
Journal of

Clinical Medicine

Review

Cone-Beam Breast Computed Tomography: Time for a New
Paradigm in Breast Imaging

Avice M. O’Connell *, Thomas J. Marini and Daniel T. Kawakyu-O’Connor

����������
�������

Citation: O’Connell, A.M.; Marini,

T.J.; Kawakyu-O’Connor, D.T.

Cone-Beam Breast Computed

Tomography: Time for a New

Paradigm in Breast Imaging. J. Clin.

Med. 2021, 10, 5135. https://

doi.org/10.3390/jcm10215135

Academic Editor: Nebojsa Durić
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Abstract: It is time to reconsider how we image the breast. Although the breast is a 3D structure,
we have traditionally used 2D mammography to perform screening and diagnostic imaging. Mam-
mography has been continuously modified and improved, most recently with tomosynthesis and
contrast mammography, but it is still using modifications of compression 2D mammography. It
is time to consider 3D imaging for this 3D structure. Cone-beam breast computed tomography
(CBBCT) is a revolutionary modality that will assist in overcoming the limitations of current imaging
for dense breast tissue and overlapping structures. It also allows easy administration of contrast
material for functional imaging. With a radiation dose on par with diagnostic mammography, rapid
10 s acquisition, no breast compression, and true high-resolution isotropic imaging, CBBCT has
the potential to usher in a new era in breast imaging. These advantages could translate into lower
morbidity and mortality from breast cancer.

Keywords: breast cancer; cone-beam breast computed tomography (CBBCT); mammography

1. The Current State of Breast Imaging

Millions of new cases of breast cancer occur every year worldwide with about
42,000 deaths from breast cancer in the United States and 500,000 deaths worldwide [1,2].
Can we not do better?

Here is the problem: one in eight women in the United States will get breast cancer
in their lifetime. Some cancers will be detected on screening. Many will not. Even if
a woman gets regular screening and has no known risk factors, her cancer may still be
missed [3,4]. Additionally, we keep telling women that mammography saves lives, but we
are less willing to admit the low sensitivity and specificity of mammography, especially in
dense breasts (Figure 1) [5,6]. Why is this still happening? We need to do better. We owe it
to the women who place their trust in us.
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Figure 1. Limitation of mammography for dense breasts. Bilateral craniocaudal (CC) (A) and bilateral mediolateral oblique (MLO) 
(B) mammograms showing extremely dense breasts (ACR density category d) [7]. The mammogram is negative (Breast Imaging 
Reporting and Data System (BI-RADS) 1). C) Fortunately, the patient had a screening ultrasound shortly thereafter showing a 1 cm 
cancer at the 10 o’clock position in the right breast. The mammogram was a false negative. The patient came to no harm since the 
ultrasound was performed within a short period of time. The cancer was grade I invasive ductal carcinoma with negative nodes. 
Survival after treatment is near 100% [8]. 

 

 

 

 

Figure 1. Limitation of mammography for dense breasts. Bilateral craniocaudal (CC) (A) and bilateral mediolateral oblique
(MLO) (B) mammograms showing extremely dense breasts (ACR density category d) [7]. The mammogram is negative
(Breast Imaging Reporting and Data System (BI-RADS) 1). (C) Fortunately, the patient had a screening ultrasound shortly
thereafter showing a 1 cm cancer at the 10 o’clock position in the right breast. The mammogram was a false negative. The
patient came to no harm since the ultrasound was performed within a short period of time. The cancer was grade I invasive
ductal carcinoma with negative nodes. Survival after treatment is near 100% [8].

There is no perfect test. For average risk women, the best widely available screening
modality around the world today is mammography. Mammography requires two separate
views with uncomfortable compression, on average approximately 20 pounds or 90 New-
tons [9,10]. Additionally, when abnormalities are visualized on a screening exam they can
never be exactly co-registered on the two standard views because they are two separately
acquired views (craniocaudal (CC) and mediolateral oblique (MLO)), which are not orthog-
onal. In mammography, there is the problem of false positive findings due to overlap and
breast density but also too many false negatives, especially in dense breasts [11]. Overall
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mammography sensitivity is quoted from 75% to 90% and specificity from 90% to 95% [12].
However, the sensitivity for mammography is dramatically lower in dense breasts [5].
Think of looking for a snowman in a snowstorm, or even more challenging, a snowball
in a snowstorm. This is the situation when we try to visualize a white cancer in a field
of dense white breast parenchyma. Because glandular tissue and malignant masses have
similar density characteristics, mammography cannot distinguish between the two. The
diagnostic challenge posed by dense breasts is compounded by the increased risk of cancer
associated with increased breast density. It is known that women with mammographically
dense breasts have a relative risk of cancer 4–6 times that of women with fatty breasts [13].
With greater than 50% of women categorized as heterogeneously or extremely dense in
their 40’s and 50’s (ACR density categories c or d), this is a non-trivial problem [7,14]. This
places additional burdens on imaging; not only is the sensitivity of mammography less
than 50% in extremely dense breasts, but there is the additional burden of more cancer.

The latest improvement to mammography is called tomosynthesis (approved by the
FDA in 2011), which provides a reconstructed pseudo-3D image from multiple 2D images
taken over different angles [15]. Tomosynthesis offers marginally increased sensitivity and
specificity compared to mammography [16]. Even with the advantages of tomosynthesis,
dense breasts present a persistent diagnostic challenge. Thankfully, supplemental screening
with other imaging modalities is available to women with extremely dense breasts, family
history of cancer, or other risk factors [17]. Supplemental screening for breast cancer with
magnetic resonance imaging (MRI) is usually reserved for women at high risk (>20% life-
time risk) [18]. Contrast-enhanced MRI comes close to 100% in sensitivity for invasive
disease, but its specificity is slightly less [19]. It is not practical or economical to screen
every woman annually with MRI. MRI is also not available to many women due to various
factors including availability, access, and cost [4,20–23]. However, even contrast-enhanced
MRI has several limitations. In addition to high cost, limited availability, claustrophobia,
and issues with the contrast agent gadolinium, the spatial resolution of images on a 1.5 T
magnet is only around 1 mm at best [24]. Intermediate risk women (12–20% lifetime risk)
and those with extremely dense breast density may be offered supplemental screening with
breast ultrasound [25,26]. Unfortunately, not all women have access to or even awareness
of the value and availability of this additional imaging [27,28].

We need to rethink the whole situation. A new paradigm in breast imaging is needed to
address the fundamental issues presented above. If you knew nothing about the way breast
imaging is performed today, and you were tasked with devising a way to image a woman’s
breast comfortably and accurately, you would almost certainly not start by distorting
and compressing this highly sensitive structure multiple times, causing considerable pain
to most women. With today’s imaging, if you see something unusual on the first two
mammographic images (CC and MLO), you take many more views. However, with your
ideal modality, you would utilize 3D imaging from the start and image the entire breast
once, without compression or distortion, and you would do it with perfect 3D isotropic
resolution. Then, after reconstruction of the initial image in all three planes (transverse,
sagittal, and coronal), all the information needed can be retrieved. This modality would
also have the availability of functional imaging with contrast enhancement without having
undue radiation exposure. This ideal modality is actually currently a reality with cone-
beam breast computed tomography (CBBCT) (Figure 2 and Supplementary Video S1) [29].
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Figure 2. Cone-beam breast computed tomography (CBBCT) basics. A) Picture of a CBBCT with the area that the pa-
tient inserts her breast labeled. B) Labeled schematic of a CBBCT. The patient is positioned prone in the scanner and 
one breast is imaged at a time. C) Photo of a patient in position for biopsy with localizing grid for biopsy labeled. 

 

Supplemental Video 1. Video demonstrating how cone-beam breast computed tomography (CBBCT) image acqui-
sition occurs. 

2. Cone-Beam Breast Computed Tomography 

Figure 2. Cone-beam breast computed tomography (CBBCT) basics. (A) Picture of a CBBCT machine
with the area that the patient inserts her breast labeled. (B) Labeled schematic of a CBBCT machine.
The patient is positioned prone in the scanner and one breast is imaged at a time. (C) Photo of a
patient in position for biopsy with localizing grid for biopsy labeled.

2. Cone-Beam Breast Computed Tomography

CBBCT was developed with the full knowledge of the many limitations of the current
accepted screening modalities available around the world [29–34]. The first unit to receive
FDA approval for diagnostic use in the United States in 2015 was developed by the Koning
Corporation (Norcross, GA, USA). In this system, the patient positions herself prone in the
machine one breast at a time, inserting her own breast into the opening in the table, thereby
placing the breast in the image field (Figure 2). No compression is used which vastly
improves comfort. There is also no intrusive handling of the breasts, which is a completely
new consideration of privacy and cultural reservations not previously addressed with
current technologies. The technologist checks positioning, making any necessary minor
adjustments and then takes one 360-degree image in a period of 10 s. The patient holds still,
without a breath hold required. The second breast is imaged in the same way. Efficiency
or speed of imaging is another advantage of CBBCT. Standard MRI takes at least 30 min,
but with CBBCT, breasts (including the chest wall and axilla) are imaged one side at a time
using a single 10 s 360-degree sweep.

CBBCT is not yet approved for screening in the United States at the time of this writing.
Its current application is for diagnostic use, which includes all the indications for conven-
tional diagnostic mammography including recall from screening and evaluation of palpable
abnormalities. It is also useful for women who cannot tolerate conventional mammography
for various reasons. As of May 2020, CBBCT also has its own CPT codes [35]. The device
also has biopsy capability for findings only seen or best seen by CBBCT (Figure 2). This is
analogous to the technique used for prone stereotactic biopsies and MRI biopsies. An addi-
tional benefit to CT biopsy is the potential to have excellent evaluation of the surrounding
target vasculature. The radiation dose for CBBCT is well within the accepted range for
diagnostic imaging and is sometimes less than that of diagnostic mammography [32,36].
For reference, one study found an average mean glandular dose of 13.9 mGy from CBBCT
(range 5.7–27.8 mGy) and an average mean glandular dose of 12.4 mGy from mammog-
raphy (range 2.6–31.6 mGy) [36]. However, this dose range still may preclude its use in
routine screening.

Additional advantages of this new technology are many. Because the breast is imaged
prone without compression or distortion, there is no overlapping tissue, thereby reducing
the likelihood of false positives (a common cause of anxiety provoking recalls for addi-
tional imaging (Breast Imaging Reporting and Data System (BI-RADS) 0), which also has
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benefits for healthcare costs and decreasing unnecessary biopsies. However, perhaps the
greatest benefit is CBBCT’s potential increased sensitivity for cancers in dense breasts over
mammography, which, as previously discussed, is fundamentally ill-equipped for dense
breast evaluation. CBBCT provides a more sensitive evaluation for dense breasts, which
is critical as, again, these are the patients at greatest risk for cancer (Figure 3) [33]. Better
evaluation of dense breast tissue ultimately would equate to earlier cancer detection, less
morbidity, and potentially greater cancer survival.
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Figure 3. Advantage of CBBCT over mammography for imaging dense breast tissue. Bilateral CC (A) and bilateral
MLO (B) views demonstrate dense breasts without focal findings consistent with a negative or BI-RADS 1 mammogram.
(C) Post-contrast CBBCT demonstrates a mass denoted by guidelines that is easily recognized consistent with cancer.

This technique also produces true isotropic 3D imaging without a breath hold neces-
sary. Isotropic imaging refers to an imaging process with the same spatial resolution in the
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X, Y, and Z planes, resulting in a base imaging unit (voxel) equivalent to a perfect cube.
The standard imaging unit in the Koning CBBCT machine is 0.273 mm in the X, Y, and Z
planes (significantly superior to MRI, which is around 1 mm for a 1.5 T magnet) [24,33].
A high-resolution mode for calcifications can have spatial resolution of 0.122 mm in the
X, Y, and Z planes. Cancer detection requires this excellent spatial resolution, especially
for the evaluation of micro-calcifications, which are present in about 55% of non-palpable
cancers [37]. Most suspicious calcifications are in the range of 100 microns (0.1 mm) [38].
While MRI is not always able to add to the diagnostic work-up of microcalcifications,
CBBCT does show calcium with adequate resolution (Figure 4) [39].
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Figure 4. Calcifications on CBBCT. Left CC (A) and MLO (B) views demonstrate pleomorphic microcalcifications. (C) Unenhanced 
CBBCT images showing calcifications which are marked with grid lines. (D) Contrast-enhanced CBBCT in the same patient showed 
an incidental mass marked with grid lines. 
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Figure 4. Calcifications on CBBCT. Left CC (A) and MLO (B) views demonstrate pleomorphic micro-calcifications (arrow).
(C) Unenhanced CBBCT images showing calcifications, which are marked with grid lines. (D) Contrast-enhanced CBBCT in
the same patient showed an incidental mass marked with grid lines.

An additional fundamental advantage of isotropic imaging is that accurate imaging re-
constructions in all planes (transverse, sagittal, and coronal) can be reconstructed based off
the single acquisition without any image distortion. We like to say you can “manipulate the
image, not the patient”. Understandably, women much prefer this. The benefits of isotropic
imaging include excellent data acquisition, superior display, and greater compliance from
the patient. When combined with compression-free imaging of the breast, the result is
true anatomical images of the breast free of anatomical or artifactual distortions. This
corresponds to better presurgical planning, ability to perform accurate volumetric analysis
for treatment response, quantitative estimates of implant rupture, and overall improved
diagnostic accuracy. CBBCT has also shown promise in assisting in the evaluation of
different breast cancer types based on imaging morphology [40].

Most screening today involves morphological or structural imaging, looking for a
mass, asymmetry, or calcification. MRI is the only widely used functional imaging today
using IV contrast to show increased flow associated with a mass or malignant structure. The
higher sensitivity of MRI is in large part due to the use of contrast, which adds a functional
element to the examination. Contrast-enhanced mammography has been described but
is not widely used [41,42]. This was developed in an attempt to gain more information
from a mammogram and to make contrast imaging of the breast more available and more
affordable than MRI. However, contrast-enhanced mammography still has to contend with
compression and distortion and still requires at least two separate views per side.

CBBCT is easily performed after contrast administration (Figure 5). Each breast is
imaged in a single 360-degree sweep, before and after contrast administration. Through a
peripheral IV using a power injector, non-ionic iodine-based contrast is injected at a rate of
2 cc per second, 1 mg per kg, and the breast is imaged after a short delay (90 s) [29]. The
other breast may then also be imaged within the next 10 min with excellent enhancement
seen. With the use of IV contrast enhancement, the use of CBBCT is expanded to include
many of the indications for contrast-enhanced MRI. These include evaluation of extent of
disease after a cancer diagnosis, evaluation of response to neoadjuvant chemotherapy, and
importantly, imaging women who have a contraindication to MRI such as pacemakers,
implanted metallic devices, or claustrophobia. In addition, use of CBBCT circumvents
concerns with serial administration of gadolinium and its deposition in the brain [43].
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In conclusion, breast imagers must openly acknowledge the limitations of current
technologies, which have been developed to address an urgent need to screen for breast
cancer. With constant improvements over the past decades, there has been a demonstrated
40% reduction in breast cancer mortality for those actively screened [44–46]. However, we
must admit we still fall short and cannot overcome the limitations of painful compression,
the need for multiple views, and the inherent enemy of cancer detection, intrinsic breast
density. It is time for a paradigm shift. CBBCT provides true 3D imaging in a single
sweep without painful compression. This may bring us to a situation where we have fewer
false positives and, more importantly, fewer false negatives. This is achieved by using
true isotropic 3D imaging for morphological features, combined where indicated with IV
contrast for functional imaging, thereby giving us maximum information for earlier cancer
detection. Together with improved treatment options, this could lead to better outcomes
for all women.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/jcm10215135/s1, Video S1: Video demonstrating how cone-beam breast computed tomography
(CBBCT) image acquisition occurs.
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