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Supplementary Methods 1. Selection of genetic instruments for Mendelian 

randomization (MR) analyses. 

Genome-wide independent genetic variants associated with the exposure, which were 

derived from the largest public available GWAS / GWAS meta-analysis and not in 

linkage disequilibrium (LD; r2<0.1) with each other, were initially selected as the 

genetic instruments to represent the genetically determined exposure trait. For example, 

the 1,271 and 242 genome-wide independent variants [1, 2] were selected as the initial 

genetic instruments for number of years of schooling and intelligence, respectively. The 

summary statistics of these initial genetic instruments were retrieved from the datasets 

of outcome (for both univariable and multivariable MR) and potential mediators (for 

multivariable MR only). If an initial genetic instrument was unavailable in the GWAS 

of outcome or potential mediator datasets, a proxy variant in high LD (r2≥0.8) and 

present in all the exposure, outcome and potential mediator (for multivariable MR only) 

datasets was selected as the genetic instrument to replace the initial one. If the proxy 

was no longer associated with the exposure with genome-wide significance (threshold 

of P: 5x10-8) or no proxies could be identified, the genetic instrument was excluded 

from MR analysis. Radial MR analysis was applied to identify outliers which had large 

contribution to Cochran’s Q statistics that might imply heterogeneity, including 

horizontal pleiotropy [3]. Upon exclusion of these outlying genetic instruments, MR 

analyses were subsequently performed. 
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Supplementary Methods 2. Data harmonization. 

All the genetic instruments were oriented such that the effect alleles were positively 

associated with the exposure. The effect alleles were matched across the summary data 

of the exposure, potential mediator and outcome dataset. For palindromic genetic 

instruments, effect allele frequencies were used to align them on ambiguous strands 

across different datasets. If the minor allele frequencies of the palindromic instruments 

were greater than 0.3, a proxy in high LD will be identified for the instrument to avoid 

ambiguity [4]. 
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Supplementary Methods 3. Mendelian randomization (MR) analyses. 

Radial MR analysis was a modification of the traditional scatter plot to facilitate the 

visualization and detection of outliers, which adopted Cochran’s Q statistic to assess 

heterogeneity, as excessive heterogeneity might imply violation of the MR assumptions, 

including horizontal pleiotropy [3]. Using the modified second-order weight, genetic 

instruments with large contributions to Cochran’s Q statistic were considered outliers 

[3] and they were excluded from subsequent MR analyses. 

 

Univariable inverse-variance weighted (IVW) [5] method was used as the main MR 

analysis to assess the total effect of the exposure on the outcome [6]. While IVW is the 

conventional method applied in MR analysis, this method is limited by the assumption 

that all instrumental variables are valid. To address this issue, weighted median method 

was used as a sensitivity analysis as provides consistent estimates even when up to 50% 

of the information comes from invalid instrumental variables [7]. On the other hand, 

based on the assumption that the magnitude of the pleiotropic effects are independent 

of the SNP-risk factor associations across all variants [Instrument Strength Independent 

of Direct Effect (InSIDE) assumption], the slope coefficient from MR-Egger regression 

gave a consistent estimate of causal effect even if all the genetic variants are invalid 

instrumental variables, thus serving as another sensitivity analysis [8]. Meanwhile, the 

contamination mixture method was based on the “plurality valid” assumption that 

among various groups of genetic instruments having the same asymptotic causal 

estimate, the largest group should be the group of valid instruments [9]. This method 

firstly identified groups of genetic instruments with similar estimates, suggesting 

potential distinct mechanisms from the exposure to the outcome for different groups 
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[9]. The method subsequently performed robust MR analysis which had well-controlled 

Type I error rates with up to 50% invalid instruments [10].   

 

To test for the presence of pleiotropy, MR-Egger intercept [8] and MR pleiotropy 

residual sum and outlier (MR-PRESSO) [11] tests were adopted. Based on the InSIDE 

assumption [8], the intercept of MR-Egger regression represents the average pleiotropic 

effects across all SNPs. Meanwhile, there are three components in MR-PRESSO 

analysis: (i) global test has sufficient power to evaluate the overall horizontal pleiotropy 

among all instruments even if pleiotropy just occurs in less than half of the instruments; 

(ii) outlier test provides the causal estimate upon removal of pleiotropic genetic 

instruments; and (iii) distortion test determines if there is any significant difference in 

the causal estimate before and after the removal of pleiotropic genetic instruments [11]. 

In the current analysis, the MR-PRESSO global test was applied to examine the 

presence of overall horizontal pleiotropy, after outliers identified by Radial MR 

analysis were excluded from the analysis.  

 

In case univariable MR analysis revealed a causal association between the exposure 

and outcome, multivariable IVW analysis was also performed to dissect the 

mechanisms in the causal pathway from the exposure to the outcome [6, 12]. The direct 

causal effect of the exposure on the outcome was evaluated by multivariable IVW by 

adjusting for the beta estimates of potential mediators. If the multivariable IVW 

analysis yielded an estimate which is deviated from the null, this implies the exposure 

is independently associated with the outcome that keeping the potential mediators 

unchanged would not affect the outcome [12]. On the contrary, attenuation of causal 
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estimates to null upon adjustment for beta estimates of potential mediators implies that 

the mediators play a role in the causal pathway that keeping them constant would affect 

the outcome. Multivariable MR-Egger intercept test was utilized to detect for presence 

of residual pleiotropy via other unmeasured risk factors [13].  

 

While weighted median method, contamination mixture method, univariable and 

multivariable IVW and MR-Egger analyses were conducted with the 

‘MendelianRandomization’ package in R [14], radial MR and MR-PRESSO analysis 

were performed using “RadialMR” [3] and “MRPRESSO” [11] packages respectively. 
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Supplementary Methods 4. Calculation of power, F-statistics, bias and Type I error 

rate due to sample overlap 

The proportion of variance explained by each genetic instrument on the exposure trait 

was calculated from the formula: 2x(minor allele frequency)x(1-minor allele 

frequency)x(effect size)2, where effect size is in standard deviation (SD) of the exposure. 

The bias and Type I error rate due to sample overlap under the null model were 

estimated using a web application (https://sb452.shinyapps.io/overlap) [15]. The 

unconditional F-statistics for univariable MR analysis, a measure of strength of genetic 

instruments, and the number of genetic instruments applied in each MR analysis, were 

also computed using the same web tool [15]. The figures are included in Table 2. An 

online tool (https://sb452.shinyapps.io/power/) [16] was employed to calculate the 

statistical power (Supplementary Figure 1). 
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Supplementary Table 1.  Potential mediators between education attainment and 

COVID-19 outcomes. 

Potential mediators Reference 
Body Mass Index (BMI) 

In Mendelian randomization analysis, 1 standard deviation 
longer education (3.6 years) was associated with reduced BMI 
by 0.17. 

[17] 

High BMI (≥30 kg/m2) or obesity affects both the respiratory 
and immune system by multiple mechanisms, such as secreting 
cytokine and adipokine from adipose tissue to trigger the pro-
inflammatory status in obese individuals, increasing their risk of 
thrombosis, incoordination of innate and adaptive immune 
responses, insufficient response to antibody, and cytokine storm.  

[18] 

Smoking (ever vs never) 
In Mendelian randomization analysis, 1 standard deviation 
longer education (3.6 years) was associated with 35% reduced 
odds of smoking (OR=0.65). 

[17] 

Smoking was reported to inhibit degradation of angiotensin II, 
resulting in overactivity of local angiotensin II, which played a 
role in inflammatory and thrombotic complications of COVID-
19.  

[19] 

Leisure time physical activity 
In a national cross-sectional survey in UK, lower education 
attainment was associated with lower weekly leisure time 
physical activity. 

[20] 

Physical activity involved skeletal muscle contraction and 
released muscle-derived cytokines, triggering anti-inflammatory 
response and had positive effects on the immune system, thus 
reducing the severity of viral infections, including COVID-19.  

[21] 

Coronary artery disease (CAD) 
In prospective analysis, increase in 1 standard deviation of 
education (3.6 years) was associated with 20% reduced odds of 
incident coronary heart disease (OR=0.80). There was a dose 
response relationship between years of education and risk of 
coronary heart disease. 
In conventional Mendelian randomization analysis, 1 standard 
deviation increase in education years was associated with 33% 
reduced odds of coronary heart disease (OR=0.67). 

[17] 

Individuals with CAD were found to have hyperinflammatory 
response towards the infection of SARS-CoV-2.  

[22] 
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Supplementary Figure 1. Power calculation of MR analyses. 

(a) Power of univariable MR analysis in evaluating the causal association between genetically determined education attainment and SARS-CoV-
2 infection. 
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(b) Power of univariable MR analysis in evaluating the causal association between genetically determined education attainment and COVID-19 
hospitalization. 
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(c) Power of univariable MR analysis in evaluating the causal association between genetically determined education attainment and COVID-19 
severity. 
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(d) Power of univariable MR analysis in evaluating the causal association between genetically determined intelligence and SARS-CoV-2 infection. 
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(e) Power of univariable MR analysis in evaluating the causal association between genetically determined intelligence and COVID-19 
hospitalization. 
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(f) Power of univariable MR analysis in evaluating the causal association between genetically determined intelligence and COVID-19 severity. 
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(g) Power of multivariable MR analysis in evaluating the causal association between genetically determined education attainment and COVID-
19 hospitalization. 
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(h) Power of multivariable MR analysis in evaluating the causal association between genetically determined education attainment and COVID-
19 severity. 
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(i) Power of multivariable MR analysis in evaluating the causal association between genetically determined intelligence and COVID-19 
hospitalization. 
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