster analysis using the eight highest predictive variables
identified four clinically relevant subgroups of HF with marked

differences in one-year survival.

44,886 RF, K-means clustering
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[79], 2017—3b

Location: United States
Aim: Modeling all-cause in-hospital mortality in women admitted

with STEMI.
Variables: 11 variables for LR; 32 variables for full RF model; 17

variables for reduced RF model
Strengths: Model validation using external cohort of 13,361 patients
Limitations: Retrospective; class imbalance (in-hospital mortality in

11% of patients)
Findings: Internal validation C-index was 0.84, 0.81, and 0.80 for

the LR, full, and reduced RF models, respectively. External
validation C-index was 0.84, 0.85, and 0.81 for year 2011, and 0.82,

0.81, and 0.81 for the year 2013 for the LR, full, and reduced RF
models, respectively.

Notable facts: RF was comparable to LR in predicting in-hospital
mortality in women with STEMI.

12,047 LR and RF

[84], 2019—3b

Location: Korea
Aim: DL-based risk stratifying mortality of patients with acute MI.

Variables: Initial demographic and laboratory data
Strengths: Large sample size; data from the Korean working group

of myocardial infarction registry (network of 59 hospitals)
Limitations: Retrospective

Findings: AUC for STEMI = 0.905. AUC for NSTEMI = 0.870. DL
predicted 30.9% of patients more accurately than conventional

scores. During the six-month follow-up, the DL-defined high-risk
group had a significantly higher mortality rate than the low-risk

group (17.1% vs. 0.5%).

22,875 DL, LR, RF

[58], 2019—2d, 3b

Location: China
Aim: Identify in-hospital cardiac arrest in hospitalized patients

with acute coronary syndrome.
Variables: Seven explanatory variables: VitalPAC Early Warning
Score (ViEWS), fatal arrhythmia, Killip class, cardiac troponin I,

blood urea nitrogen, age, and diabetes
Limitations: Possibility of selection bias

Findings: Sensitivity = 0.762; Specificity = 0.882; AUC = 0.844; a
10-fold cross-validated risk estimate = 0.198; optimism-corrected

AUC = 0.823.
Notable facts: The developed DT model may provide healthcare

workers with a practical bedside tool and could positively impact
decision-making in deteriorating patients with ACS.

656 DT

[78], 2019—3b

Location: United States
Aim: Identify patients at risk of death or CHF rehospitalization

after PCI.
Variables: 52 features at admission to predict in-hospital mortality;

358 features at discharge to predict CHF readmission
Strengths: Large sample size

Limitations: Retrospective; high missingness level in certain
features causing high data sparsity

Findings: RF prediction of in-hospital mortality AUC = 0.925. RF
outperformed LR for predicting 30-day CHF readmission (AUC:

0.90 vs. 0.85) and 180-day cardiovascular death (AUC: 0.88 vs. 0.81).

11,709 RF
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[88], 2019—3b

Location: Korea
Aim: Developing and validating a deep-learning-based AI

algorithm for predicting mortality of acute HF.
Variables: Demographics, treatment and medication, laboratory,

ECG and echocardiography findings, final diagnosis, clinical
outcome during hospital stay, and 12-month prognosis

Strengths: Multi-center study; large sample size
Limitations: Retrospective

Findings: AUC of the DL was 0.880 for predicting in-hospital
mortality, which outperformed other machine learning models. For
predicting 12- and 36-month endpoints, DL had an AUC of 0.782

and 0.813, respectively. During the 36-month follow-up, the
high-risk group, defined by the DL, had a significantly higher

mortality rate than the low-risk group.

6924 DNN, RF, LR, SVM, BN

[53], 2019—2c, 2d

Location: Korea
Aim: Using ML to predict ACS requiring revascularization in

patients presenting with early-stage angina-like symptoms.
Variables: 20 features relevant to ACS

Strengths: Large sample size
Limitations: Retrospective; inaccuracy in checking the vulnerable

plaque burden of all coronary arteries
Findings: AUC = 0.860 for the prediction of ACS requiring

revascularization. A reliable prediction of 2.60% of non-ACS
patients was made with a specificity of 1.0 to only receive medical

therapy.

5882 SVM, LDA

[87], 2019—3b

Location: United States
Aim: Using a ML algorithm to predict mortality in HF patients.
Variables: Eight variables: diastolic blood pressure, creatinine,

blood urea nitrogen, hemoglobin, white blood cell count, platelets,
albumin, and red blood cell distribution width

Strengths: Large sample size
Limitations: Retrospective; selection bias due to excluding

significant number of patients with missingness
Findings: The risk score developed by DT accurately discriminated
between low and high-risk of death with an AUC of 0.88. External
validation in two separate HF populations gave AUCs of 0.84 and

0.81.

5822 DT

[83], 2019—3b

Location: United Kingdom
Aim: Predicting long-term mortality after ACS using laboratory

values.
Variables: Hematological indices and inflammation markers

Strengths: Large sample size
Limitations: Imputation for the ML was performed using mean of

all observations, the latter is typically not ideal since missing in
EHR data tend to be not-at-random

Findings: The model achieved a c-statistic of 0.89 for in-hospital
mortality. C-statistic was 0.77 for six-month mortality. Red cell

distribution width (HR 1.23) and neutrophil to lymphocyte ratio
(HR 1.08) showed independent association with all-cause mortality

in multivariable Cox regression.

5053 XGBoost



J. Clin. Med. 2021, 10, 5710 16 of 37

Table 1. Cont.

Ref., Year—Category ** Study Details Sample
Size Algorithms

[85], 2019—3b

Location: China
Aim: Developing a DL model to predict major adverse cardiac

events after ACS.
Variables: 232 static feature types and 2194 dynamic feature types.

Strengths: Large sample size; comparison to previous models
Limitations: Retrospective; missing values (up to 30%) were

imputed using median of all the observations; variables with more
than 30% missing were excluded

Findings: The best model presented had an AUC of 0.713 and an
accuracy of 0.764.

Notable facts: The proposed model adapted to leverage dynamic
treatment information in EHR data boosted the performance of

major adverse cardiac event prediction for ACS.

2930 RNN

[80], 2017—3b

Location: Israel
Aim: Predicting mortality at 30-days in STEMI patients and to

compare these to the conventional validated risk scores.
Variables: 54 variables; performance of most models plateaued with

15 variables
Strengths: Large sample size
Limitations: Retrospective

Findings: ML models AUC range: 0.64 to 0.91. The best models had
similar or better performance compared to standard scoring

methods. Top predictors were creatinine, Killip class on admission,
blood pressure, glucose level, and age.

Notable facts: The algorithms selected showed competence in
prediction across an increasing number of variables.

2782
NB, DT, LR, rules-based

classification tree, RF,
Adaptive Boosting

[112], 2018—3a

Location: Canada
Aim: Assessing the prognostication of NN in HF patients using

CPET data as opposed to using summary indicators alone.
Variables: Detailed CPET data

Strengths: Using various ML models
Limitations: Retrospective

Findings: NN incorporating breath-by-breath data achieved the
best performance (AUC = 0.842). All models outperformed

summary indices (AUC ≤ 0.800). When compared with the CPET
risk score (AUC = 0.759), the top-performing model obtained a net

reclassification index of 4.9%.
Notable facts: The current practice of considering summary indices
in isolation fails to realize the full value of CPET data. Higher data

resolution leads to improved prediction.

1434 LASSO, NN

[81], 2020—3b

Location: China
Aim: Using ML to predict one-year mortality rate of anterior
STEMI patients and comparing to conventional risk scores.

Variables: 59 features; including all features as opposed to top 20
provided better performance

Strengths: Using six different ML algorithms
Limitations: Retrospective

Findings: AUC of ML models ranged from 0.709 to 0.942. XGBoost
achieved the highest accuracy (92%), specificity (99%) and f1 score

(0.72) for predictions with the full variable model. After feature
selection, XGBoost still obtained the highest accuracy (93%),

specificity (99%) and f1 score (0.73).

1244 NB, LR, KNN, DT, RF and
XGBoost
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[105], 2019—4b

Location: United States
Aim: Using ML on EHR data to predict CRT outcome.

Variables: Demographics, laboratory values, medications, clinical
characteristics, and past health services utilization, bigrams (i.e.,

two-word sequences) in EHR data
Strengths: Comparing various ML models

Limitations: No distinction between the type of CRT implant.
Findings: The final model identified 26% of patients having a
reduced benefit from the CRT device at a PPV of 79% (model

performance: Fβ (β = 0.1): 77%; recall 0.26; precision 0.79; accuracy
0.65).

Notable facts: A ML model that leveraged readily available EHR
data and clinical notes identified a subset of CRT patients who may

not benefit from CRT before the procedure.

990 LR, SVM, RF and GBM

[113], 2019—1a

Location: Japan
Aim: Assessing stroke risk by ML using integrated risk factors.

Variables: 47 features comprised of 13 conventional risk factors and
34 carotid ultrasound image-based phenotypes (carotid

intima-media thickness, carotid plaque and carotid artery stenosis)
Strengths: Using integrated risk factors

Limitations: Retrospective; small sample size; data imbalance (12
high-risk patients vs. 190 low-risk patients)

Findings: ML with integrated risk factors (AUC = 0.80) showed an
improvement of ~18% against conventional ML (AUC = 0.68).

Notable facts: ML model integrated with the event-equivalent gold
standard as percentage stenosis is powerful and offers low cost and

high-performance stroke risk assessment.

202 RF

AI in Treatment Strategies

[99], 2018—3a, 4a

Location: Multi-national
Aim: Using ML to phenotypically classify a heterogeneous HF
cohort and aid in optimizing the rate of responders to specific

therapies.
Variables: 50 variables including clinical parameters, biomarker
values, and measures of left and right ventricular structure and

function
Strengths: Data from MADIT-CRT trial [114]; randomized cohort

Limitations: Possibility of selection bias; results confined to a
selected population of HF patients enrolled in a clinical trial with

robust inclusion/exclusion criteria
Findings: Four phenogroups identified, significantly different in
the primary outcome occurrence. Two phenogroups included a
higher proportion of known clinical characteristics predictive of

CRT response and were associated with a substantially better
treatment effect of CRT-D on the primary outcome (HR = 0.35 and

HR = 0.36) than observed in the other groups.
Notable facts: By integrating clinical parameters and full heart
cycle imaging data, unsupervised ML can provide a clinically

meaningful classification of a phenotypically heterogeneous HF
cohort and might aid in optimizing the rate of responders to

specific therapies.

1106 Multiple Kernel Learning,
K-means clustering
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[104], 2019—4b

Location: United States
Aim: Develop and compare ML models to predict response to CRT.
Variables: Nine variables; QRS morphology, QRS duration, New

York Heart Association classification, left ventricular ejection
fraction and end-diastolic diameter, sex, ischemic cardiomyopathy,

AF, and epicardial left ventricular lead
Strengths: Multi-center study comparing various ML models

Limitations: Retrospective
Findings: The best ML model was a naïve Bayes classifier. On the
testing cohort, ML demonstrated better response prediction than

guidelines (AUC 0.70 vs. 0.65) and greater discrimination of
event-free survival (concordance index, 0.61 vs. 0.56). The fourth

quartile of the ML model had the greatest risk of reaching the
composite end point, whereas the first quartile had the least

(hazard ratio, 0.34).

925 Supervised ML

[106], 2018—4b

Location: United States
Aim: Using ML to predict all-cause mortality or heart failure

hospitalization 12 months post-CRT.
Variables: 45 features: demographics, physical characteristics, heart

failure, LV assessment, ECG, medical history, medication class
Strengths: Used data from COMPANION trial [115]

Limitations: Possibility of selection bias; only class III and IV HF
patients enrolled with specific inclusion/exclusion criteria
Findings: RF model produced quartiles of patients with an

eight-fold difference in survival between those with the highest and
lowest predicted probability for events (hazard ratio, 7.96). The

model discriminated the risk of the composite end point of
all-cause mortality or heart failure hospitalization better than

conventional methods.

1076 Multiple models with RF
producing best results

AI-enabled Diagnostic Imaging Studies

[24], 2018—1b

Location: United States
Aim: Determining the diagnostic performance of cPSTA in

assessing CAD in patients presenting with chest pain who had
been referred by their physician for coronary angiography.

Variables: cPSTA recorded signals
Strengths: Prospective

Limitations: Small sample size
Findings: The machine-learned algorithm had a sensitivity of 92%

and specificity of 62% on blind testing in the verification cohort.
The NPV was 96%.

Notable facts: Resting cPSTA may have comparable diagnostic
utility to functional tests currently used to assess CAD without

requiring cardiac stress (exercise or pharmacological) or exposure
of the patient to radioactivity.

606 Elastic net
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[25], 2018—1b, 3a

Location: Multi-national
Aim: Predicting lesion-specific ischemia by invasive FFR using an

integrated ML ischemia risk score from quantitative plaque
measures from CCTA.

Variables: Quantitative CTA data: stenosis, NCP, low-density NCP
(LD-NCP), calcified and total plaque volumes, contrast density
difference (maximum difference in luminal attenuation per unit

area) and plaque length
Strengths: Multi-center data from NXT trial [116]

Limitations: Small sample size; plaque findings were not confirmed
by invasive intravascular ultrasound

Findings: Information gain for predicting ischemia was highest for
contrast density difference (0.172), followed by LD-NCP (0.125),
NCP (0.097), and total plaque volumes (0.092). ML had higher
AIUC (0.84) than individual CTA measures, including stenosis
(0.76), LD-NCP volume (0.77), total plaque volume (0.74) and

pre-test likelihood of CAD (0.63).

254 LogitBoost

[15], 2020—1a

Location: Multi-national
Aim: Evaluate the prognostic value of fully automated DL-based

EAT volume and attenuation quantified from non-contrast cardiac
CT.

Variables: Non-contrast cardiac CT scan data, inflammatory
biomarkers

Strengths: Data from the EISNER trial [23]
Limitations: Long-term follow-up not obtained

Findings: Increased EAT volume and decreased EAT attenuation
were independently associated with MACE. CAD risk score, CAC,

and EAT volume were associated with increased risk of MACE
(hazard ratio: 1.03, 1.25, and 1.35). EAT attenuation was inversely
associated with MACE (hazard ratio: 0.83, Harrell C statistic: 0.76).
MACE risk progressively increased with EAT volume ≥ 113 cm3

and CAC ≥ 100 AU; highest in subjects with both. EAT volume
correlated with inflammatory biomarkers; EAT attenuation

inversely related to inflammatory biomarkers.

2068 DL

[117], 2018—1a

Location: Multi-national
Aim: Investigating whether a ML score, using only plaque stenosis
and composition information from the 16 coronary segments, has
better predictive accuracy compared to the traditional CCTA based

risk scores.
Variables: 16 segment based coronary stenosis (0%, 1–24%, 25–49%,
50–69%, 70–99% and 100%) and composition (calcified, mixed and

non-calcified plaque) derived from CCTA
Strengths: Data from CONFIRM registry [110]

Findings: ML-based approach showed better AUC for event
discrimination (0.771) vs. other scores (ranging from 0.685 to 0.701).
Improved risk stratification was the result of down-classification of
risk among patients that did not experience events (non-events).

8844 XGBoost
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[26], 2018—1b, 1c, 2c

Location: Multi-national
Aim: Evaluating DL-based automatic prediction of obstructive

disease from MPI, compared with TPD.
Variables: MPI recorded data
Strengths: Multi-center study

Limitations: Retrospective; degree of stenosis from invasive
angiography was interpreted visually

Findings: AUC for DL was higher than for TPD (per patient: 0.80
vs. 0.78; per-vessel: 0.76 vs. 0.73). Sensitivity per patient improved

from 79.8% (TPD) to 82.3% (DL), and per-vessel sensitivity
improved from 64.4% (TPD) to 69.8% (DL).

1018 DCNN

[52], 2018—2c, 2d

Location: United States
Aim: Evaluating the effectiveness of using Computer-Aided

Diagnosis in the triage of low to intermediate risk emergency chest
pain patients with CCTA.

Variables: Data from 64 and 320 slice CCTA scanners
Strengths: Looking at 30-day outcome

Limitations: Retrospective
Findings: Sensitivity: 85%; specificity: 50.6% and 56.5% for the 64
and 320 slice scanners. NPV: 97.8 and 97.1 for the 64 and 320 slice
scanners. AUC: 0.6794 and 0.7097 for the 64 and 320 slice scanners.

Software unable to read 18% of the cases.

923 Computer aided diagnosis
software

[118], 2018—2c

Location: Multi-national
Aim: Improving diagnostic performance of CTA to potentially

reducing the number of unnecessary referrals for invasive coronary
angiography.

Variables: 28 variables from CTA data
Strengths: Multi-center

Limitations: Retrospective; possibility of selection bias due to the
inclusion of patients with the disease only

Findings: ML-FFR (AUC = 0.84) and CFD-FFR (AUC = 0.84)
outperformed visual CTA (AUC = 0.69). Per-vessel and per-patient
diagnostic accuracy improved 78% and 85%, respectively. ML-FFR

correctly reclassified 73% of false-positive CTA results.
Notable facts: On-site ML-FFR improves the performance of CTA

by correctly reclassifying hemodynamically nonsignificant stenosis
and performs equally well as CFD-FFR.

351 NN
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[27], 2017—1b, 1c

Location: United States
Aim: Evaluating the incremental benefit of ML-powered resting

myocardial CTP over coronary CT stenosis for predicting ischemia
Variables: CCTA and FFR data

Strengths: Data from DeFACTO study [119]
Limitations: Small sample size

Findings: Accuracy, sensitivity, specificity, PPV, and NPV of resting
CTP were 68.3%, 52.7%, 84.6%, 78.2%, and 63.0%, respectively, for

predicting ischemia. Addition of resting CTP improved
discrimination (AUC = 0.75) and reclassification (net

reclassification improvement: 0.52) of ischemia compared to CT
stenosis alone (AUC = 0.68).

Notable facts: The addition of resting CTP analysis acquired from
ML techniques may improve the predictive utility of significant

ischemia over coronary stenosis.

252 Gradient boosting
classifier

** Category definition: Category 1: Application of AI in pre-diagnosis modeling: primary prevention (1a: Risk Estimation, 1b: Cluster-
ing/patient profiling before the event, 1c: Care gap identification and personalized prevention, 1d: Personalized prevention). Category 2:
Application of AI in diagnosis and acute-phase treatment (2a: EMS proper referral, 2b: Acute Diagnosis, 2c: Acute Imaging, 2d: Triaging
and Acute Treatment). Category 3: Application of AI in post-diagnosis outcome prediction and secondary prevention (3a: Personalize
Treatment, 3b: Outcome prediction/effect disposition). Category 4: Application of AI in rehabilitation (4a: Personalize Treatment, 4b:
Outcome Prediction). Abbreviations: ACM: all-cause mortality; ACS: acute coronary syndrome; AF: atrial fibrillation; ANN: artificial
neural networks; AUC: area under the receiver operating characteristic curve; BN: Bayesian network; CPET: cardiopulmonary exercise
testing; CAC: coronary artery calcium score; CAD: coronary artery disease; CAD-RADS: coronary artery disease reporting and data system;
CCTA: coronary computed tomographic angiography; CTA: computed tomographic angiography; CCL: cardiac catheterization laboratory;
CDS: clinical decision support; CFD: computational fluid dynamics; CHF: congestive heart failure; CHD: coronary heart disease; CNN:
convolutional neural network; CONFIRM: Coronary CT Angiography Evaluation For Clinical Outcomes: An International Multi-center;
cPSTA: cardiac phase space tomography analysis; CRT: cardiac resynchronization therapy; CTP: computed tomography perfusion; CVD:
cardiovascular disease; DL: deep learning; DCNN: deep-learning convolution neural network; DI: modified Duke index; DT: decision tree;
DTE: decision tree ensembles; EAT: epicardial adipose tissue; EMS: emergency medical services; ER: emergency room; FFR: fractional
flow reserve; FLEMENGHO: Flemish Study of Environment Genes and Health Outcomes; FRS: Framingham risk score; GBM: gradient
boosting machines; HCM: hypertrophic cardiomyopathy; HF: heart failure; HFpEF: heart failure with preserved ejection fraction; KNN:
k-nearest neighbors; LASSO: least absolute shrinkage and selection operator; LDA: linear discriminant analysis; LR: linear regression;
MACE: major adverse cardiac events; MESA: Multi-Ethnic Study of Atherosclerosis; MI: myocardial infarction; ML: machine learning;
NB: Naïve Bayesian; NCP: non-calcified plaque; NN: neural networks; PCA: principal components analysis; PCI: percutaneous coronary
intervention; PH: pulmonary hypertension; PPV: positive predictive value; RF: random forest; SCD: sudden cardiac death; SIS: segment
involvement score; SSS: segment stenosis score; STEMI: ST-elevation MI; SVM: support vector machine; TSH: thyrotropin; TPD: total
perfusion deficit.

Table 2. Cerebrovascular studies using artificial intelligence.

Ref., Year—Category ** Study Details Sample
Size Algorithms

AI and Risk Stratification Modeling

[18], 2019—1a

Location: China
Aim: Proposed a new feature selection method to select

important risk factors for detecting ischemic stroke.
Variables: 24 blood test features and four demographic

features
Limitations: Single-center study

Findings: Top nine features selected. Sensitivity: 82.7%,
specificity: 80.4%, classification accuracy: 81.5%, Youden

index: 0.63.

792
Weighting and ranking-based

hybrid feature selection
(WRHFS)
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Table 2. Cont.

Ref., Year—Category ** Study Details Sample
Size Algorithms

[19], 2017—1a

Location: China
Aim: Build 2-year thromboembolism prediction models

for AF patients,
Variables: Chinese AF Registry data

Strengths: Large dataset, two-year follow-up
Limitations: Retrospective; design of the preprocessing
and imputation strategy could lead to bias results and

model overfitting
Findings: AUC: 0.71–0.74.

Notable facts: Model superior to previous
thromboembolism prediction models.

3535 LR, Cox, NB, CART, RF

[20], 2018—1a

Location: China
Aim: Build one-year ischemic stroke prediction models for

AF patients.
Variables: Chinese AF Registry data

Strengths: Large dataset
Limitations: Retrospective; highly imbalanced dataset

(3.8% rate of stroke at one-year)
Findings: AUC: 0.714.

Notable facts: Boots-wrapper can balance model
discrimination and statistical significance of features for

developing AF stroke prediction models.

3736 Bootstrap-based wrapper for
feature selection

[21], 2019—1a

Location: Taiwan
Aim: Develop a predictive model to estimate three-year

risk of ischemic stroke in the general population.
Variables: Insurance claim data

Strengths: Large sample size; model maintained high
predictability five years after being developed.

Limitations: Retrospective
Findings: AUC: 0.920 (95% CI, 0.908–0.932) in testing

dataset 1 and 0.925 (95% CI, 0.914–0.937) in testing dataset
2. Sensitivity and specificity were 80.3–92.5% and
79.8–87.5% for testing dataset 1; 83.7–91.8% and

79.9–87.5% for testing dataset 2.
Notable facts: DNN algorithm is capable of obtaining a

high performing model for assessment of ischemic stroke
risk.

840,487 DNN

[93], 2019—3b

Location: China
Aim: Identify the ischemic stroke readmission risk factors
and establish a 90-day readmission prediction model for

first-time ischemic stroke patients.
Variables: Clinical data

Strengths: Compared predictions at various follow-up
periods

Limitations: Retrospective; imputation of missing values
is not discussed; dataset highly imbalanced (8.6%

readmission rate)
Findings: Standard AUC: 0.782 (0.729–0.834); best

time-dependent AUC : 0.808 in 54 days.
Notable facts: XGboost model obtained a better risk

prediction for 90-day readmission for first-time ischemic
stroke patients than the LR model.

6070 XGBoost, LR
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Ref., Year—Category ** Study Details Sample
Size Algorithms

AI-enabled Diagnostic Studies

[42], 2017—2b, 2d

Location: USA
Aim: Recognize acute cerebral ischemia and differentiate

that from stroke mimics at the initial examination.
Variables: Clinical data

Strengths: Prospective; ten-fold cross-validation
Limitations: Stroke subtypes not classified

Findings: Sensitivity: 80.0% (95% CI, 71.8–86.3);
specificity: 86.2% (95% CI, 78.7–91.4); median precision:

92% (95% CI, 88.7–95.3).
Notable facts: ANN can be an effective tool to recognize
ACI and differentiate it from stroke mimics at the initial

examination.

260 ANN

[49], 2019—2b

Location: Korea
Aim: Detecting stroke and modeling mortality; stroke

definition based on ICD code.
Variables: Gender, age, type of insurance, admission type,

brain surgery required, region, LOS, hospital location,
number of hospital beds, stroke type, and CCI

Strengths: Large sample size
Limitations: Retrospective

Findings: AUC: 83.48%.
Notable facts: A scaled PCA/deep neural network

approach can be used by both patients and doctors to
prescreen for possible stroke.

15,099 PCA, DNN, RF, GNB, KNNC,
SVM, ADB

[45], 2019—2b, 2c

Location: Sweden
Aim: Detecting intracranial bleeding using simulated
microwave transmission data, leveraging numerical

simulation based on 3D finite-difference time-domain
modeling.

Variables: Computational model from an anatomical
tissue of a human head; bleeding model is simplified

representation of intracranial bleeding (resembling acute
phase)

Strengths: Simulated cohort
Limitations: Retrospective

Findings: With a sample size that approached 1000
subjects, classification results characterized as AUC > 0.9.
Notable facts: Results indicate very high sensitivity and

specificity.

Synthetic
cohort BC

[94], 2019—3b

Location: China
Aim: Identifying high-risk TIA or minor stroke patients

(recurrent ischemic stroke within one year).
Variables: Demographics, clinical and imaging data
Strengths: Patients with stroke or TIA mimics were

excluded
Limitations: Retrospective; downsampling the majority

class applied to address data imbalance
Findings: ANN median sensitivity: 75%; specificity: 75%;

accuracy: 75%; c statistic: 0.77.
Notable facts: ANN model outperformed SVM and Naïve

Bayes.

451 ANN, SVM, NB
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Ref., Year—Category ** Study Details Sample
Size Algorithms

[46], 2019—2b, 2c

Location: USA
Aim: Detecting acute intracranial hemorrhage on head CT

scans using DL.
Variables: CT scan data

Strengths: Large sample size
Limitations: Retrospective

Findings: AUC: 0.991 ± 0.006.
Notable facts: Demonstrated end-to-end network that

performs joint classification and segmentation with
examination-level classification comparable to experts, in

addition to robust localization of abnormalities.

4596 FCN

[60], 2018—2d

Location: USA
Aim: Classifying acute ischemic stroke onset time.

Variables: MRI features
Strengths: Extracted hidden representations from the MR

perfusion-weighted images
Limitations: Retrospective; possibly selection bias due to

missingness; only ~10% of patients had sufficient
information to be included in the study

Findings: AUC: 0.68.
Notable facts: Classification significantly improved over

current clinical methods, demonstrating the potential
benefit of using ML methods in TSS classification.

105 FLIRT, SMR, SVM, RF, GBRT

AI in Outcome Prediction/Prognosis

[96], 2018—3a, 3b

Location: USA
Aim: Developing and validating model for delayed
cerebral ischemia after subarachnoid hemorrhage.

Variables: Age, sex, Hunt-Hess grade, modified Fisher
Scale (mFS), and Glasgow Coma Scale (GCS)

Strengths: Prospective
Limitations: Possibility of selection bias; patients with

missingness excluded
Findings: Standard grading scale (mFS): AUC 0.58;

combined demographics and grading scales: AUC 0.60;
random kernel derived physiologic features: AUC 0.74;

combined baseline and physiologic features with
redundant feature reduction: AUC 0.77.

488 PLS, linear & kernel SVM

[91], 2019—3b

Location: Korea
Aim: Predict the three-month outcomes (mRS) in ischemic

stroke patients.
Variables: Clinical data

Strengths: Large sample size
Limitations: Retrospective

Findings: DNN AUC was significantly higher than that of
the ASTRAL score (0.888 vs. 0.839; p < 0.001) when 38

variables were used. When only the six variables from the
ASTRAL score were used in the ML models, there was no

significant difference in performance.

2604 DNN, RF, LR
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Ref., Year—Category ** Study Details Sample
Size Algorithms

[95], 2018—3a, 3b

Location: Netherlands
Aim: Predicting the outcome of endovascular treatment

for acute ischemic stroke.
Variables: 53 baseline variables and 30 treatment variables

Strengths: Large sample size
Limitations: Retrospective

Findings: Range mean AUC = 0.88–0.91 with a negligible
difference of mean AUC (0.01; 95%CI: 0.00–0.01) between
best performing ML algorithm (RF) and best performing

LR model.
Notable facts: In large vessel occlusion patients, ML did
not outperform LR models in predicting reperfusion and
three-month functional independence after endovascular

treatment. Radiological outcome was more difficult to
predict than clinical outcome at time of admission.

1383 Super Learner (ensemble
method), RF, SVM, ANN

[92], 2019—3b

Location: Switzerland
Aim: Predicting the outcome (mRS > 2) at 90 days in

patients with acute ischemic stroke.
Variables: Biomarkers available at admission, NIHSS score

Limitations: Retrospective
Findings: XGB and GBM AUC = 0.746 and 0.748;

improved after adding NIHSS and feature selection to
0.884 and 0.877, respectively.

Notable facts: DT-based GBMs can predict the recovery
outcome of stroke patients at admission with a high AUC.

512 XGB, GBM

[120], 2018—3a

Location: China
Aim: Identifying a neurological deterioration prognostic

model, based on dehydration equations.
Variables: age, sex, laboratory values, and vascular risk

factor data
Strengths: Feature selection by the Boruta algorithm

Limitations: Retrospective
Findings: After decreasing the number of variables from

18 to 5, the specificity of test samples for the SVM
prediction model increased from 44.1% to 89.4%, and the

AUC increased from 0.700 to 0.927.
Notable facts: SVM algorithms can be used to establish a
prediction model for dehydration-associated ND, with

good classification results.

382 SVM

[100], 2018—4a, 4b

Location: Taiwan
Aim: Prediction of Barthel index (BI) status at discharge to

optimize care of post-stroke patients.
Variables: 15 rehabilitation assessments variables

Limitations: Retrospective; patients were excluded (43)
due to incomplete data; ratio of men to women was 2:1

Findings: LR and RF algorithms performed higher (AUC
= 0.79) than SVM (AUC = 0.77). Mean absolute error of
SVM and LR in predicting BI at discharge were 9.86 and

9.95, respectively.
Notable facts: The proposed ML-based method provides a

promising and practical computer-assisted
decision-making tool for predicting ADL in clinical

practice.

313 SVM, RF, LR
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Ref., Year—Category ** Study Details Sample
Size Algorithms

AI in Treatment Strategies

[35], 2018—1a, 1b, 1c

Location: Switzerland
Aim: Investigating whether a CDS tool for stroke

prevention integrated in EHR could improve adherence to
guidelines in patients with AF in a PCP setting.

Strengths: Randomized clinical trial; the analysis was
carried out in a catchment area with high baseline

adherence rate
Findings: No difference observed in the incidence of

stroke, TIA, or systemic thromboembolism in CDS group
vs. control group. CDS group had a lower incidence of

significant bleeding.

444,347 CDS system

[59], 2019—2d

Location: USA
Aim: Develop a regression tree model predict 90-day
modified Rankin Scale (mRS) scores to aid with ET.

Variables: Elderly patients defined as ≥ 80 years of age
Strengths: Retrospective and prospective; the model

validated using an independent prospective cohort (36) of
patients presenting to the same institution

Limitations: Small sample size
Findings: Sensitivity: 89.36%; specificity: 89.66%; AUC:

0.952.
Notable facts: Algorithm is useful to determine which

patients to exclude from ET, and has been implemented in
an online calculator for public use.

110 Regression tree

AI-enabled Diagnostic Imaging Studies

[47], 2018—2b, 2c, 2d

Location: USA
Aim: Detecting and quantifying intraparenchymal,

epidural, subdural and subarachnoid hemorrhages on
non-contrast CT (NCCT) and estimating hemorrhage

volume.
Variables: Training set: 10,159 NCCT examinations, 901 of
which contained hemorrhage. Testing set: 682 prospective
NCCT examinations, 82 of which contained hemorrhage

Strengths: Retrospective and prospective evaluation
Findings: Hemorrhage detection accuracy: 0.970, AUC:

0.981, sensitivity: 0.951, specificity: 0.973, PPV: 0.829, and
NPV: 0.993. Dice scores for intraparenchymal hemorrhage:
0.931, epidural/subdural hemorrhage: 0.863. SAH: 0.772.

10,841 CNN

[55], 2019—2c, 2d

Location: International
Aim: Segmentation and phenotyping of acute ischemic

lesions on MRI.
Variables: MRI data

Strengths: Single-center cohort: 267; MRI-GENIE cohort
(from 12 international centers from the Stroke Genetics

Network): 3301
Limitations: Retrospective

Findings: No algorithm-specific results reported.
Automated and manual lesion volumes were statistically

correlated.
Notable facts: Deep learning algorithms trained on

diverse data can be successfully used for segmentation of
clinical diffusion-weighted MRI lesions.

3568 CNN
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[48], 2019—2b, 2c

Location: China
Aim: Detecting ICH and subtypes (cerebral, parenchymal,
intraventricular, subdural, epidural, and subarachnoid) in

NCCT.
Variables: CT scan image slices data

Strengths: Multi-institutional
Limitations: Retrospective; prevalence of ICH (65%) was
higher than that in a real clinical setting; limited number

of cases in some subtypes (case/control ratio of 1:14);
comparison was made with junior radiology trainees
Findings: AUC (detecting ICH): 0.98; AUC (detecting

subtype): 0.8.

2836 CNN-RNN

[56], 2019—2c, 3b

Location: China
Aim: Predicting hematoma expansion in patients with

spontaneous ICH.
Variables: Fibrinogen level, sex, Glasgow Coma Score,

time to initial CT scan, black hole sign, blend sign, satellite
sign, midline shift, and baseline hematoma volume

Strengths: Large sample size
Limitations: Retrospective

Findings: Sensitivity: 81.3%; specificity: 84.8%; accuracy
of 83.3%; AUC: 0.89.

Notable facts: Potential utility in institutions where CTA
is limited.

1157 SVM

[29], 2019—1b, 1c

Location: Japan
Aim: Detecting cerebral aneurysms at time-of-flight MR

angiography.
Variables: MRA image data

Limitations: Retrospective; variable number of training
samples per aneurysm location
Findings: Sensitivity: 91–93%

Notable facts: The model improved aneurysm detection
by 4.8–13% compared with the initial reports.

748 DL (ResNet)

[44], 2019—2b, 2c

Location: USA
Aim: Using an automated algorithm to detect intracranial

LVO on CTA.
Variables: CTA image data
Limitations: Retrospective

Findings: Sensitivity: 92–94%, NPV: 97–98%; specificity
0.76–0.81.

Notable facts: RAPID CTA can be used in the emergent
setting as a screening tool to alert radiologists.

477 RAPID CTA

[43], 2019—2b, 2c

Location: USA
Aim: Identifying LVO and ischemic core volume in

patients using CTA.
Variables: CTA image data

Strengths: Comparison with RAPID CTA
Limitations: Retrospective; 338 patients excluded mainly

due to imaging artifacts/quality
Findings: AUC (LVO detection): 0.88; AUC (Ischemic core
detection ≤ 30 mL): 0.88; AUC (Ischemic core detection ≤
50 mL): 0.90; AUC (early time window): 0.90; AUC (late

time window): 0.91.
Notable facts: CTA has the required information for

neuroimaging evaluation of endovascular therapy with
potential to be automated by ML.

297 CNN (DeepSymNet)
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[90], 2018—3b

Location: Denmark
Aim: Use deep learning to identify and combine acute

imaging features of ischemic stroke to predict lesion
volume.

Variables: MRI data
Strengths: Comparing different CNNs

Limitations: Retrospective; no control group; model is
potentially biased toward infarct overestimation

Findings: AUC: 0.88 ± 0.12.
Notable facts: CNN improved prediction accuracy over

current methods.

222 CNN

[54], 2017—2c

Location: USA
Aim: Distinguishing between hyperacute ischemic lesions

and their corresponding contralateral brain tissue in
NCCT

Variables: CT image data
Limitations: Retrospective; used contralateral hemisphere

as control possibly capturing old ischemic lesions.
Findings: AUC: 0.82.

Notable facts: Optimal texture features provided to
distinguish between hyperacute ischemic lesions and their

corresponding contralateral brain tissue in NCCT.

139 SVM, Decision trees,
AdaBoost

[57], 2019—2c

Location: USA and Australia
Aim: Predicting ischemic core on CT perfusion image.

Variables: CT image data
Strengths: Included patients who underwent back-to-back

CT perfusion imaging and MRI
Limitations: Retrospective; possibly overestimating the

ischemic core volume (due to the dependency on the
arbitrary subregion of the brain)

Findings: AUC (ischemic core prediction): 0.85–0.87;
sensitivity (ischemic core prediction): 0.90–0.91; specificity

(ischemic core prediction): 0.62–0.65; maximal Dice
coefficient: 0.48.

Notable facts: ANN accurately integrates clinical and CT
perfusion imaging data to predict ischemic core.

128 ANN

** Category definition: Category 1: Application of AI in pre-diagnosis modeling: primary prevention (1a: Risk Estimation, 1b: Cluster-
ing/patient profiling before the event, 1c: Care gap identification and personalized prevention, 1d: Personalized prevention). Category 2:
Application of AI in diagnosis and acute-phase treatment (2a: EMS proper referral, 2b: Acute Diagnosis, 2c: Acute Imaging, 2d: Triaging
and Acute Treatment). Category 3: Application of AI in post-diagnosis outcome prediction and secondary prevention (3a: Personalize
Treatment, 3b: Outcome prediction/effect disposition). Category 4: Application of AI in rehabilitation (4a: Personalize Treatment, 4b:
Outcome Prediction). Abbreviations: ANN: artificial neural network; ADB: AdaBoost classifier; AF: atrial fibrillation; AUC: area under the
curve; BC: binary classification; CART: classification and regression tree; CCI: Charlson comorbidity index; CDS: clinical decision support;
CT: computed tomography; CTA: computed tomography angiogram; CTP: computed tomography perfusion; DL: deep learning; DNN:
deep neural network; DT: decision tree; DWI: diffusion weighted image; EHR: electronic health record; ET: endovascular thrombectomy;
FCN: fully convolutional neural network; FLIRT: FMRIB’s Linear Image Registration Tool; GBM: gradient boosting machine; GBRT: gradient
boosted regression tree; GLM: generalized linear model; GNB: Gaussian naïve Bayes; GRU: Gated Recurrent Unit; ICH: intracranial
hemorrhage; KNNC: K-nearest neighbor classifier; LR: linear regression; LOS: length of hospital stay; LVO: large vessel occlusion; FCN:
fully convolutional neural network; MRI: magnetic resonance imaging; mRS: modified Rankin Scale score; NB: Naïve Bayes; NIHSS:
National Institutes of Health Stroke Scale; PCP: primary care provider; PLS: partial least squares; RF: random forest; ROC: receiver
operating characteristic; SMR: stepwise multilinear regression; SVM: support vector machine; TIA: transient ischemic attack; XGB: extreme
gradient boosting.

4. Other Applications of AI
4.1. Clinical Trials in the AI-Era

Patient selection for a clinical trial is a crucial process, and research has shown that
predictive modeling in the selection of patients would increase the trials’ success rate [121].
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The development of a drug takes about ten years and more than two billion dollars, and yet
only a fraction of drugs are approved by the Food and Drug Administration (FDA) [122].
The application of in silico clinical trials to suggest better patient selection criteria [123,124]
can increase the efficiency and speed of drug development. For instance, the use of AI
in clinical trials can increase the efficacy of screening of drug candidates based on (a)
analysis of calculated properties, (b) prediction models for therapeutic drug targets, and (c)
identification of safety liabilities; all of which facilitate a reduction in the number of in vivo
or in vitro assay requirements [125]. These efforts are also driven by innovative start-up
companies to reduce the cost and improve the success rate of trials.

4.2. AI at Physicians’ Fingertips—Implication and Future Directions

Once validated and proven effective and safe, the AI solutions have to be integrated
into clinical workflow and demonstrated to be effective in improving outcomes. It is only
then that we have leaped to provide evidence-based care in real-time using the promises of
big data and AI. However, taking the advances in AI to the bedside is not trivial. First, novel
AI solutions must be rigorously assessed. Certainly, the FDA approval for AI applications
is laying the foundation for regulatory evolution to allow faster integration of AI-enabled
technologies into healthcare. Many clinical trials are designed to evaluate the impact of
technological advances (such as new imaging devices [126]) like the drug-design trials.
Second, carefully designed CDSS need to be developed and implemented in the EHR that
take the AI-powered tool to physician’s fingertips. To achieve these goals, the American
Medical Informatics Association (AMIA) published a roadmap [127] in 2007 for taking
action on CDSS and defined three main pillars: (a) high adoption and effective use, (b)
best knowledge available when needed, and (c) continuous improvement of knowledge
and CDSS methods. However, in general, physicians have relatively positive attitudes
toward the idea of CDSS [128,129], even though there are many challenges, including
low specificity [130,131], workflow interruptions [132–134], confusing interfaces [135,136],
low confidence [137], awareness of the information [138], requirements of manual data
entry [134,139], interference with physician autonomy [128,140], or lack of relevance [134]
that limit the effective use and adoption of CDSS in many health care systems. “Alert
Fatigue” can be caused by poorly designed and implemented CDSS [128,141–143]. The four
principles for the design of CDSS interfaces (four A’s: All in one, At a glance, At hand, and
Attention) [144] should also be followed. Based on the unified theory of acceptance and use
of technology [145], user expectations need to be taken into consideration for technology
to be accepted. In addition, several studies highlighted the importance of considering the
end-user needs and expectations early in the development process [139,143,146]. Therefore,
it is imperative to have CDSS end-users involved in the design and implementation. It is
also essential to consult EHR engineers and information technologists to understand the
possibilities, limitations, and hardware/software requirements to effectively utilize CDSS
functionalities. Careful planning requires mapping current workflows to understand how
clinical phases and tasks are completed and how these may be affected by the addition of
CDSS. In some instances, CDSS may need to be customized to suit various processes. Many
physicians remain hesitant to accept CDSSs, leading to suboptimal implementation [143].
Finally, despite federal investment to promote health information technology adoption,
gaps remain in the use of CDSS among health systems [147], and we believe that lack of
physician acceptance may be one of the main reasons. Thus, it is imperative for researchers
across the translational spectrum to be involved in this AI revolution so that we can together
reach the promises of precision health in a scalable and fair manner.

4.3. Health Disparity and Implicit Bias

Although recent scrutiny of AI-based software has introduced concern about unin-
tended effects of AI on social bias and inequity [148], there are opportunities to leverage
technology to reduce health disparity, care gaps [149,150], and unwanted variations [151],
as well as improving access. There are many examples of how technology is improving
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access to specialty care, especially in rural areas. However, AI-based studies have to be
carefully designed with explicit frameworks and a balanced representation of participants
to mitigate some of the undesirable biases. For instance, the use of deep transfer learning is
effective in reducing healthcare disparities that are driven by data inequality [152]. The
reader is referred to the work by Cirillo et al. [153] for a more detailed overview and some
of the recommendations on how to improve the global health and disease landscape and
decrease inequalities with the use of technology.

There are also other challenges and opportunities when integrating AI tools in clinical
workflow; namely, there are technological challenges, operational challenges, and ethical
challenges [61]. These issues are tightly intertwined with implicit biases and health dispar-
ity. Larger centers with better access to robust infrastructure and a wide range of patient
representation are better positioned to address implicit biases and address these challenges,
leading to better integration of AI-assistive tools in the clinical workflow. However, as it is
impossible—in practical terms—to find solutions to ensure the highest efficacy, efficiency,
equity, and patient safety, it is important and necessary to define acceptable thresholds by
working meticulously with regulatory institutions to guide the development of AI tools to
ensure best practices and compliance.

5. Conclusions

To summarize, we have seen that the field of AI is omnipresent in both cardio and
cerebrovascular fields, targeting different stages of patient management (Figure 2). How-
ever, in the cardiovascular field, studies have been larger, and there were more prospective
and multi-center studies. In the field of cerebrovascular diseases, studies were mostly
retrospectives from single centers and limited in patient representation and scale. By en-
hancing collaborative efforts, future cerebrovascular studies can expand follow-up periods
to better understand the long-term outcomes in the patients. Both cardio- and cerebrovas-
cular fields can also benefit from collaborative efforts to increase data diversity, patient
representation, and integration of different data modalities, e.g., imaging biomarkers and
genetic information.

Currently, the limitations in AI-based models are mostly centered on the lack of suffi-
cient patient representation, balanced cohorts, and biases introduced by cohort definitions
or selection of variables, as well as the exclusion of a certain group of patients. Machine
learning models pick up biases from the training datasets; therefore, to reach new heights,
it is of fundamental importance to increase patient representation and data density and
improve data for downstream modeling [154,155]. Finally, in terms of methodologies, both
fields are taking advantage of advances in machine learning frameworks and tools. Ulti-
mately, the future of healthcare is an organic blend of technology, innovation, and human
connection. It is not enough to provide faster, better care; we must leverage the technology
to also ensure that the care is fair and not biased towards a group or sub-population. We
must understand our limitations and use the technology to deliver an integrated solution
that does not make the physicians fixed to the screen and the keyboard. The care also
has to ensure physicians receive the tools they need to be better at what they do. Overall,
there are few areas in which AI can be of great value in both cardio and cerebrovascular
diseases: (1) disease diagnosis and patient monitoring, especially in high-impact fields;
(2) incidental findings for preventive care by scanning through images and reports; (3)
risk stratification for primary or secondary prevention; and (4) resource and workflow
optimization by leveraging administrative data.
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