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Abstract: The well-known symptoms of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome
(ME/CFS) are chronic pain, cognitive dysfunction, post-exertional malaise and severe fatigue. An-
other class of symptoms commonly reported in the context of ME/CFS are gastrointestinal (GI)
problems. These may occur due to comorbidities such as Crohn’s disease or irritable bowel syndrome
(IBS), or as a symptom of ME/CFS itself due to an interruption of the complex interplay between
the gut microbiota (GM) and the host GI tract. An altered composition and overall decrease in
diversity of GM has been observed in ME/CFS cases compared to controls. In this review, we reflect
on genetics, infections, and other influences that may factor into the alterations seen in the GM of
ME/CFS individuals, we discuss consequences arising from these changes, and we contemplate the
therapeutic potential of treating the gut to alleviate ME/CFS symptoms holistically.

Keywords: ME/CFS; dysbiosis; therapy; diagnosis; intestinal permeability; metabolic endotox-
emia; LPS

1. Introduction

Since the late 19th century, reasonably reliable medical records have been available
which describe a multisystemic and debilitating disease of unknown origin causing chronic
and severe fatigue which prevents individuals from carrying out normal levels of day-to-
day activities [1]. Today, this disease is known under the terms myalgic encephalomyelitis
and chronic fatigue syndrome (ME/CFS) and is diagnosed based on symptoms using estab-
lished consensus criteria (i.e., Fukuda, Canadian Consensus Criteria, Oxford, International
Consensus Criteria, etc.) [2–5]. Besides disabling fatigue, cognitive dysfunction, sleep prob-
lems, autonomic dysfunction, and post-exertional malaise are often reported in individuals
with ME/CFS [6]. While ME/CFS is clearly accompanied by immunological alterations and
inflammatory dysfunctions [7–12], recent findings suggests that a link between microbial
dysbiosis and disease pathogenesis is also possible [13–15]. Although the precise etiology
of ME/CFS is poorly understood, genetic predisposition, viral infection, and stress have
been considered to be linked with disease origin and chronicity [6,16–18]. For example,
the finding that relatives of ME/CFS cases report significantly higher rates of ME/CFS
or similar fatigue-like symptoms compared to random controls may indicate a genetic
contribution to disease onset [19–21]. However, independent studies on different cohorts
often lack reproducibility, thus evidencing the need for new larger investigations [22].
Similarly, pathogens such as Epstein-Barr Virus (EBV), Human Herpesvirus (HHV)-6, and
Human Parvovirus B19 are suspected of contributing to the development of the disease
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via antiviral immune activation and systemic inflammation [23–29], but their necessity for
ME/CFS development remains debated [30]. Indeed, several studies comparing ME/CFS
cases with controls failed to support the hypothesis of involvement of a viral infection
in disease pathogenesis [29,31–35]. Moreover, it should be noted that the vast majority
of people recover from infections without consequences, therefore making it difficult to
establish a clear correlation between infection and ME/CFS. Other infectious diseases such
as Lyme disease or COVID-19 have also been suggested to increase the risk of developing
ME/CFS [36,37]; yet the mechanism behind this is largely unknown. One hypothesis is that
the infection causes inflammation in the body, which dysregulates the immune response
and inflammatory cascades in the long term [10,11,18,38]; but how this impacts the onset
of ME/CFS has yet to be defined.

The term “gut microbiota” (GM) describes the microbial community in the gastroin-
testinal (GI) tract, which consists of a plethora of bacteria, archaea, phages, yeasts, protozoa,
and fungal species that exist in a symbiotic relationship with the human gut. Owing to
advancements in genomic studies and metagenomic analysis, GM composition has been
studied regarding development of certain diseases such as neuro-psychological disor-
ders, cancer, cardio-metabolic disorders, and inflammatory bowel disease (IBD) [39,40].
Firmicutes, Bacteroides, Proteobacteria, Fusobacteria, Verrucomicrobia, Cyanobacteria, and Acti-
nobacteria are the major taxonomic groups typically found in the gut [41,42]. As the GM
and their habitat are involved in a complex interplay, host environmental factors such
as pH, transit time, bile acids, digestive enzymes, and mucus play an important role in
GM composition [42–44]. Non-host factors involved can be nutrients and medications,
as well as bacterial properties such as adhesion, metabolic capacity, and enzymes [44,45].
The microbiota produces many chemical mediators that can travel to distant regions, such
as the brain, and affect the host′s health positively or negatively [46,47]. Indeed, by syn-
thesizing nutrients and vitamins, producing beneficial or toxic metabolites, inhibiting
microbial and viral pathogens, detoxifying food, and contributing to the development
of a healthy immune system, GM are essential for the host [42–44]. Depending on the
GM composition, effects on the immune system can differ. Immune cell priming partly
takes place in the gut and signals for the development of T regulatory, T helper (Th-1 and
Th-2), and Th-17 cells are generated, which are involved in immune system regulation
and cytokine secretion as a defense against foreign antigens [48–51]. Furthermore, the GM
has other metabolic functions such as bile acid transformation by microbial enzymes for
cholesterol and glucose metabolism, amino acid synthesis and vitamin production [52,53].
Another beneficial function for the host is short-chain fatty acid (SCFAs) production, which
includes acetate, butyrate, and propionate required for energy production and cholesterol
synthesis [54,55]. As ME/CFS is a systemic disease, GI disturbances are another class
of symptoms commonly reported [56–58]. Indeed, comorbidities such as irritable bowel
syndrome (IBS) or Crohn′s disease may be found in ME/CFS individuals, thus suggesting
a possible role of the gut microbiome in disease progression [59,60]. However, whether
and how the GM is involved in ME/CFS pathogenesis and development is still unknown.
Here, we briefly review the most relevant studies addressing how dysbiosis and intestinal
permeability may contribute to disease phenotype, and we discuss the possible therapeutic
applications aimed at restoring eubiosis and intestinal barrier integrity in the context of
ME/CFS.

2. Main Findings
2.1. Alterations of Human Microbiome in ME/CFS

In the past years, studies have been conducted to investigate the kind of alterations
taking place in the gut microbiome in ME/CFS and their implications for those suffering
from ME/CFS. Significant dysregulations in the overall composition of microbiota and
shifted ratios between several bacterial taxa in comparison to healthy controls have been de-
tected ([61,62], Figure 1, Table 1). For example, a modified microbiome was found in saliva,
gut, and feces of ME/CFS cases, linking the GM to the disease [12,63]. Moreover, when 16S
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ribosomal ribonucleic acid (rRNA) sequencing was used to compare stool samples from
43 ME/CFS individuals and 36 healthy controls, an altered GM composition and imbalance
in microbial diversity have been reported ([64] Table 1). Subsequently, similar results were
obtained using the same technique [13,14,63,65,66]. Interestingly, a striking decrease in
relative abundance and diversity of Firmicutes bacteria, and a higher number of Bacteroidetes
was detected [14]. Often, a lower Bacteroides/Firmicutes ratio can be accompanied by an
increase in Enterobacteriaceae, therefore suggesting a complete reshuffling of the gut mi-
crobiota composition [63,64]. Since shifts in microbial ratios have also been identified in
autoimmune conditions such as Crohn′s disease, Systemic Lupus Erythematosus 2, and Di-
abetes Type 2, it would be interesting to investigate whether the microbiome may be linked
to ME/CFS autoimmune manifestations, if they occur [63,67–70]. While environmental
and genetic factors can alter the microbiome [42,44], changes in GM composition according
to geographical origin should also be considered in ME/CFS [64]. In this respect, studies
involving matched healthy controls are crucial. When accounting for these differences,
Nagy-Szakal et al. report a differential microbiota composition in ME/CFS cases with
or without IBS comorbidity when compared to the same number of matched controls.
Indeed, while an increase in Alipstes and a decrease in Faecalibacterium seem to characterize
ME/CFS individuals who also present IBS, a rise in unclassified Bacteroides, but not in
Bacteroides vulgatus, appears typical of ME/CFS without IBS comorbidity [13]. However,
as disturbances may arise due to the high prevalence of IBS comorbidity in individuals
with ME/CFS, these results should be confirmed in larger cohorts before drawing any
conclusion [13].
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Figure 1. Role of dysbiosis and gut permeability in ME/CFS pathogenesis.
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Table 1. Summary of studies concerning dysbiosis in ME/CFS.

Reference Journal Participants Classification
Criteria Analysis Performed Results

Giloteaux et al.,
2016 [71]

Am Jour Case
Rep

A pair of 34 year
old monozygotic

male twins, 1
ME/CFS and 1

control

Fukuda (1994) [4]

Two-day CPET; stool
biochemical and

molecular analysis;
16S RNA sequencing

↓ Microbial diversity
↓ Faecalibacterium and

Bifidobacterium

Shukla et al.,
2015 [66] PLOS One

10 ME/CFS and 10
matched healthy

controls
Fukuda (1994) [4]

Maximal exercise
challenge, stool

examination before
and 15 min, 48 h, 72
h after exercise. PCR

and 16S rRNA
sequence

↑ Abundance changes of
major bacterial phyla

(after exercise)
↓ Bacterial clearance

(after exercise)

Kitami et al.,
2020 [65] Sci Rep 48 ME/CFS and 52

controls

Fukuda (1994) [4]
and International

Consensus Criteria
(2011) [5]

Stool microbiome
analysis by DNA

extraction and 16S
rRNA sequencing

↑ Coprobacillus,
Eggerthella and Blautia

Mandarano
et al., 2018 [61] PeerJ 49 ME/CFS and 39

healthy controls Fukuda (2004) [4]
18S rRNA

sequencing in stool
samples

↓ Eukaryotic diversity
(nonsignificant)
↑ Basidiomy-

cota/Ascomycota ratio
(nonsignificant)

Nagy-Szakal
et al., 2017 [13] Microbiome

50 ME/CFS and 50
matched healthy

controls

Fukuda (2004) [4]
and/or Canadian
Criteria (2003) [3]

Fecal bacterial
metagenomics

(shotgun
metagenomic

sequences)

↑ Dysbiosis
↑ Alistipes (in ME/CFS
with IBS), Bacteroides (in
ME/CFS without IBS)
↓ Faecalibacterium (in
ME/CFS with IBS),

Bacteroides vulgatus (in
ME/CFS without IBS)

Lupo et al.,
2021 [63] Sci Rep

35 ME/CFS and 70
healthy controls
(35 had relatives

with ME/CFS and
35 not)

Fukuda (2004) [4]

Fecal bacterial
analysis by 16S
rRNA Illumina

sequencing

↓ Anaerostipes
(Lachnospiraceae)
↑ Bacteroides and

Phascolarctobacterium

Giloteaux et al.,
2016 [14] Microbiome 49 ME/CFS and 39

healthy controls Fukuda (2004) [4]
16S rRNA

sequencing from
stool

↓ Diversity
↓ Firmicutes phylum
↑ Pro-inflammatory

species
(Proteobacteria species)

Frémont et al.,
2013 [64] Anaerobe 43 ME/CFS and 36

healthy controls Fukuda (1994) [4]

High-throughput
16S rRNA

sequencing from
stool samples

↑ Lactonifactor and
Alistipes

↓ Several Firmicutes
populations

Sheedy et al.,
2009 [62] In Vivo

108 ME/CFS and
177 healthy

controls

Holmes (1988)
[72]/Fukuda (1994)

[4]/Canadian
Definition Criteria

(2003) [3]

Fecal sample
collection and

identification of
facultative anaerobic

organisms using
standard criteria [73]

↑ Dlactic acid producing
Enterococcus and
Streptococcus spp.

CPET: cardiopulmonary exercise test; ↓ decrease; ↑ increase.
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GM dysbiosis may also represent a cause of increased gut permeability [60]. In this
respect, a correlation between changes in GM and a higher level of inflammation was
observed in some studies [60,64]. Moreover, increased commensal bacterial translocation
and enhanced gut inflammation have been found in ME/CFS cases compared to controls,
as discussed in more detail in Section 2.2 [60,74,75] (Figure 1). Although the exact mecha-
nism behind this phenomenon largely remains unknown, one hypothesis is that the rise
in Enterobacteriaceae found in dysbiosis may mediate intestinal inflammation and perme-
ability, as increased levels of lipopolysaccharide derived from these bacteria is detected
in ME/CFS [74,76,77] (Figure 1). However, it should be noted that this is far from being
proven, and more research is needed to address this point. Another possibility is that
bacterial metabolites contribute to the disease by interfering with the estrogen receptor and
Vitamin D receptor pathways, as the latter is also involved in development of autoimmune
disorders, which often occur as comorbidities of ME/CFS as mentioned previously, but this
topic remains to be addressed [64,78,79]. Last, when searching for a possible mechanism
for how dysbiosis influences ME/CFS pathogenesis, the gut-brain-axis, and the autonomic
and enteric nervous systems should also be considered [60,80].

Although the importance of gut microbiome in health and disease is becoming more
and more prominent, several limitations still need to be addressed in respect to ME/CFS. In-
deed, if the data cited above report evidence for a dysregulated gut microbiota composition,
it is also true that contradictory studies are present in the literature. For example, when 18S
rRNA sequencing was used to analyze eukaryotic diversity in ME/CFS cases compared to
controls, insignificant differences were reported [61]. Likewise, even though alterations
in the human gut microbiome (i.e., the multitude of genes of the gut microbiota), have
been observed in multiple studies in ME/CFS cases, results have failed to be reproduced
between studies, likely due to study design [12,14,81]. The reason for this discrepancy
could be found, at least in part, in the narrowness of the cohort analyzed in each study. In
this respect, in order to have reliable and statistically significant results new investigations
should be carried out involving more participants, both ME/CFS cases and controls. Simi-
larly, the idea of using rRNA sequencing as a new diagnostic tool in ME/CFS, although
attractive, has yet to be validated to avoid misdiagnosis. Altogether, these data point out
that gut microbiota alterations seem to characterize ME/CFS in those affected, but the role
of dysbiosis in disease pathogenesis and progression should be further investigated.

2.2. Increased Gut Permeability in ME/CFS

The intestinal barrier is a single-cell epithelial layer that allows the selective absorption
of nutrients, electrolytes, and water through a mucous membrane. In health, epithelial cells
are tightly connected by desmosomes, adherens junctions and tight junctions, which are
made up of occludin, claudins, and junctional adhesion molecules respectively. Thus, intra-
luminal translocation of bacteria and toxins into the bloodstream is prevented [82]. How-
ever, when homeostasis is altered, for example due to gut inflammation, dysbiosis, chronic
NSAID intake, or stress, the barrier integrity is lost and commensal bacteria can reach the
bloodstream (Figure 1) [60,82,83]. The presence of circulating lipopolysaccharide (LPS)
derived from gram-negative endobacteria, also known as metabolic endotoxemia, then
activates the inflammatory TLR4 pathway and immune cells produce pro-inflammatory
cytokines and LPS-directed IgM/IgA, thus enhancing systemic inflammation [74,76,84,85].

Metabolic endotoxemia and gut permeability have already been considered in the
pathophysiological mechanism of several diseases such as obesity, diabetes, nonalco-
holic fatty liver disease, atherosclerosis, metabolic syndrome, or septic shock, as well
as ME/CFS [60,75,84–86]. In this respect, serum IgA and IgM levels against LPS of en-
terobacteria are significantly higher in ME/CFS cases than controls, and correlate with
disease severity [74]. Likewise, raised IgA response to commensal bacteria and enhanced
inflammation have been reported in 128 ME/CFS cases when compared to healthy vol-
unteers [76]. Remarkably, significant improvement was obtained if a leaky gut diet was
combined with anti-inflammatory and anti-oxidative substances, thus suggesting a new
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therapeutic approach in ME/CFS treatment [77]. Similar results were also obtained in
depressed patients, suggesting that gut permeability and consequently enhanced immune
response might explain overlap between major depressive disorder (MDD) and ME/CFS
cognitive symptom [87,88]. A growing body of evidence demonstrates the importance
of neuroinflammation in the development of neurodegenerative and neuroprogressive
diseases [89,90]. Given the ability of bacterial translocation to drive systemic inflammation,
blood-brain barrier disruption and neuroinflammation, some authors hypothesize that this
mechanism might explain the onset of neurological abnormalities in ME/CFS, but this
remains to be proven [83,91,92]. Based on this hypothesis, leaky gut targeting may reduce
both gastrointestinal and cognitive symptoms, thus representing a promising approach in
ME/CFS therapy but more research is needed before drawing conclusions.

There is evidence that ME/CFS could be classified as an autoimmune disease [93], and
gut permeability may also play a role in this context. After a viral trigger, dysbiosis and
genetic predisposition favor the generation of immune cell clones prone to autoreactivity,
leading to self-antigen immunization and autoimmunity [16]. In addition, a link between
fatigue, autoimmunity, and intestinal barrier breakdown has also been established [94].
The fact that dysbiosis and bacterial translocation cause an increase in pro-inflammatory
cytokines (i.e., IL-1 and TNF-α) is an additional mechanism that could explain the relation-
ship between gut, ME/CFS and autoimmunity [95]. However, the role and the importance
of autoimmunity in ME/CFS pathophysiology are not yet clear, and more studies are
needed to confirm these suggestions.

A complex relationship between dysbiosis, intestinal permeability, chronic inflam-
mation, and cognitive symptoms is reported in ME/CFS. A viral infection may represent
an important trigger of systemic inflammation, which in turn promotes dysbiosis and
neuroinflammation. In these conditions, Enterobacteriaceae growth is favored, while Bac-
teroidetes and SCFA production are impaired. This imbalanced gut composition, together
with chronic inflammation, stress and NSAIDs prolonged intake, favors tight-junction
disruption and leaky gut. While in base-line conditions only nutrients and SCFAs can
reach the bloodstream, upon intestinal barrier integrity loss, bacterial and LPS translo-
cation are also possible. Given that the resulting metabolic endotoxemia exacerbates
pro-inflammatory cytokine production and release, this chronic-low grade inflammation
contributes to neuroinflammation and neurological abnormalities.

Therapeutic options aimed at restoring gut barrier integrity and eubiosis have been
proposed. Among those, prebiotics, probiotics, fecal microbiota transplantation (FMT),
and diet interventions have all shown promising results, but more studies are needed to
determine their efficacy.

2.3. Oxidative Stress and Inflammation in Disease Pathogenesis

Oxidative stress refers to a condition in which high levels of intracellular reactive
oxygen species (ROS) accumulate and cause protein, lipid, and DNA damage [96]. Al-
though antioxidants are supposed to counteract the buildup of ROS, their levels in chronic
conditions, such as IBD, remain low [97]. In addition, chronic low-grade inflammation
and oxidative stress are both associated with ME/CFS [60,98]. For example, an increase in
oxidative stress level and a decrease in antioxidant levels in resting conditions have been
reported in ME/CFS cases when compared to controls [99]. Moreover, elevated urinary
8-hydroxy-deoxoguanosine (8-OHdG) levels, a well-known marker of oxidative DNA
damage, was shown to correlate with malaise and depression in ME/CFS [100]. Similar
to IBS, high levels of pro-inflammatory cytokines (i.e., IFN-γ, IL-4, IL-5, TGF-α and IL-1)
are also detected in ME/CFS [101,102]. Although it is not yet clear whether inflammation
can directly cause fatigue, the enhancement of 92 circulating inflammatory markers in
ME/CFS individuals resembles the analysis obtained for Q fever fatigue [103]. Given
the lack of defined biomarkers in ME/CFS, the possibility of relying on inflammatory,
oxidative/nitrosative stress, and antioxidants markers has been proposed [60,99,104].
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Although several factors contribute to the establishment of inflammation and ox-
idant/antioxidant imbalance (i.e., viral infection, reduced antioxidants, stress, depres-
sion [60,75,105]), dysbiosis, and metabolic endotoxemia also play an important role [60,83,91].
In this respect, a model has been established according to which stress, dysbiosis, and
systemic inflammation all contribute to reducing the tight-junction protein occludin, thus
causing the intestinal lining to lose its barrier function [60,82,83]. Increased gut permeabil-
ity, in turn, further exacerbates chronic inflammation via endotoxemia and TLR4 pathway
activation, leading to neuroinflammation and oxidative/nitrosative stress [83,85]. As ev-
ident in Idiopathic Chronic Fatigue (ICF), oxidative stress may finally represent a key
pathophysiological mechanism in ME/CFS [83,106,107]. Even though it still requires fun-
damental validations, if this model turns out to be true, it will certainly constitute a new
key target in ME/CFS treatment, thus confirming the central role of gut homeostasis in
both gastrointestinal and extra-intestinal disease pathogenesis.

2.4. Therapies Aimed at Microbiota May Alleviate ME/CFS Symptoms

Given the frequent association of ME/CFS with chronic inflammation, dysbiosis and
gut permeability [108], it is worth speculating that approaches aimed at replenishing the
microbial balance, restoring mucosal barrier integrity, and lowering inflammation may be
therapeutically relevant. Prebiotics, probiotics, specific diet, particular molecule intake,
and fecal transplantation have been proposed, in this respect (Figure 1) [109]. NADH,
probiotics, high cocoa polyphenol rich chocolate and Coenzyme Q10 proved all capable
of improving fatigue in ME/CFS-diagnosed cases, but questions remain on whether the
results can be replicated on a larger sample size [110].

2.4.1. Probiotics

Probiotics are living microorganisms which normally reside in the human body. Lacto-
bacilli spp., E. coli-Nisle 1917, Bifodobacteria spp., some Streptococcus types, and the yeast
Saccharomyces boulardii are all considered probiotics [60]. Recently, their application as
adjuvant therapy in IBS treatment mostly showed positive results [111–124]. In addition,
administration of Akkermansia muciniphila and Lactobacillus sakei OK67 to high-fat diet (HFD)
fed mice were independently able to enhance tight-junction function, increasing occludin
gene expression and decreasing intestinal permeability [125,126]. Remarkably, during L.
sakei OK67 treatment, a significant decrease in the inflammatory markers TNF-α, IL-1β
and NF-κB has also been reported [126]. In the context of ME/CFS, the same promising
results were replicated applying an 8-week long treatment of four probiotic mixtures [127].
Moreover, the administration of Bifidobacterium infantis 35624 to 48 ME/CFS cases con-
firmed the ability of probiotics to reduce the systemic pro-inflammatory markers CRP,
TNF-α and IL-6 [128].

Anxiety, depression, and psychiatric disorders are often found in ME/CFS affected
individuals [129] and finding an alternative to the currently employed psychotropic medica-
tions is crucial. Results from a 12-week randomized, double-blind, and placebo controlled
clinical trial report that a mixture of Lactobacillus helveticus R0052 and Bifidobacterium longum
R0175 could be effective in decreasing inflammation and improving psychiatric manifesta-
tions in MDD patients following a gluten-free diet [130]. Since both MDD and ME/CFS
show psychiatric symptom overlap [131], it is interesting to see whether probiotic use
in chronic fatigue would prove equally beneficial. Preliminary evidence suggests that a
significant drop in anxiety, associated with eubiosis reestablishment, can be observed if
Lactobacillus casei strain Shirota is administered daily for 2 months in ME/CFS cases [132].
In addition, improvements in neurocognitive functions among L. paracasei spp. paracasei
F19, L. acidophilus NCFB 1748 and B. lactis Bb12 receiving ME/CFS-diagnosed individuals
are particularly notable [109]. Overall, these studies show that probiotics, alone or in
combination, will probably emerge as a remedy supporting ME/CFS therapy.
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2.4.2. Prebiotics

Prebiotics are non-digestible carbohydrate nutrients which are used as food by the
GM. Fructo-oligosaccharides and galacto-oligosaccharides are the two main prebiotic
classification groups [133]. Upon bacterial degradation, they produce SCFAs that dif-
fuse via systemic circulation, hence influencing both gastrointestinal and extra-intestinal
functionality [134]. Given their ability to selectively promote the expansion of only some
intestinal microorganisms and revising gut microbiota makeup and function [133], they
are proposed as promising adjuvant therapy in many diseases (e.g., IBS, Crohn′s disease,
bowel motility, autism, obesity and colorectal cancer) [133]. Multiple oligosaccharides have
proven effective in reversing microbiota dysbiosis through Lactobacilli growth promotion,
Proteobacteria reduction, and Firmicutes/Bacteroidetes ratio decrease in diet-induced obese
rats and mice [135–137]. In addition, significant amelioration of gut permeability and
systemic inflammation have also been reported. Rats and mice fed with prebiotics, such
as bovine milk oligosaccharides, oligofructose-enriched inulin, spirulina platensis, and
FOS/GOS, showed lower plasma LPS, decrease in serum pro-inflammatory cytokine levels,
reduced gut inflammation and improved tight-junction integrity [135–139]. Altogether,
these studies suggest that prebiotics may be helpful for ME/CFS cases presenting dysbiosis,
leaky gut and systemic basal inflammation, but clinical trials are needed before drawing
further conclusions.

2.4.3. Diet

A change in dietary habit is a rapid, reproducible and direct way of modifying the
gut microbiota [140]. Diet, other than being involved in some disease pathophysiology,
if adequate and taken at set times, is capable of balancing microbiota composition and
mitigating inflammation, similar to prebiotics [141,142]. In the last few years, IBS, obesity,
and Crohn′s patients have benefited from this therapy, and dietary interventions have also
been considered in the neuropsychiatric field [143–149].

Glucose/fructose-based diets and long-term protein-based diets have been correlated
with dysbiosis, leaky gut, increased systemic inflammation and increased levels of plasma
endotoxins [150,151]. Consequently, gluten-free diets, starch and sucrose-reduced diet,
and dietary regimens aimed at lowering caloric intake can decrease C-reactive protein
(CRP) and LPS binding protein levels, counteract intestinal permeability, and ameliorate
gastrointestinal and extra-intestinal symptoms of IBS and obesity [130,152,153]. Similarly,
microbiota diversity and metabolic endotoxemia are improved by polyunsaturated fatty
acid omega-3 intake, and polyphenol and fiber consumption are preferred [142,154]. Eicos-
apentaenoic acid which is found in omega-3 rich fish oil has also been found to alleviate
symptoms in ME/CFS cases [155,156]. In diet-induced obese rats and mice, some benefits
can also be achieved by specific nutrient integration. In this respect, apple polysaccharides,
flos lanicera administration and Bofutsushasan (a Japanese herbal medicine) have proven
effective in favoring Lactobacillus and Bacteroidetes growth, enhancing tight junction func-
tion and reducing the pro-inflammatory cytokines TNF-α and IL-6 [157–159]. Additionally,
integration of Sarcodon imbricatus or intake of a mixture composed of Angelica gigas, Cnid-
ium officinale, and Paeonia lactiflora, proved effective in restoring the oxidant/antioxidant
homeostasis and in reducing fatigue in ME/CFS mouse models [160,161].

Although more clinical trials are needed in humans, these results indicate that the
ability to act on microbiome makeup, gut permeability, inflammation and neurocogni-
tive symptoms at the same time proposes dietary intervention as a promising additional
adjuvant approach in ME/CFS treatment.

2.4.4. Fecal Microbiota Transplantation (FMT)

Fecal microbiota transplantation (FMT), also known as stool transplantation or bac-
teriotherapy, is the process of transplanting stool from a healthy donor into a patient′s
intestine [162]. The aim of the therapy is to restore dysbiosis by infusing a balanced and
healthy microbiota population into the gut of the recipient. In most cases the transplanta-
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tion takes place via colonoscopy, but enema or orally administered capsules are also avail-
able [163,164]. Although it is only approved for recurrent or refractory Clostridium difficile
infection treatment [165], FMT is now being tested as an experimental therapeutic option
for primary Clostridium difficile infection, obesity, insulin resistance, metabolic syndrome,
metabolic fatty acid liver disease, fibromyalgia, ulcerative colitis, Crohn′s disease, ME/CFS,
functional constipation, IBS, and even cancer [164,166–169]. In addition, several neuropsy-
chiatric disorders have been proposed as potentially benefitting from FMT. Studies are
being carried out using stool transplantation in autism, Parkinson′s Disease, Alzheimer′s
Disease, and Multiple Sclerosis, but the success of these trials is debatable [170–172]. Re-
cently, promising perspectives came from the use of FMT in immune-checkpoint inhibitor-
associated colitis, IBS, and IBD, but larger cohort trials are needed [162,164,173]. FMT
ability to decrease inflammation, reduce intestinal permeability via SCFA production and
restore immune dysbiosis [174] proposes this nascent therapy as a promising approach
also in ME/CFS treatment. In a study of 34 ME/CFS participants who received FMT,
41% showed persistent relief after 11–28 months, while 35% reported only little or late
relief [175]. Moreover, a 70% response rate was obtained when 13 non-pathogenic bacteria
were administered via colonoscopy in 60 ME/CFS individuals. Additionally, at 15–20 years
follow up, 58% of cases reported maintained response without recurrence [176].

Despite the potential of FMT in a wide range of diseases, limitations are still evident.
Lack of consistency and shared standard protocols, selection criteria, route of administra-
tion, therapy duration, long-term risks, and donor selection are all open questions that
have not yet been addressed [162,167,170,177–179]. Moreover, several authors underline
that no solid conclusions can be drawn from existing studies, and larger clinical trials are
needed in order to clarify FMT efficiency in various human disorders [162,170,174,180,181].
It would also be worthwhile to see if the multiple donor FMT proved more effective than
the single donor approach, as already suggested in the literature [182].

While several limitations exist, these data indicate that FMT application in multi-
ple intestinal dysbiosis-associated extra-intestinal diseases may soon represent a novel
therapeutic approach for ME/CFS cases.

3. Discussion

Altogether, this short review summarizes the main findings concerning dysbiosis and
gut permeability in ME/CFS. While GM homeostasis has proved to be fundamental in
many diseases, its role in ME/CFS pathogenesis and disease development is still partially
unclear and needs to be fully addressed to enable proper treatment of the disease. Studies
on larger cohorts, use of consistent criteria for the diagnosis of ME/CFS, and reduction of
confounding variables by controlling factors that influence microbiome composition prior
to sample collection are needed in this respect. At the same time, therapeutic applications
aimed at eubiosis re-establishment and leaky-gut prevention should be tested further in
humans, as current promising insights are often based on data from mice and rats. Similarly,
microbiome alterations or metabolic endotoxemia should be considered as potential disease
biomarkers, even though GI symptoms overlap with those of other disorders and may
represent a concern for precise differential diagnosis. Nevertheless, the importance of
the GM in ME/CFS is evident through the links between GM alterations, inflammation,
autoimmunity, and the gut-brain axis. Overall, we give an overview of the promising
microbiome-based therapeutic applications for the chronic and strongly debilitating disease
that is ME/CFS, and encourage deeper research in this field.
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