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Abstract: Diabetic peripheral neuropathy (DPN) is the presence of symptoms and/or signs of
peripheral nerve dysfunction in people with diabetes after the exclusion of other causes. It is
associated with pain, paresthesia, sensory loss, muscle atrophy with fat infiltration, and muscular
dysfunction typically starting distally in the feet and progressing proximally. Muscle deterioration
within the leg and foot can lead to muscle dysfunction, reduced mobility, and increases the risk of
disability, ulceration, and amputation. Exercise training is an established method for increasing the
different components of physical fitness, including enhancing body composition and improving
neuromuscular strength. A number of experimental studies have utilized exercise training to treat
various impairments associated with DPN, such as nerve conduction velocity, pain tolerance, and
balance. However, the broad spectrum of exercise training modalities implemented and differences
in target outcome measurements have made it difficult to understand the efficacy of exercise training
interventions or provide appropriate exercise prescription recommendations. Therefore, the aims
of this review were to (1) briefly describe the pathophysiology of DPN and (2) discuss the effects
of exercise training interventions on sensorimotor, metabolic, and physical functions in people
with DPN.
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1. Introduction

Diabetes mellitus remains one of the largest metabolic diseases in the world, having
high prevalence in both developed and developing countries. As of 2019, approximately
463 million adults between the ages of 20–79 were living with diabetes across the globe
while 4.2 million deaths had occurred as a result of diabetes. Moreover, an estimated 1 in
5 adults with diabetes are over the age of 65 [1]. According to the latest National Diabetes
Statistics Report, an estimated 34.2 million people across all ages had diabetes in the US
population [2]. Chronic diabetes can cause a series of nerve, blood vessel, and lymph vessel
disorders, such as radiculopathy, plexopathy, and mononeuropathy [3]. However, the
most common complication of diabetes is the emergence of diabetic peripheral neuropathy
(DPN), which affects the somatic sensory and motor nerves and autonomic nerves [4].
Defined as “the presence of symptoms and/or signs of peripheral nerve dysfunction in
diabetics after the exclusion of other causes”, DPN is damage to the sensory and motor
nerves of the feet, legs, hands, and arms in response to long-term elevation of blood
glucose levels. It is associated with pain, paresthesia, sensory loss, muscle atrophy with fat
infiltration, and muscular dysfunction in the limbs [5]. According to a position statement
by the American Diabetes Association, the prevalence of DPN in US adults is an estimated
28% [6]. A key point of concern among those with DPN is the acceleration of deterioration
of leg and foot musculature. Muscle dysfunction in the calf and foot contributes to foot
deformity, which in turn increases the risk of disability, ulceration, and amputation [7].
Moreover, muscle dysfunction in the lower extremities through damage of the sensory
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and motor nerves can severely impair mobility, which is of even greater concern for older
adults already at an elevated risk of falling. It has been hypothesized that improvement in
both balance and stability, as well as strengthening of the lower-body of individuals with
DPN, has the potential to enhance gait and physical capacity, while also reducing disability,
foot deformity, and the risk of amputation [8–10].

A muscle’s ability to respond to an exercise stimulus is likely related to the distal to
proximal progression of vascular and nervous system disease associated with DPN. The
vascular and nervous system mediators of neuropathic muscle adaptation that may be
critical are muscle specific microvascular perfusion, glucose uptake, and neural drive. How-
ever, the current standard measures of these mediators are not precise or muscle specific.
For example, (1) microvascular dysfunction from type 2 diabetes-associated peripheral
neuropathy is not detected with common macrovascular assessments (ankle brachial in-
dex); (2) muscle specific metabolic function is not adequately measured with whole body
indices (homeostatic model assessment of insulin resistance score); and (3) muscle strength,
a measure of motor neuropathy, is unable to decouple neural transmission from a muscle’s
intrinsic contractility. Different forms of exercise training, including traditional and circuit-
based resistance training, have been shown to increase the aforementioned mediators in
older adults with and without diabetes, but research done specifically on DPN patients
is lacking [11–17]. The purpose of this review is to (1) briefly describe the pathophysiol-
ogy of DPN and (2) discuss the effects of exercise training interventions on sensorimotor,
metabolic, and physical functions in people with DPN.

2. Pathophysiology

Diabetic peripheral neuropathy results from various biochemical perturbations and
is categorized by widespread damage to the peripheral nerve fibers, which can lead to
pain, foot ulcers, diminished mobility, impaired quality of life, and significant morbidity.
The exact mechanisms behind the pathogenesis of DPN are still unknown due to the
multifactorial nature of the disease; however, chronic hyperglycemia with a significant
drop in insulin sensitivity seems to be at the forefront of DPN causes [18]. Muscle specific
glucose uptake, microvascular perfusion, and neural drive seem to be key components in
the development of DPN and important mediators of the response to exercise interventions
among those with type 2 diabetes (T2D).

A review by Schreiber et al. [19] describes several associations with DPN, including
polyol pathway hyperactivity, oxidative and nitrosative stress, and microvascular changes.
A chronic hyperglycemic state sets off a cascade of cellular problems including hyperactivity
of the polyol pathway, which has been hypothesized to cause excessive oxidative and
nitrosative stress leading to the formation of reactive oxygen and nitrogen species, further
damaging to neurons [20–22]. With rises in insulin resistance, blood glucose levels remain
consistently elevated and gradually set off a cascade of physiological effects resulting in
damage to the peripheral nerves and blood vessels.

As hyperglycemia persists and further damage accumulates, dysfunction of the mi-
crovasculature (i.e., arterioles, capillaries, and venules) becomes a greater concern. The
downregulation of glucose transport induces microvascular endothelial dysfunction, result-
ing in decreased nitric oxide availability, increased permeability, reactive oxygen species,
and leukocyte adhesion [18]. As microvascular dysfunction worsens, insulin resistance
increases, leading to greater hyperglycemic responses, and thus the cycle continues [18].
Moreover, hyperglycemia is associated with nerve hypoxia, which can produce electrical
instability and disrupt the flow of action potentials. This nerve ischemia is especially
prevalent in sensory nerves, which results in reductions in intraepidermal nerve fiber
density [23–25]. Due to declines in nerve perfusion, the long sensory axons in the distal
portions of the limbs are the first to succumb to building damage resulting in unacknowl-
edged injuries and wounds in the lower extremity [26]. Motor neurons are also effected,
with reductions in neural drive noted by loss of motor nerve conduction velocity, action
potential amplitude, and motor units [27]. Eventually, the assault on the motor neurons
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and overall muscle activation results in physical disabilities of patients with DPN. When
left unchecked and untreated, more intense clinical concerns can arise, one of the most
common being diabetic foot syndrome, where patients can experience foot ulceration,
infection, and potential surgical intervention.

3. Methodological Approach

For this article, “exercise” will be defined as “physical activity that is planned, struc-
tured, repetitive, and purposive in the sense that improvement or maintenance of one or
more components of physical fitness is an objective” [28,29]. Moreover, “physical fitness”
will be defined as “the ability to carry out daily tasks with vigor and alertness, without
undue fatigue and with ample energy to enjoy leisure-time pursuits and to meet unforeseen
emergencies” [28,29]. The health-related components of physical fitness are (1) cardiorespi-
ratory endurance, (2) muscular endurance, (3) muscular strength, (4) body composition,
and (5) flexibility [28,29]. Physical fitness is further expanded to include the six skill-related
components (i.e., agility, balance, coordination, power, reaction time, and speed) typically
associated with athletes and sport performance; however, due to the population being
discussed in the current article having compromised physical abilities and many of the
skill-related components being outcome measures of the reviewed studies, the authors
believed it was prudent to include them.

The authors searched four databases, CINAHL Plus, Google Scholar, PubMed, and
Science Direct, for relevant literature, with the last search taking place on 21 June 2021.
Additional articles were extracted from the references of the resulting studies. Search
terms included “diabetic peripheral neuropathy” (related terms: DPN, neuropathy) and
“exercise” (related terms: exercise therapy, exercise training, physical training). Inclusion
criteria for the review included full-text articles in English, experimental clinical trials with
quantitative analysis, and interventions must be ≥4 weeks. Studies were excluded if they
did not include patients with DPN, were observational in nature, or exercise (or exercise-
based training or therapy) was not the primary experimental intervention modality with at
least one group of subjects with DPN participating in the intervention. Of the 264 initially
searched articles, a final total of 41 studies were included in the current review and can be
seen in Table 1.
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Table 1. Summary of exercise training intervention studies in individuals with diabetic peripheral neuropathy.

Author (Year) Participants Primary Measures
Intervention

Key Results
Type Frequency Time Intensity Duration

Mueller (2013) [8]
Weight-bearing (15);
non-weight-bearing

(14)

6-min walk and daily
step count

Mobility and
functional
movement

3 days/week 60 min/session 60–70% MHR 12 weeks

Weight-bearing group: greater
improvements in 6-min walk and daily
step count; non-weight-bearing group:

greater improvements in HbA1c.

El-Refay and Ali
(2014) [30]

Control (15);
experimental (15) Gait

Mobility and
functional
movement

3 days/week 45–60 min/session — 8 weeks Increased walking speed, cadence, and
ankle ROM; decreased step time

Sartor (2014) [10] Control (29);
experimental (26) Gait

Mobility and
functional
movement

2 days/week 40–60 min/session — 12 weeks No significant change in foot rollover
during gait

Kanchanasamut and
Pensri (2017) [31]

Control (10);
experimental (11)

Foot mobility,
plantar pressure, and

foot sensation

Mobility and
functional
movement

5 days/week — — 8 weeks Increased ROM and decrease peak
plantar pressure

Win (2020) [32] Control (53);
experimental (51)

Activities of daily
living, DPN

signs/symptoms,
and pain

Mobility and
functional
movement

3 sessions/day;
2–3 days/week 10 min/session — 8 weeks Improvements in motor scores and

activities of daily living

Monteiro (2020) [33] Control (15);
experimental (15)

Strength, PA, gait
speed, ROM, DPN

symptoms, and QOL

Mobility and
functional
movement

2 days/week 50 min/session — 12 weeks Improvements in toe strength, gait, DPM
symptoms, and foot contact pressure

Dixit (2014) [34] Control (37);
experimental (29)

Neuropathy quality
of life Aerobic 5–6 days/week 150–360 min/week 40–60% HRR 8 weeks Improved neuropathy quality of life total

score

Dixit (2014) [35] Control (37);
experimental (29)

Nerve conduction
studies and MDNS Aerobic 3–6 days/week 150–360 min/week 40–60% HRR 8 weeks MDNS scores decreased and NCV

increased

Morrison (2014) [36] Non-DPN (21); DPN
(16)

Gait, reactions, fall
risk, and balance Aerobic 3 days/week 30–45 min/session 50–75% HRR 12 weeks

Reaction time decreased, gait velocity and
stride/step length increased, balance and

postural coordination improved

Zhang (2014) [37] Control (30);
experimental (30) Plantar pressure Aerobic 3 days/week 20–40 min/session 100–120 bpm 12 weeks

Peak plantar pressure in forefoot
decreased while pressure in the medial

foot increased

Hamed (2014) [38]
DPN (40); HIIT

group (20); aerobic
group (20)

Leeds Assessment of
Neuropathic

Symptoms/Signs
Scale

Aerobic 3 days/week Aerobic: 50 min;
HIIT: 20 min

Aerobic: 50–60%
MHR; HIIT:

85–95% MHR
15 weeks

HIIT lead to greater reductions in pain
outcome compared to moderate aerobic

exercise
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Table 1. Cont.

Author (Year) Participants Primary Measures
Intervention

Key Results
Type Frequency Time Intensity Duration

Kluding (2015) [39] Experimental (18)
Adverse events,

fatigue, and
·

VO2peak
Aerobic 3 days/week 30–50 min/session

50–70%
·

VO2reserve
16 weeks

57 nonserious adverse events occurred
and improvements occurred in general

fatigue, physical fatigue, and
·

VO2peak

Yoo (2015) [40] Experimental (14) Pain intensity and
pain interference Aerobic 3 days/week 30–50 min/session

50–70%
·

VO2reserve
16 weeks

Pain interference was reduced in walking,
normal work, relationship with others,

and sleep

Dixit (2016) [41] Control (36);
experimental (28)

Balance and posture
stability Aerobic 3–6 days/week 150–360 min/week 40–60% HRR 8 weeks Moderate improvement on eyes closed

sway velocity on foam

Billinger (2017) [42] experimental (17) FMD Aerobic 3 days/week 30–60 min/session
50–70%
·

VO2reserve
16 weeks

Improvements in peak diameter and time
to peak shear, but not statistically

significant

Gholami (2018) [43] Control (12);
experimental (12)

Nerve conduction
studies Aerobic 3 days/week 20–45 min/session 50–70% HRR 12 weeks NCV increased but potential amplitude

was not different from control

Azizi (2019) [44] Experimental (35) Nerve conduction
studies Aerobic 3 days/week 40–45 min/session 70–85% MHR 8 weeks Improvements in both action potential

amplitude and conduction velocity

Gholami (2020) [45] Control (15);
experimental (16)

FMD, IMT, vessel
diameter, and MDNS Aerobic 3 days/week 30–45 min/session 50–70% HRR 12 weeks Significant improvements in FMD and

MDNS

Handsaker (2016)
[46]

Control (21);
non-DPN (13); DPN

(9)

Speed of ankle and
knee strength

generation

Resistance
training 1 day/week 60 min/session 12 RM 16 weeks

Ankle and knee speed of strength
generation were higher in both stair

ascent and descent

Kluding (2012) [47] Experimental (17)

Pain, MNSI, nerve
function, and

intraepidermal nerve
fiber

Aerobic and
resistance
training

3–4 days/week 30–50 min/session
(aerobic)

50–70%
·

VO2reserve; 7–8
RPE

10 weeks
Reduction in pain, neuropathic

symptoms, and increased intraepidermal
nerve fiber branching

Taveggia (2014) [48] Control (14);
experimental (13)

6-min walk and 10-m
walking test

Aerobic and
resistance
training

5 days/week 60 min/session — 4 weeks Increased 6-min walk distance

Nadi (2017) [49] Control (41);
experimental (42) MNSI

Aerobic and
resistance
training

3 days/week 20–60 min/session 50–70% MHR;
50% 10RM 12 weeks Reduction in numbness, pain, tingling,

weakness; increases in sense of touch

Stubbs (2019) [50] Control (12);
experimental (33) NCS

Aerobic and
resistance
training

3 days/week >30 min/session 60–80%
·

VO2peak 12 weeks No alterations in sensory/motor nerve
electrodiagnostic
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Table 1. Cont.

Author (Year) Participants Primary Measures
Intervention

Key Results
Type Frequency Time Intensity Duration

Seyedizadeh (2020)
[51]

Control (10);
experimental (12)

Serum kinesin-1 and
physical function

Aerobic and
resistance
training

3 days/week ≥60 min 8–12 RM;
50–65% HRR 8 weeks

Serum kinesin-1 and aerobic endurance
decreased and upper body strength

increased (all non-significant)

Song (2011) [52] Control (19);
experimental (19)

Static/dynamic
balance and trunk

proprioception
Balance 2 days/week 60 min/session — 8 weeks

Postural sway decreased, one-leg stance
increased, dynamic balance improved,

and trunk repositioning errors decreased

LeMaster (2008) [53] Control (38);
experimental (41) Activity level Balance 3 days/week 60 min/session — 12 months Increase in total daily steps

Allet (2010) [54] Control (35);
experimental (36) Gait Balance 2 days/week 60 min/session — 12 weeks

Increased habitual walking speed;
improved cadence, gait cycle time, and

stance time

Kruse (2010) [9] Control (38);
experimental (41)

Strength, balance,
and falls Balance 3 days/week 60 min/session — 12 months Small time increase in 1-leg, eyes closed

stand

Eftekhar-Sadat (2015)
[55]

Control (17);
experimental (17)

TUG, BBS, fall risk,
and postural stability Balance 3 days/week — — 4 weeks Decrease in TUG, fall risk index, and

increase overall stability index

Ahmed (2018) [56] Control (15);
experimental (45) Posture stability Balance 3 days/week 60 min/session — 6 weeks Increased posture stability

Boslego (2017) [57] Experimental (15)

BBS, balance
confidence, and

occupation perfor-
mance/satisfaction

Yoga 2 days/week 60 min/session — 8 weeks Improvements in BBS, balance confidence,
and occupation performance/satisfaction

Kanjirathingal (2021)
[58]

Yoga (11);
conventional (10);

control (14)

Balance, center of
pressure, chair stand,

and step-up test
Yoga 3 days/week 60 min/session — 12 weeks Improvements in balance, center of

pressure, chair stand, and step-up test

Ahn and Song (2012)
[59]

Control (19);
experimental (20)

Glucose control,
neuropathy score,

balance, and quality
of life

Tai-chi 2 days/week 60 min/session — 12 weeks Improved glucose control, balance,
neuropathic symptoms, and quality of life

Handsaker (2019)
[60]

Control (7);
experimental (24) Stepping accuracy Proprioception 1 day/week 60 min/session — 16 weeks Increased stepping accuracy

Grewal (2015) [61] Control (16);
experimental (18)

Posture stability and
daily physical

activity
Proprioception 2 days/week 45 min/session — 4 weeks Reduced center of mass, ankle, and hip

joint sway
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Table 1. Cont.

Author (Year) Participants Primary Measures
Intervention

Key Results
Type Frequency Time Intensity Duration

Ahmad (2019) [62] Control (17);
experimental (20)

Balance and
proprioception Proprioception 3 days/week 50–60 min/session — 8 weeks

Increased one-leg stance, decreased TUG,
center of pressure sway, and increased

proprioception

Hung (2019) [63] DPN-group A (12);
DPN-group B (12)

MFES, TUG, BBS,
and UST Proprioception 3 days/week 30 min/session — 6 weeks Improvements occurred in BBS, right-leg

UST, and TUG test scores

Rehab and Saleh
(2019) [64]

Control (15);
experimental (15)

Gait and risk of
falling Proprioception 3 days/week 30 min/session — 8 weeks Increased step length, velocity and

cadence; decreased risk of falling

Kessler (2013) [65] Experimental (8)
Neuropathic pain
scale and visual

analog pain scale

Whole body
vibration 3 days/week 12 min/session 25 Hz and 5 mm

amplitude 4 weeks Reductions in both pain scales

Lee (2013) [66]
WBV/balance (19);

balance (18); control
(18)

Balance, muscle
strength, and HbA1c

Whole body
vibration

2 days/week
(balance); 3×3

min/day
60 min/session — 6 weeks

Combined vibration and balance training
improved static balance, muscle strength,

and HbA1c

Kessler (2020) [67] Control (8);
experimental (12)

Visual analog pain
scale

Whole body
vibration 3 days/week 12 min/session 25 Hz and

0.5–1.0 g 4 weeks Significant reductions in pain after 2 and
4 weeks

BBS = Berg Balance Scale; DPN = diabetic peripheral neuropathy; FMD = flow-mediated dilation; HbA1c = glycated hemoglobin; HIIT = high-intensity interval training; HRR = heart rate recovery; IMT = intima
media thickness; MDNS = Michigan Diabetic Neuropathy Screen; MFES = modified falls efficacy scale; MHR = maximum heart rate; MNSI = Michigan Neuropathy Screening Instrument; NCV = nerve

conduction velocity; PA = physical activity; QOL = quality of life; ROM = range of motion; RPE = ratings of perceived exertion; TUG = Timed Up And Go; UST = unipedal stance test;
·

VO2 = oxygen uptake.
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4. Exercise-Based Interventions
4.1. Mobility and Functional Movement-Based Exercise Training

For many years, the idea of prescribing weight-bearing exercise was not gener-
ally accepted, with practitioners believing it to be unsafe for individuals with DPN.
Mueller et al. [8] had 29 DPN patients complete either weight-bearing or non-weight-
bearing interventions consisting of progressive balance, flexibility, strengthening, and
aerobic exercises occurring 3 times a week for 12 weeks. The weight-bearing group showed
greater improvements in 6-min walk distance (378 ± 72 to 404 ± 78 m) and average daily
step count (4909 ± 1398 to 5593 ± 1449 steps) without an increase in adverse events and
the non-weight-bearing group demonstrated greater improvements in HbA1c (7.8 ± 2.1 to
7.4 ± 1.6%) [8]. Following these promising results, El-Refay and Ali [30] had 15 individ-
uals with DPN complete an 8-week program of range of motion, muscle strengthening,
balance, and gait training exercises done three times per week. The intervention program
significantly increased walking velocity (0.71 ± 0.07 to 0.87 ± 0.18 m/s), reduced step time
(0.86 ± 0.17 to 0.63 ± 0.19), and improved ankle range of motion during the stance phase
of gait (19.38 ± 2.39 to 20.45 ± 2.16 degrees) [30].

Not all studies initiating these types of interventions produce the desired results.
Sartor et al. [10] had 26 individuals with DPN complete 40–60 min therapeutic sessions,
twice a week, for 12 weeks. The intervention consisted of a combination of flexibility,
muscle strengthening, and functional training geared toward improving the foot rollover
process during gait. There were no significant changes observed in plantar pressure under
the six foot areas, plantar pressure distribution, or the functional condition of the foot–ankle
complex [10]. Lastly, Kanchanasamut and Pensri [31] had 11 DPN patients complete an
8-week home weight-bearing exercise program using a mini-trampoline. There was a trend
for peak plantar pressure at the medial forefoot to decrease in the exercise group, but not
in the control group [31].

4.2. Aerobic Exercise Training

Aerobic exercise is one of the most studied exercise modalities. It recruits large muscle
groups to perform dynamic, rhythmic movements done over a prolonged period of time
(e.g., walking, jogging, cycling, and swimming). Engagement in regular aerobic exercise
sessions is typically done to improve endurance; however, it produces a wide range of
additional health benefits. Increases in cardiorespiratory fitness is largely associated with
a reduction in all-cause mortality, specifically from cardiovascular disease, and those
with high levels of cardiorespiratory fitness have a greater level of habitual physical
activity [68–72]. Previous research investigating the effects of aerobic exercise intervention
among individuals with T2D has observed many favorable changes in metabolic health,
body composition, and maximal oxygen consumption [73,74]. Additionally, meta-analytic
data has shown that chronic aerobic exercise can result in significant decreases in HbA1c,
fasting blood glucose, low-density lipoproteins, triglycerides, systolic and diastolic blood
pressure, and body fat percentage [75]. Though evidence exists demonstrating the efficacy
of aerobic exercise to help treat metabolic symptoms of type 2 diabetes, it is still necessary
to determine the effects this modality of exercise has on peripheral neuropathy and the
muscle tissue-mediators associated with DPN.

4.2.1. Sensorimotor Function

When designing an aerobic exercise training program, one major component is deter-
mining the exercise intensity; this becomes even more complex with working with people
with DPN. Individuals with diabetes are at greater risk for having a heart attack or stroke
due to increases in blood pressure and cholesterol levels [76,77]. In certain cases, those
with diabetes are prescribed medications to manage cardiovascular disease, which can
blunt certain responses to exercise and limit the intensity of work being done. Moreover,
cardiovascular autonomic neuropathy is a common complication with T2D that often goes
unrecognized because it presents with non-specific symptoms, such as resting tachycardia
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and reduced heart rate variability, exercise intolerance, and orthostatic hypotension [78].
This autonomic dysfunction increases the risk for cardiovascular events and mortality
several-fold. For these reasons, it is critical to monitor heart rate, blood pressure, and
perceived exertion during aerobic exercise training in people with DPN.

Research has supported that moderate to vigorous aerobic exercise prescription using
heart rate (HR) metrics, such as percentages of maximum HR (MHR) or HR reserve (HRR),
may be an effective method for improving the signs and symptoms of DPN in patients
with T2D [35,40,43,44,79]. Dixit et al. [35] had 29 subjects with DPN complete an 8-week
intervention of moderate intensity (40–60% HRR) treadmill exercise, 3–6 days per week.
The experimental group demonstrated increased nerve conduction velocity (NCV) in
both the distal peroneal (42.48 ± 1.25 m/s to 45.56 ± 1.24 m/s) and sural sensory nerves
(23.67 ± 1.81 to 31.39 ± 1.58), as well as improvements in mean scores of the Michigan
Diabetic Neuropathy Score (12.57 ± 1.74 to 7.03 ± 1.86) [35]. It was suggested that the
modulation of sorbitol levels was the potential mechanism for the resulting improvements.
Increased intracellular sorbitol concentration has been shown to damage Schwann cells,
which can create a chronic hypoxic environment for nerves [35,80,81]. Gholami et al. [43]
observed a significant increase in sural sensory NCV (35.2 ± 4.3 m/s to 37.3 ± 6.2 m/s)
following 12 weeks of aerobic training with each session lasting 20–45 min at an intensity of
50–70% HRR. Gholami et al. speculated that the improvements in NCV may be associated
with greater glycemic control and/or favorable adaptations in vascular components [43].

Hyperglycemia can propagate superoxide production, which can lead to endothelial
dysfunction and vascular distensibility [82]. Previous research has demonstrated that
aerobic exercise training can improve endothelial function through enhance flow-mediated
dilation in people with type 2 diabetes [83–87]. One adaptation to aerobic endurance
training may have been the enhanced endothelial function through increased nitric oxide
production resulting in improved arterial compliance and a reversal of the hypoxic state
created with normal DPN progression [35]. Azizi et al. [44], using 8-week intervention
with aerobic exercise intensity at 70–85% MHR, observed sural sensory nerve and tibial
compound muscle action potential increased, while F-wave and NCV decreased signifi-
cantly. Moreover, conduction velocity for the deep peroneal nerve also showed a significant
increase. The resulting changes in electrophysiological measures were thought to be a
product of decreased lower limb edema, improved blood supply for metabolic demands,
and the promotion of neural collateral sprouting, leading to enhanced electrical activities
at the specific sites of recording [44].

Neuropathic pain coupled with decreased sensorimotor function may cause individu-
als with DPN to be physically inactive and therefore an important target for aerobic training
interventions. A 16-week supervised aerobic exercise program resulted in a significant
reduction in perceived pain (average of 7 pain interference items) during various daily
activities (4.29 ± 2.70 to 2.36 ± 2.22) [40]. It was thought to be a function of a decreased
level of advanced glycation end products and protein kinase C, which are typically in-
creased due to chronic hyperglycemia. These decreases were suggested to cause a change
in central pain processing mechanisms associated with DPN; the appropriate objective
measures of brain functioning were not assessed within the study [40]. After completion of
a 15-week high-intensity interval training intervention, Hamed and Raoof [38] observed
improvements in pain via the Leeds Assessment of Neuropathic Symptoms and Signs Scale
(−3.6 ± 0.7 points), in conjunction with significant decreases in fasting (−6.5 ± 2.9 mg/dL)
and 2-h (−20.15 ± 2.2) blood glucose. It was suggested that diabetic neuropathic pain could
be reduced through exercise by attenuating changes in high and low voltage activated Ca2+

channels, thereby delaying the onset of tactile hypersensitivity of the neurons [38].

4.2.2. Physical Fitness

Sedentary behavior has been a longstanding global pandemic and is recognized
as one of the top five leading contributors to premature mortality [88,89]. Moreover,
an individual’s level of cardiorespiratory fitness is strongly associated with their risk
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of premature death from all causes and how much physical activity they engage in [90].
Fatigue during common daily activities is a common symptom reported by individuals with
type 2 diabetes and DPN, further propagating a sedentary lifestyle potentially resulting in
lower cardiorespiratory fitness, decreased muscular strength, and increased body fat [91,92].
Morrison et al. [36] had 16 individuals with DPN complete 12 weeks of aerobic exercise
sessions occurring three times per week. Subjects were randomly assigned to one of two
isocaloric aerobic exercise training groups: (1) moderate intensity aerobic training (45
min done at 50% of HRR) or (2) vigorous intensity aerobic training (30 min at 75% of
HRR). Aerobic exercise during each training session consisted of treadmill walking or
running, stationary cycling, and/or elliptical strider workouts done at the correct intensity
for the prescribed amount of time on three, nonconsecutive days per week. Following

the intervention, only slight increases were observed in peak oxygen uptake (
·

VO2peak)
(16.88 ± 1.11 to 17.41 ± 1.42 mL/kg/min); however, significant improvements were seen in
fasting blood glucose levels (7.6 ± 0.9 to 7.5 ± 1.1 mmol/l), glycated hemoglobin (Hba1c)
(7.3 ± 0.3 to 7.2 ± 0.5%), and insulin (15.9 ± 3.3 to 14.5 ± 3.2 µU/mL) concentrations.
Additionally, participants demonstrated reductions in body fat (38.9 ± 1.6 to 37.3 ± 1.8%),
increased gait velocity (108.91 ± 1.73 to 116.42 ± 2.15 cm/s), stride length (59.24 ± 0.65 to
62.73 ± 0.81 cm), step length (122.81 ± 1.28 to 125.80 ± 1.59 cm), and a decrease in time
spent in stance (63.6 ± 0.9 to 61.8 ± 1.0%) [36]. Kluding et al. [39] prescribed 16 weeks of

moderate intensity (50–70%
·

VO2reserve) three times per week. The resulting data displayed

a significant increase in
·

VO2peak (16.2 ± 3.6 to 17.3 ± 4.0 mL/kg/min) and a decrease in
total body fat (44.79 ± 6.62 to 43.79 ± 6.64%). Additionally, improvements were found
in general (15.7 ± 2.3 to 12.2) and physical (15.5 ± 2.4 to 12.4 ± 3.7) fatigue scores, both
collected using the Multidimensional Fatigue Inventory questionnaire [39]. Individuals
with diabetes are known to have blunted HR responses during exercise and peripheral
vascular dysfunction, which are important contributors to lower exercise capacity, which in
turn can limit maximal oxygen consumption [93–95]. In conjunction with the increases in
aerobic capacity, Kluding et al. [39] observed a significant improvement in flow-mediated
dilation at the brachial artery (4.92 ± 3.7 to 7.19 ± 4.39%). Furthermore, high levels
of HbA1c are associated with oxidative stress and inflammatory markers, which have
been shown to be inversely related to aerobic capacity [96,97]. Based on the evidence
provided by the aforementioned studies, there is preliminary evidence that participation in

regular aerobic exercise at both moderate and vigorous intensities (% HRR or
·

VO2reserve)
for durations of ≥8 weeks can result in favorable improvements in cardiorespiratory fitness
and metabolic function, which may prompt greater participation in subsequent daily
physical activity and enhance glycemic control.

4.3. Resistance Exercise Training

Resistance exercise training is an established method for increasing muscular en-
durance, size, strength, and power [98–100]. For the purpose of this article, resistance
training will be defined as “a specialized method of conditioning, which involves the
progressive use of a wide range of resistive loads and a variety of training modalities
designed to enhance health, fitness, and sports performance” [101]. Though resistance
training is a popular form of exercise, its use in clinical trials as the sole intervention tool
with individuals with DPN is fairly uncommon. To the best of our knowledge, only one
study was identified that fit the criteria of this review [46]. In order to prompt future
research in this area, the following subsections will briefly discuss the potential benefits of
resistance exercise training on glycemic control, microvascular perfusion, and neural drive,
all of which may be key mediators of neuropathic muscle adaptation.

4.3.1. Glycemic Control

Growing evidence demonstrates the efficacy of resistance exercise to promote over-
all metabolic health in individuals with T2D through improvements in glycosylated
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hemoglobin (HbA1c) and insulin sensitivity, particularly in the early stages of T2D among
those with a lower body mass index [75,102,103]. Participation in regular RT to help man-
age glucose intolerance and diabetes becomes even more necessary when discussing older
adults (i.e., >55 years). With aging, there is a subsequent decline in skeletal muscle mass,
often referred to as sarcopenia [104]. This continual decrease in muscle mass leads to
the increased risk of developing impaired glucose tolerance and an eventual diagnosis of
diabetes since lean-body mass tissue is the primary site of blood glucose uptake [105,106].
Specifically, RT has been shown to decrease glucose area-under-the-curve by 25–28% dur-
ing oral glucose tolerance tests and increase glucose disappearance rates with subsequent
improvements in body composition in older adults [107,108]. When working with indi-
viduals with impaired glucose tolerance or diabetes, it is recommended to begin with
1–3 sets of 10–15 repetitions at “moderate” intensities of 50–69% 1-RM for 8–10 exercises
targeting the full body. Gradual progression should then be made to sets of 8–10 repetitions
corresponding to “vigorous” intensities of 70–85% 1-RM. A review of the literature found
that exercise training programs ≥8 weeks with 2–3 sessions per week lasting 30–60 min
using progressive RT targeting 5–10 muscle groups seem to provide the greatest benefits.
Working sets ranged from 2–6 with 6–20 repetitions of each exercise with the average being
2–3 sets of 8–12 repetitions [75,93,102]. However, it is worth noting that these exercise pa-
rameters are derived from work with individuals with diabetes, not DPN, so modifications
may be required to suit the specific needs of the participating population.

4.3.2. Microvascular Perfusion

Impaired function of the peripheral vasculature is a common issue that emerges in
patients with diabetes, and the development of DPN only further exacerbates the decrease
in circulation and perfusion [109]. In a recent systematic review, Garcia-Mateo et al. [110]
found that chronic strength training elicited moderate to large (Cohen’s d = −1.20 to
−1.49) decreases in arterial stiffness measures in healthy individuals. Maeda et al. [111]
observed that a 12-week RT program increased nitric oxide production in healthy older
men (39.6 ± 3.2 to 61.2 ± 10.4 µmol/L). Theoretically, the increased bioavailability of nitric
oxide will elicit greater vasodilation of involved blood vessels allowing for more blood
flow and subsequent perfusion of the targeted tissues. Phillips et al. [112] demonstrated
that 20 weeks of whole body RT increased leg blood flow and vascular conductance
in various feed states among young (18–28 year), middle aged (45–55 year), and older
(65–75 year) adults. Finally, Cook et al. [113] demonstrated that a 6-week RT intervention
significantly lowered biomarkers indicative of endothelial function (matrix metalloprotease;
276.3 ± 31.6 to 171.1 ± 18.3 ng mL−1) and oxidative stress (8-Isoprostane; 349.8 ± 28.9
to 299.8 ± 34.9 pg mL−1) in African American men. Though the discussed data was not
collected in patients with DPN, it does suggest that RT may be effective in stimulating
favorable vascular changes and improving endothelial function in this population. Though
the aforementioned results were observed in a healthy population, it gives insight into the
potential effects possible from chronic RT. Future research should attempt to replicate or
build on the current studies, limiting enrollment to those with DPN in order to investigate
whether similar or even greater improvements in circulation and perfusion can be attained.

4.3.3. Neural Drive

Individuals with DPN are at an increased risk of falling relative to age-matched con-
trols, with 60% of fall-related deaths occurring during descent down stairs [46,114–116].
Previous research has shown that DPN patients are slower to develop ankle and knee
joint force, which has been attributed to diminished muscle activation [46,117–120]. This
decrement in strength and power seen in patients with DPN can be further exacerbated
in older adults who contend with age-related sarcopenia [14,121]. Engagement in regular
RT has been demonstrated to be a primary intervention for increasing strength and power
through neural adaptations across ages [122–124]. The use of heavy external loads, high
velocity movements, and motor skill learning within RT aids in the increase of efferent
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neural drive through improved motor unit recruitment, motor neuron firing frequencies,
motor unit synchronization, and the attenuation of antagonist co-activation [14,125]. With
these neuromuscular adaptations in mind, various RT programs have been utilized to
help reduce fall risk through enhanced balance and stability, increased core strength, work
efficiency, and skeletal muscle fiber size [126–128]. Liu-Ambrose et al. [126] saw a 57.3%
reduction in Physiological Profile Assessment fall-risk scores and a 30.6% reduction in pos-
tural sway in community-dwelling older women following resistance training. However,
RT focused interventions conducted in patients with DPN are lacking within the scientific
literature. Handsaker et al. [46] had participants engage in a 16-week RT intervention.
Training sessions involved both dynamic and isometric exercise. Participants performed of
3 sets of 12 repetitions of leg extension, leg press, and ankle press with 1-min rest periods
between sets. Dynamic exercise loads were auto-regulated to maintain progressive over-
load throughout. Post-testing results demonstrated that speed of strength generation in
the ankle and knee was significantly higher in subjects with DPN during both stair ascent
and descent.

4.4. Concurrent Aerobic and Resistance Exercise Training

As previously mentioned, aerobic exercise is the most commonly employed training
intervention in the scientific literature investigating exercise effects on people with DPN.
Conversely, research looking into the efficacy of resistance exercise training is lacking.
However, a concurrent aerobic and resistance exercise training approach has been studied
in people with DPN.

Sensorimotor Function

Kluding et al. [47] had 17 individuals with DPN participate in a 10-week aerobic
and strengthening exercise program with supervised sessions taking place 3–4 days per
week. The intervention resulted in a significant reduction in pain via a visual analog scale
(mean ± standard deviation; 62.4 ± 26.7 to 44.3 ± 35.1), a Michigan Neuropathy Screening
Instrument symptom score (5.24 ± 1.4 to 4 ± 2), and an increase in intraepidermal nerve
fiber branching in proximal lower extremity skin biopsies (0.16 ± 0.15 to 0.27 ± 0.19) [47].
Nadi et al. [49] also observed improvements in sensory-motor function after utilizing
combined training. Forty-two individuals with DPN experienced significant reductions in
numbness, pain, tingling, and weakness in the lower limbs and increases in sense of touch
intervention, detection of finger position, and vibration perception in tissues. However, it
should be noted that exercise training was done over 12 weeks in conjunction with vitamin
D supplementation [49]. Stubbs Jr. et al. [50] found non-significant alterations in peripheral
sensory and motor nerve electrophysiologic properties when comparing the effects of
12-week aerobic, isokinetic strength, and combined aerobic and isokinetic strength exercise
training interventions.

It has been speculated that the length of the intervention and the degree of damage
sustained by the peripheral nerve fibers play a major role, with shorter interventions
(e.g., ≤10 weeks) affecting less extensively damaged fibers while longer interventions
are necessary when damage is more severe [47]. One explanation given for the reversal
of neuropathy signs and symptoms following exercise could be the increased ability for
vasodilation in blood vessels allowing for greater blood flow and perfusion of peripheral
nerves. Proteins carried within the blood prompt the recovery of myelin and an increase in
neural axons [49]. The eventual increase in axon connections are hypothesized to improve
neural function in people with DPN. Implementing a concurrent aerobic and resistance
training program may allow for compounding improvements in DPN signs and symptoms;
however, conflicting evidence still exists in the literature. More research is needed with
future studies focused on exclusively utilizing long-term (i.e., >12 weeks) exercise-based
interventions with large sample sizes and a comprehensive battery of outcome testing
measures to gauge nerve conduction, fiber density, sensory-motor function, and physical
function. Additionally, more studies need to be dedicated toward investigating the efficacy
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of using RT interventions alone, for improving microvascular perfusion and neural drive
within individuals with DPN.

4.5. Balance and Proprioception-Based Exercise Training

Damage to the sensory and motor nerves can severely impair myofiber innerva-
tion and perfusion, causing muscle atrophy and balance impairments, which is of even
greater concern for older adults already at an elevated risk of developing sarcopenia
and falling [8–10]. For these reasons, practitioners have sought to implement therapeutic
strategies focused on improving balance.

Song et al. [52] had 19 individuals with DPN participate in an 8-week balance exer-
cise program, two times a week for 50 min per session. Results from the study demon-
strated that body sway significantly decreased during (1) eyes open anterior–posterior
(45.9 ± 12.3 to 33.9 ± 7.9 cm), medial–lateral (50.4 ± 29.3 to 33.2 ± 6.9 cm), and total body
sway (76.1 ± 32.4 to 52.3 ± 11.5 cm) and (2) eyes closed anterior–posterior (62.0 ± 19.9
to 49.3 ± 13.6 cm), medial–lateral (58.8 ± 27.1 to 49.9 ± 16.8 cm), and total body sway
(94.9 ± 36.8 to 79.3 ± 25.6 cm). The one-leg stance test significantly increased for eyes open
(left: 6.2 ± 4.0 to 9.9 ± 8.3 s, right: 5.9 ± 5.2 to 11.6 ± 7.0 s), eyes closed (left: 3.2 ± 2.1 to
4.8 ± 2.1 s, right: 3.3 ± 2.3 to 5.7 ± 2.3 s), and head rotation (left: 3.5 ± 2.4 to 5.4 ± 2.7 s,
right: 4.2 ± 2.6 to 7.6 ± 5.4 s). Song et al. [52] also observed improvements in dynamic
balance score from the Berg Balance Scale (53.0 ± 2.3 to 55.1 ± 1.1), Functional Reach Test
(27.1 ± 7.4 to 30.9 ± 6.1 cm), Timed Up and Go test (11.8 ± 2.3 to 10.1 ± 2.1 s), and 10-m
walking time (9.6 ± 1.4 to 8.7 ± 1.2 s) following balance exercise training. Finally, favorable
changes in trunk proprioception were seen through a decrease in trunk repositioning errors
across three scenarios: eyes open stable surface (1.6 ± 1.1 to 0.9 ± 0.8), eyes closed stable
surface (1.8 ± 1.2 to 0.7 ± 0.5), and eyes open foam (1.9 ± 1.3 to 1.1 ± 0.6) [52].

The postural instability observed in individuals with DPN seems to be a result of
inaccurate proprioceptive feedback from the lower extremities. Decreases in proprioception
results in the loss of the ability to adequately coordinate essential reflexes and joint move-
ments, in addition to complex balance and postural control [129,130]. Grewal et al. [61] had
18 individuals with DPN complete 4-week sensor-based balance training. Compared with
the control group, the subjects in the experimental group showed a significantly reduced
center of mass sway (3.67 ± 2.99 to 1.53 ± 1.44 cm2; 58.31%), ankle sway (1.85 ± 1.82 to
0.69 ± 0.60 degree2; 62.7%) and hip joint sway (2.50 ± 4.65 to 0.69 ± 0.77 degree2; 72.4%)
during the balance test with open eyes. Only the ankle sway was significantly reduced in
the experimental group (3.01 ± 3.72 to 1.24 ± 1.13 degree2; 58.8%) during measurements
while the eyes were closed. Additionally, the number of steps walked showed a substantial
but non-significant increase (8656 ± 4589 to 11052 ± 5365; 27.68%; p = 0.064) in the exper-
imental group following training [61]. Finally, Hung et al. [63] had 24 individuals with
DPN participate in a 6-week interactive video game-based exercise program to improve
balance. The interactive video game-based protocol had participants perform 30-min
training sessions consisting of tasks designed to enhance lower body strength, balance,
and coordination. Study participants had improvements in the Berg Balance Scale score
(48.92 ± 1.29 to 52.33 ± 1.01), Unipedal Stance Test with eyes open (right: 10.52 ± 3.07
to 18.89 ± 3.93 s; left: 10.05 ± 2.18 to 22.71 ± 4.86 s), and the Timed Up and Go and
Modified Falls Efficacy Scale (115.25 ± 9.06 to 125.83 ± 6.36) [63], suggesting a decreased
risk of falling.

Yoga-based interventions have been suggested as an alternative to traditional balance
and flexibility exercise therapy. Boslego et al. [57] found that yoga significantly improved
Berg Balance Scale scores (49.33 ± 6.43 to 53.00 ± 4.68) and increased balance confidence
scores (68.96 ± 18.41 to 76.10 ± 17.38) in individuals with DPN, even more so than con-
ventional balance exercises. Kanjirathingal et al. [58] investigated a 12-week yoga training
intervention and also observed significant increases in balance and strength outcome
measures. The Star excursion balance test resulted in greater reach distances anteriorly
(right: 68.1 ± 3.4 to 80.1 ± 5.4 cm; left: 67.5 ± 3.6 to 80.6 ± 5.2 cm), postero-laterally
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(right: 68.1 ± 2.0 to 79.2 ± 4.0 cm; left: (67.6 ± 3.4 to 79.5 ± 4.2 cm), and postero-medially
(right: 59.3 ± 3.3 to 67.3 ± 3.1 cm; left: 59.3 ± 3.4 to 67.2 ± 3.5 cm). Increases were also
demonstrated in single limb stance time for both eyes closed (right: 3.5 ± 1.4 to 11.0 ± 3.2 s;
left: 3.6 ± 1.3 to 11.4 ± 3.4 s) and eyes open (right: 17.7 ± 4.0 to 49.7 ± 22.5 s; 17.4 ± 4.3
to 50.3 ± 22.1 s). Finally, Kanjirathingal et al. [58] found yoga training increased lower ex-
tremity strength during a chair stand test (9.0 ± 1.2 to 12 ± 1.8 reps) and a step-up test front
facing (8.0 ± 1.2 to 11.3 ± 1.4 reps), laterally right (8.0 ± 1.5 to 10.2 ± 2.7 reps), and laterally
left (9.0 ± 1.4 to 10.7 ± 2.7 reps). Though both the yoga training and the conventional
balance exercises demonstrated effectiveness in boosting balance and strength performance,
the yoga intervention was concluded to be marginally better for improvements in both
outcome categories compared to conventional balance training [58].

Another modality of exercise training practitioners have investigated is the use of
tai chi, or tai chi chuan. Tai chi is a Chinese-based martial arts dating back more than
3000 years. In the modern day, tai chi is utilized as a form of exercise characterized by
self-paced, well-controlled physical movements synced with focused breathing, stretching,
and relaxation techniques [131]. In addition to being a popular form of physical activity
and meditation, evidence exists indicating its efficacy for helping to treat adults with
various chronic physical and metal conditions [132–139]. This form of physical activity is
best-known for its efficacy with improving balance and postural control [140–143]. Ahn
and Song [59] had 20 individuals with DPN participate in a 1-h tai chi session, two times
per week for 12 weeks. Improvements were observed in glucose control (fasting blood
glucose: 137.8 ± 45.2 to 125.5 ± 45.6 mg/dL), balance score (22.37 ± 23.7 to 30.0 ± 28.1), and
neuropathic total symptom score (1.1 ± 2.0 to 2.0 ± 1.9) [59]. Though this form of exercise
shows some promise as a viable modality for treating patients with DPN, particularly older
adults, more research is needed.

4.6. Whole-Body Vibration Exercise Training

A primary characteristic of DPN is chronic pain caused by accumulated damage
to the afferent nociceptors from the chronic hyperglycemia [144]. This damage leads
to hyper-excitation of the central nerves and the spontaneous generation of nerve im-
pulses throughout the periphery [145]. A significant decrease in balance and mobility,
coupled with chronic pain, result and worsen as time goes on. Treatments for DPN, specifi-
cally pathology affecting sensorimotor function, focus on symptom management through
pharmacological interventions because there are no effective therapeutics that target the
underlying neuropathies. Whole-body vibration training (WBVT) has been studied as an
intervention for DPN pain management. WBVT most commonly involves individuals
exercising on a vibrating platform and has been proposed as an alternative to traditional
strength training. The vibrations created from the platform mechanically generate rapid
changes in the muscle-tendon complex length, which, in turn, stimulates repetitive, reflex-
ive contractions of the muscle, subsequently leading to increased muscular fitness [146].
WBVT has been shown to have favorable effects on muscle function, flexibility, oxygen
uptake, body composition, and blood pressure [147–151]. Unfortunately, the research
looking into the efficacy of vibration therapy among people with DPN is limited.

Kessler and Hong [65] found that 4 weeks of vibration treatment sessions, occurring
three times per week, resulted in acute pain reduction in DPN patients using both visual
analog and neuropathic pain scales. A follow up study from Kessler et al. [67] found similar
decreases in pain over both a 2- and 4-week interval. Finally, Lee et al. [66] conducted a
6-week whole body vibration therapy intervention in elderly patients with DPN. Following
the WBVT, balance improved during eyes open (anterior–posterior: −4.05 ± 2.09 mm/s;
medial–lateral: −2.36 ± 1.80 mm/s; sway velocity-movement: −6.90 ± 3.82 mm/s2)
and eyes closed (anterior–posterior: −5.74 ± 2.53 mm/s; medial–lateral: −3.72 ± 3.02;
sway velocity-movement: −9.30 ± 7.29 mm/s2) sway velocity testing. One leg stance
time significantly increased for eyes open (6.41 ± 4.59 s) and closed (2.09 ± 1.30 s).
Lee et al. [66] also observed increased Berg Balance Scale scores (1.89 ± 1.52), Functional
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Reach Test (4.45 ± 3.52 cm), Timed Up and Go test (−1.79 ± 1.09 s), and the Sit-to-Stand
test (−3.68 ± 2.40 s). Though promising, further research is needed to explore the efficacy
of vibration therapy for treatment of DPN. Though the results of the aforementioned studies
seem promising, it has been shown that long duration exposure to WBV at high frequencies
can have dangerous side effects, including increased lumbar spinal degeneration, lower
back pain, muscular fatigue, and contributions to the pathogenesis of disorders in female
reproductive organs [152–155]. Therefore, more research is needed to evaluate the efficacy
of WBV in people with DPN, as well as to develop safe exercise protocols.

5. Conclusions

Upon reviewing the literature, there is support that exercise-based interventions
≥4 weeks are beneficial for patients with DPN. This conclusion falls in line with other
recently conducted literature reviews investigating the effects of exercise on enhancing
gait function [156], decreasing neuropathic pain [157], and improving posture and balance
among patients with peripheral neuropathy [158]. However, though the results of this
review find various modalities of exercise to be beneficial, the effects are quite numerous
and at times, inconsistent. Mobility and functional movement-based training, specifically
weight-bearing exercise, is not only safe for people with DPN to participate in, but can
provide significant increases in gait, balance, and strength. Of the six studies reviewed
in the current paper, the overlapping result seems to be the enhancement of lower-body
movement. The training programs implemented observed improvements in gait velocity,
cadence, ankle joint mobility, and decreased step time. There were also favorable changes
in plantar pressure and other kinematic and kinetic variables recorded during gait analyses.
Improvements were thought to be tied to increases in foot and ankle musculature strength,
as well as greater coordination of muscle activation, body stability, and joint flexibility.
From a practical perspective, following weight-bearing exercise training, DPN patients
demonstrated greater daily step counts and walking distances. From a clinical perspective,
all these results lend themselves well towards improving daily physical function and
quality of life for patients with DPN. For practical application, the research suggests that
exercise sessions should start using “light” intensities and then slowly titrate up over time.
Moreover, non-weight bearing mobility and functional training can take place first and as
patients show improvement, they can be transitioned to weight-bearing exercise.

As previously stated, aerobic exercise is one of the most commonly utilized training
modalities in both healthy and special populations. Aerobic exercise training at moderate

intensities (40–70% of HRR or
·

VO2reserve) has shown the ability to improve sensorimotor
function, cardiorespiratory endurance, reduce fatigue, and promote increased physical
activity. Mechanisms for the observed improvements following aerobic exercise interven-
tions may be tied to enhanced glycemic control and endothelial function. Furthermore,
three studies demonstrated improvements in electrophysiological examinations, specif-
ically in greater nerve conduction velocity within the sensory nerves [35,43,44]. These
significant changes are also thought to be influenced by changes in glycemic status, as well
as decreases in lower limb edema and increases in blood supply to meet certain metabolic
requirements for neural collateral sprouting. Because NCS are regarded as the standard
for measuring peripheral nerve functions, clinicians should look to incorporate aerobic
exercise into treatment protocols for patients with DPN, as a non-pharmacological aide to
help bolster the effects of prescribed medications and other therapy.

Resistance exercise training has many potential benefits for individuals with DPN
and has demonstrated its effectiveness when combined with aerobic exercise. Training pro-
grams should be designed utilizing 1–3 sets of 10–15 repetitions at “moderate” intensities
of 50–69% 1-RM for either 2–4 lower-body focused exercises or 8–10 exercises targeting the
full body to elicit potential favorable changes in glycemic control, microvascular perfusion,
and neural drive. However, more research is needed with resistance exercise training
being the sole intervention modality being utilized to gain a better understanding of how
it functions independently.
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Traditional balance, proprioception-based, yoga, and tai chi-based exercise training
interventions have all demonstrated the ability to improve multiple different measures
of static and dynamic balance performance, postural control, and strength, and to reduce
fall risk. For individuals who are less physically fit, older, or have more severe cases
of peripheral neuropathy, these modalities of exercise may be a more efficacious choice.
Finally, WBVT shows promise as both an alternative to conventional strength training and
a viable intervention method for increasing motor function in subjects with DPN. However,
similar to traditional resistance exercise training, more research is needed to fill the current
gap in the scientific literature and determine the safest manner in which to implement
WBV in the long term.

Due to the wide range and variability in observed results found in the current litera-
ture review, the authors recommend that prior to selecting an exercise-based intervention
to implement in individuals with DPN, practitioners should perform a needs assessment
of their patient(s) and determine a priority list in order to decide the most appropriate
modality to choose. Future studies should look to perform more multi-group studies
comparing various exercise training modalities against one another and combined. Fur-
thermore, comprehensive outcome assessments need to be implemented to specify which
type of training demonstrated the largest effects for a particular test. Based on the findings
of the current review, the authors recommend that outcome assessments include NCS,
neuropathic signs/symptoms assessments, performance tests to evaluate physical function
as it relates to lower-body strength, gait, balance, and posture control, and analyses of
metabolic biomarkers specifically related to glycemic control.
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