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Abstract: Studies have demonstrated that polymorphic variants of arginase 1 gene (ARG1) are
involved in human diseases, such as coronary heart disease, hypertension, and diabetes. Our study
aimed to investigate the association between ARG1 rs2781666 single nucleotide polymorphism (SNP)
and diabetic retinopathy (DR) in type 2 diabetes (T2DM) patients. Polymorphism was genotyped in
740 T2DM patients and 400 healthy individuals. A significant difference in the genotype distribution
was observed between the patients and the controls. The T allele and TT genotype were associated
with an increased risk of T2DM (OR 1.4, 95% CI 1.14–1.72, p = 0.001 and OR 2.16, 95% CI 1.23–3.80,
p = 0.007, respectively). When the T2DM subjects were stratified into DR+ and DR− subgroups, the T
allele and TT genotype frequencies were significantly higher in the DR+ group compared to the DR−
group, demonstrating OR 1.68 (1.33–2.12), p < 0.0001 and OR 2.39 (1.36–4.18), p = 0.002, respectively.
Logistic regression analysis was applied to determine the interaction between the ARG1 genotypes
and other risk factors. Only ARG1 rs2781666 SNP was a significant risk predictor of DR (p = 0.003). In
conclusion, this is the first report discussing the effect of ARG1 polymorphism on the microvascular
complications that are associated with diabetes. Our findings demonstrate that ARG1 rs2781666 SNP
is significantly associated with an increased susceptibility to DR in T2DM patients.
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1. Introduction

Type 2 diabetes mellitus (T2DM) is a chronic, heterogeneous disorder of the glucose
metabolism that affects over 450 million people around the world [1]. Diabetic microvas-
cular complications, such as diabetic nephropathy, retinopathy, and neuropathy, are an
important cause of morbidity and mortality in T2DM patients [2]. Type 2 diabetes results
from the interplay between multiple genetic and environmental risk factors [3]. The conven-
tional risk factors, age, gender, body mass index (BMI), hyperglycemia, and smoking, are
insufficient for predicting the development of disease and its complications. Finding addi-
tional genes that predispose an individual to type 2 diabetes could provide tools to broaden
our knowledge of the complex pathogenesis of diabetes and its vascular complications,
resulting in better prevention, diagnosis, and treatment.

Arginase, an important enzyme in the urea cycle, utilizes L-arginine as a substrate to
produce urea and ornithine. It is expressed in several cell types, including endothelial cells,
macrophages, and vascular smooth muscle cells [4]. Studies have shown that increased
arginase activity disturbs nitric oxide synthase (NOS) function, causing the uncoupling of
the NOS dimer. Uncoupled NOS produces superoxide instead of nitric oxide (NO), which
causes the production of the proinflammatory oxidant peroxynitrite. This may lead to
vascular dysfunction in a range of diseases, including diabetes [5,6]. Studies in animal
models have reported that of diabetes increases in the levels of arginase contribute to
endothelial cell dysfunction [7–9].

Two types of mammalian arginase exist: arginase 1 and arginase 2, both of which
are encoded by separate genes [10]. Arginase 1 gene (ARG1) is located on chromosome
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6q23 [11]. It has genomic length of 11.5 kb and consists of eight exons [12]. There are several
single nucleotide polymorphisms (SNPs) that are spaced throughout the ARG1 gene. These
polymorphic variants of the ARG1 gene are involved in human diseases. The rs2781666 G/T
SNP, which is located in the 5′ promoter sequence, has been described to be associated with
myocardial infarction [13,14], coronary artery disease [15], essential hypertension [16], and
diabetes [17]. To the best of our knowledge, there are no data available on the association
of ARG1 gene polymorphisms with diabetic microvascular complications.

The objective of our preliminary case–control study was to analyze the potential
association between the ARG1 rs2781666 SNP (selected on the basis of its position and/or
putative functionality) and diabetic retinopathy in T2DM patients.

2. Materials and Methods
2.1. Subjects

All of the individuals who were involved in this retrospective cross-sectional study
were recruited from University Hospital, Medical University of Lublin. The study com-
prised 740 unrelated T2DM patients (392 males and 348 females) who had been managing
a diabetes diagnosis for 10 years or more (mean age 57.2 ± 9.1 years). All of the subjects
who were included were Caucasian and of Polish origin.

Diabetes diagnosis was based on the American Diabetes Association criteria for
the diagnosis of T2DM [18]. At least one of the following conditions was required for
diagnosis: the classic symptoms of hyperglycemia (polyuria, polydipsia, loss of weight),
increased plasma glucose levels: fasting > 7 mmol/L or random > 11 mmol/L, and receiving
treatment with insulin or oral hypoglycemics. The complete physical examination included
plasma fasting glucose, glycated hemoglobin (HbA1c), lipid profile, albumin-to-creatinine
ratio (ACR), albumin excretion rate (AER), and body mass index (BMI).

Diabetic retinopathy (DR) was diagnosed by independent ophthalmologists in
445 patients. Of this group, 182 patients presented with concomitant diabetic nephropathy
(DN), and those were not analyzed in this study. Of the 263 patients with DR and no DN,
43 had proliferative diabetic retinopathy (PDR) and 220 had non-proliferative diabetic
retinopathy (NPDR). All of the patients received a thorough ophthalmological examination
that included visual acuity, fundoscopic evaluation, and color fundus photography. The
fundoscopic findings were evaluated by a retinal specialist. Retinopathy was evaluated
and diagnosed by conforming to the Early Treatment Diabetic Retinopathy Study (ET-
DRS) criteria. These criteria involve the occurrence of microaneurysms, hemorrhages,
intraretinal microvascular abnormalities, cotton wool spots, hard exudates, and new ves-
sels. Patients were categorized into two groups: those with retinopathy (proliferative
or non-proliferative) (DR+) and those without retinopathy (DR−). Participants with eye
diseases that could manifest as retinal pathological lesions were excluded. Subjects with
diagnosed diabetic nephropathy were not included in this study.

The healthy control group involved 400 unrelated volunteers (mean age 57.5 ± 8.1 years).
They were mostly blood donors and members of the hospital staff who had recently under-
gone a health examination. They presented with a normal ECG and no clinical evidence
of cardiovascular disease (CVD). Additionally, they did not have a known past history
of diabetes, eye disease, and cardiovascular or renal disease. A positive family history of
renal or cardiovascular disease in first-degree relatives was a criterion for exclusion.

Prior to participation in the study, a written informed consent was obtained from the
patients and the healthy controls, in accordance with principles of the 1964 Declaration
of Helsinki. The research protocol of the proposed study was approved by the bioethics
committee of Medical University of Lublin (approval on 27 February 2020; code number
KE-0254/49/2020).

2.2. Genotype Determination

Genomic DNA was extracted from peripheral blood leukocytes (stored at−70 ◦C) that
had been obtained by the standard procedure. The ARG1 SNP rs2781666 was determined by
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the amplification of the 294 bp DNA fragment by polymerase chain reaction (PCR). The fol-
lowing primer pairs were used for amplification: forward 5′-CGGAAGGATCTTTAAGGT
GCC-3′ and reverse 5′-CCATGTGTCCGATGCAGTTCTG-3′. Genomic DNA (200 ng) was
amplified in a 30 µL volume. The initial denaturation at 95 ◦C for 6 min preceded 35 cycles
consisting of denaturation at 95 ◦C, annealing at 60 ◦C, and extension at 72 ◦C (1 min each).
The final extension step was at 72 ◦C for 7 min. The PCR product (10 µL) was digested
with five units of Tae I restriction endonuclease (Thermo Fisher Scientific) at 37 ◦C for 12 h.
The resulting DNA fragments were resolved by electrophoresis in 2.5% agarose gel. The
length of the fragments was 294 bp for the G allele and 178 bp + 116 bp for the T allele. The
genotyping results were validated using blind DNA duplicates (96 samples). The rate of
concordance was 100%. Additionally, 20 random samples for each genotype were analyzed
by automated sequencing in a CEQ 8000 Genetic Analysis System (Beckman Coulter UK
Ltd., High Wycombe, Great Britain).

2.3. Statistical Analysis

Statistical analysis for this study was accomplished using SPSS 18.0 for Windows (SPSS,
Inc., Chicago, IL, USA). For a comparison of the baseline characteristics between the cases
and controls, the normally distributed continuous variables were shown as means ± SD.
Categorical variables are shown as numbers and percentages. The Hardy–Weinberg equi-
librium was calculated with the chi-square test. The distribution of the allele/genotype
frequencies was compared between groups and subgroups utilizing a chi-square test of
independence with 2× 2 contingency and z statistics. Continuous and categorical variables
were compared using the Mann–Whitney test and Pearson’s χ2 test of independence. The
odds ratios (OR) with corresponding 95% confidence intervals (CI) were calculated for
associations. Post hoc power calculations for the observed associations were conducted
using an online power calculator (http://osse.bii.a-star.edu.sg/calculation2.php, accessed
on 16 November 2021). Logistic regression analysis was conducted for the assessment of
the rs278166 association with DR and the interaction with other risk factors. A two-tailed
type I error rate of 5% was regarded as statistically significant.

3. Results

The genotype of the rs2781666 SNP in the arginase1 gene was analyzed in 740 T2DM
patients and 400 healthy individuals, with a genotyping success rate 100%. The demo-
graphic, clinical, and laboratory characteristics of patients and controls are presented in
Table 1. Of the 740 patients with T2DM, 263 (35.5%) had diabetic retinopathy. All of the
results were compared between this subgroup (DR+) and the 477 T2DM patients who
did not present with retinopathy (DR−). The DR patients with concomitant diabetic The
information given is correct.nephropathy were not included in this study in an effort to
avoid the effects of renal insufficiency on the results. The gender distribution was com-
parable in patients both with and without DR (53% of males in both subgroups) as was
the age at the time when the study was conducted (p = 0.257). There was a statistically
significant difference in the age at diabetes diagnosis (p = 0.043) and diabetes duration
(p < 0.001). There was also a significant difference in the total cholesterol and triglyceride
levels and the BMI between groups. In the comparison of the T2DM patients with the
healthy controls, significant differences were seen in age, total cholesterol level, and BMI
(p < 0.001 for all variables).

The genotyping results are presented in Table 2. The genotype frequencies of rs2296545
SNP were in agreement with the frequencies that were predicted by the Hardy–Weinberg
equilibrium in both the T2DM and control groups (p = 0.824 and p = 0.704, respectively). A
statistically significant difference in the polymorphism distribution was found between
the T2DM patients and the control group. The minor T allele and TT genotype were
significantly associated with the increased risk of T2DM (OR 1.4, 95% CI 1.14–1.72, p = 0.001
and OR 2.16, 95% CI 1.23–3.80, p = 0.007, respectively). The T2DM subjects were stratified
into the DR+ and DR− subgroups for a comparison of the rs2187666 distribution (Table 2).

http://osse.bii.a-star.edu.sg/calculation2.php
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The T allele and TT genotype frequencies were significantly increased in the group of T2DM
patients with DR compared to the DR− patients, with OR 1.68 (1.33–2.12), p < 0.0001 and
OR 2.39 (1.36–4.18), p = 0.002, respectively. A post hoc statistical power calculation on the
basis of the minor (T) allele frequency indicated a power 74.7% for the comparison between
the T2DM patients and the controls and a power of 88.3% for a comparison between the
DR+ and DR− subgroups.

Table 1. Comparison of clinical and laboratory characteristics of T2DM patients with and without DR.

Variables Healthy Controls T2DM Patients DR+ DR− p Value *

N 400 740 263 477

Gender (male/female) 205/195 392/348 139/124 253/224

Age (years) 57.5 ± 8.1 60.2 ± 9.4 59.8 ± 10.3 60.6 ± 8.5 0.257

Age at diabetes diagnosis (years) NA 43.2 ± 7.6 42.6 ± 7.2 43.8 ± 8.0 0.043

Diabetes duration (years) NA 15.0 ± 9.3 16.6 ± 9.1 13.4 ± 9.7 <0.001

Hypertension (%) 0 584 (79) 207 (78.7) 377 (79) 0.923

Diabetic retinopathy (%) 0 263 (35.5) 263 (100) 0

Total cholesterol (mmol/L) 4.0 ± 0.78 4.82 ± 1.2 4.94 ± 1.4 4.71 ± 0.9 0.006

HDL cholesterol (mmol/L) ND 1.21 ± 0.31 1.19 ± 0.32 1.23 ± 0.29 0.084

Triglyceride (mmol/L) ND 2.1 ± 0.86 2.3 ± 0.86 1.9 ± 0.66 <0.001

HbA1c (%) ND 8.2 ± 2.5 8.4 ± 2.5 8.0 ± 2.5 0.849

Fasting glucose (mmol/L) 4.61 ± 1.23 8.04 ± 3.2 8.31 ± 3.44 7.85 ± 3.04 0.067

BMI (kg/m2) 27.1 ± 4.2 29.8 ± 8.8 30.6 ± 8.3 29.1. ± 9.4 0.030

T2DM, type 2 diabetes mellitus; DR+, diabetic retinopathy; DR−, without retinopathy; BMI, body mass index; HbA1c, glycated hemoglobin;
NA, not applicable. ND, not determined. Data are reported as means ± SD or numbers and percentages (in parentheses). * P calculated for
DR+ vs. DR−. Significant p-values are indicated in bold. In the comparison between the T2DM and control groups, statistically significant
p-values were observed in age, total cholesterol, and BMI (p < 0.001 for all).

Table 2. Genotype and allele distribution of ARG1 rs2781666 polymorphism in patients with T2DM and healthy controls.

Genotypes MAF OR (95% CI) b

N GG GT TT T Allele TT Genotype a

T2DM 740 388 (52.5) 294 (39.5) 58 (8) 0.28 1.40 (1.14–1.72)
p = 0.001

2.16 (1.23–3.80)
p = 0.007

T2DM DR+ 263 109 (41.5) 126 (48) 28 (10.5) 0.35 1.68 (1.33–2.12)
p < 0.0001

2.39 (1.36–4.18)
p = 0.002

T2DM DR− 477 279 (58.5) 168 (35.5) 30 (6) 0.24 Ref. for T2DM DR+

Controls 400 246 (61.5) 137 (34.2) 17 (4.3) 0.21 Ref. for T2DM

T2DM, type 2 diabetes mellitus; DR+, diabetic retinopathy; DR−, without retinopathy. Genotype distribution is shown as numbers with
percentages in parenthesis. a Calculated versus CC genotype. Hardy–Weinberg equilibrium: χ2 = 0.144, p = 0.704 for control group;
χ2 = 0.049, p = 0.824 for T2DM patients. b Logistic regression was conducted for this association analysis.

Due to a relatively small number of subjects with proliferative DR, we did not conduct
the subgroup analysis based on DR type.

Table 3 shows the distribution pattern of the ARG1 rs2781666 polymorphism in the
DR+ and DR− patients with regard to dominant, recessive, and codominant models of
inheritance. After adjustment for age, sex, BMI, duration of diabetes, and hypertension, the
minor T allele in both the CT and TT genotypes was associated with an increased risk of
developing DR in all of the models of inheritance. A dose dependent pattern in the effect
of T allele on DR development was observed in this genotyping analysis. The OR (95% CI)
for homozygote TT versus homozygous non-carrier GG was 2.38 (1.36–4.18), while for the
heterozygous carrier GT versus GG, it was 1.91 (1.39–2.64). Multiple logistic regression
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analysis was then applied to determine the possible interaction between the ARG1 geno-
types and other potential risk factors (Table 4). In this analysis, only ARG1 rs2781666 SNP
was found to be a significant risk predictor of diabetic retinopathy (p = 0.003).

Table 3. Distribution of the ARG1 rs2781666 polymorphism according to the model of inheritance.

ARG1 rs2781666 T2DM DR+ T2DM DR−
OR (95% CI) c p Value

G/T Genotypes (n = 263) (n = 477)

Codominant model

GG 109 279 ref -

GT 126 168 1.91 (1.39–2.64) a 0.0001

TT 28 30 2.38 (1.36–4.18) a 0.0023

Dominant model

GG 109 279 ref -

GT + TT 154 198 1.99 (1.46–2.70) a <0.0001

Recessive model

GG + GT 235 447 ref -

TT 28 30 1.77 (1.03–3.04) b 0.0368
ARG1, arginase 1 gene. T2DM, type 2 diabetes mellitus. Genotype distribution is shown as numbers. Odds
ratio is referred to a GG homozygote and b GG+GT genotypes. c Logistic regression was conducted for this
association analysis.

Table 4. The results of multivariate logistic regression analysis.

Variable Odds Ratio 95% CI p Value

Age at study 1.19 0.71–1.38 0.080

Gender 1.26 0.83–1.73 0.092

T2DM duration 1.31 0.74–1.96 0.114

Age of onset 1.22 0.55–2.36 0.652

Hypertension 2.09 0.69–4.14 0.093

BMI 1.12 0.88–1.25 0.325

HbA1c 1.14 0.93–1.51 0.084

Total cholesterol 0.96 0.58–1.32 0.754

HDL-cholesterol 1.22 0.83–2.19 0.912

Triglycerides 1.08 0.69–1.53 0.721

T allele * 1.48 1.23–2.02 0.003
T2DM, type 2 diabetes mellitus. * ARG1 rs2781666 polymorphism. An unconditional model of multiple logistic
regression analysis was conducted for interaction between ARG1 gene polymorphism and other variables.

4. Discussion

Diabetic retinopathy is a frequent, severe diabetic microvascular complication that
affects the blood vessels in the retina due to prolonged hyperglycemia. Its exact etiology
and pathogenesis have yet to be thoroughly elucidated. The genetic influence in DR was
estimated to be as high as 27%, and several genes that are responsible for susceptibility
to DR have already been identified [19]. In the current study, we explored the possible
association of the rs2781666 single nucleotide polymorphism in the ARG1 gene with
susceptibility to diabetic retinopathy in T2DM patients. The reports on the association of
genetic variants in the ARG1 locus with T2DM are still scarce. To the best of our knowledge,
ours is the first study to investigate the association of the ARG1 gene variant with the
microvascular complication of T2DM.
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In this preliminary study, we demonstrated that rs2781666 SNP in the ARG1 locus
is significantly associated with type 2 diabetes. The minor T allele and TT genotype (in
excess in patient group) increased the risk of T2DM by 1.4 and 2.2-fold, respectively. In
the multivariate analysis, this association was independent of other risk factors. This
finding is in agreement with the report of Shah et al. [17] who, for the first time, described
a significant link of rs2781665 and rs2781666 SNPs in the ARG1 gene to T2DM. They found
increased levels of arginase 1 in patients with diabetes carrying the variant genotypes of
both SNPs. Earlier studies also have shown that arginase 1 expression is up-regulated in
the coronary arteries of diabetic subjects [5].

To investigate the effect of rs2781666 SNP on susceptibility to DR, we stratified
T2DM subjects into DR+ and DR− subgroups. The DR patients with concomitant di-
abetic nephropathy were not included in this study, which was decided in an effort to
avoid the effect of renal insufficiency on the results. The frequencies of the T allele and TT
genotype were significantly higher in the group of T2DM patients with DR than in those
without DR. The risk of developing DR was 1.7-fold higher for the T allele and 2.4-fold
higher for homozygous TT genotype. A post hoc statistical power calculations indicated a
power of 74.7% for a comparison between the T2DM patients with the controls and power
of 88.3% to detect the association between rs2781666 SNP and DR (in DR+ versus DR−
subgroups). The mechanism by which the rs2781666 SNP in ARG1 gene confers suscep-
tibility to diabetic retinopathy is not clear and needs to be explored. Although extensive
studies have demonstrated involvement of arginase in diabetes, its role in retinopathy
is not fully understood. Most published studies concentrate on the distribution of the
enzymes that are involved in arginine metabolism in ocular structures [20]. The studied
polymorphism in the promoter region of the gene can possibly modify ARG1 expression.
Arginase 1 is expressed and is functionally active in human endothelial cells, so it is plau-
sible that the dysfunction of the vascular endothelium is engaged in the development of
DR. Emerging evidence indicates that arginase is a key regulator of nitric oxide signaling
and that it is engaged in the negative regulation of NO production in the macrophages and
endothelial cells, and its overexpression is deleterious to endothelial cells [21–23]. In an
elegant study performed in strptozotocin-induced diabetic mice and using high glucose
treated retinal endothelial cells, Patel et al. showed that retinal vascular activation and
injury are associated with an increase in arginase expression and activity and a decrease
in bioavailable NO formation. Simultaneously, the formation of O2

− is increased. The
authors concluded that arginase is a mediator of diabetic retinopathy, and for the first time,
it was mechanistically linked with the increased activity of the arginase to retinal vascular
injury in diabetes [24]. The results of previously conducted animal studies show that
arginase 1 is associated with endothelial dysfunction in hypertension, aging, diabetes, and
ischemia [5,25–27]. Diabetic retinopathy is associated with a decrease in the blood flow in
the retina in both humans and animals [28,29]. In mouse and rat models, an increase in the
expression of arginase 1 that is induced by diabetes was shown to be involved in the high
glucose-induced deterioration of retinal blood flow by means of the vascular endothelial
dysfunction mechanism. It was clearly shown that the diabetes induced impairment of
endothelium-dependent vasodilation responses in the retinal vessels of mice and rats is
associated with the activation of arginase and an increase in the production of arginase I.
This can be prevented by the deletion of one copy of the arginase gene in mice [8]. The
effect of ARG1 gene polymorphism through endothelial dysfunction has been previously
proposed in the studies involving cardiovascular diseases. These studies support the
role of arginase 1 in vascular pathophysiology [13,14]. However, since arginase 1 has
complex functions that depend on the vascular cell type, whether this hypothesis applies
to diabetic retinopathy requires more extensive study in the future. Among other topics,
Future studies should also explore what the mechanisms that accountable for arginase
overexpression and increased activity in diabetic retina are, or which cells are responsible
for the arginase-promoted vascular dysfunction observed in diabetic retinopathy.
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The strength of our preliminary study is its large sample size, which had a power of
over 80% for the observed association of rs2781666 SNP with DR. However, the results have
to be interpreted with caution since the study also has some limitations. It was restricted
to one SNP in the ARG1 locus, the polymorphism that has been reported to be associated
with type 2 diabetes. Therefore, we cannot exclude the effect of other polymorphisms
at this locus on development of DR. The other limitation of the study is that we did not
investigate the functional consequences of rs278166 polymorphism. The arginase levels or
its enzymatic activity were not determined in the study subjects.

In conclusion, to the best of our knowledge, this is the first published study analyzing
the effect of the ARG1 gene polymorphism on the microvascular complications of diabetes.
Our findings show that the rs2781666 SNP in the ARG1 gene is significantly associated with
increased susceptibility to diabetic retinopathy in T2DM patients. A novel observation of
this association as well as its potential clinical significance needs to be confirmed in larger
studies as well as in other populations.
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