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Abstract: Non-alcoholic steatohepatitis (NASH) is a chronic liver disease affecting up to 6.5% of
the general population. There is no simple definition of NASH, and the molecular mechanism
underlying disease pathogenesis remains elusive. Studies applying single omics technologies have
enabled a better understanding of the molecular profiles associated with steatosis and hepatic
inflammation—the commonly accepted histologic features for diagnosing NASH, as well as the
discovery of novel candidate biomarkers. Multi-omics analysis holds great potential to uncover
new insights into disease mechanism through integrating multiple layers of molecular information.
Despite the technical and computational challenges associated with such efforts, a few pioneering
studies have successfully applied multi-omics technologies to investigate NASH. Here, we review the
most recent technological developments in mass spectrometry (MS)-based proteomics, metabolomics,
and lipidomics. We summarize multi-omics studies and emerging omics biomarkers in NASH and
highlight the biological insights gained through these integrated analyses.
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1. Introduction

In the past decade, high-throughput omics technologies have revolutionized biomedi-
cal research [1]. Obtaining multiple layers of molecular measurements such as genomics,
transcriptomics, proteomics, metabolomics, and lipidomics helps to systematically un-
derstand health and disease states, and may uncover new biological insights into disease
mechanisms. NASH is a severe form of non-alcoholic fatty liver disease (NAFLD) which
may progress to irreversible end-stage liver disease (cirrhosis). It is also associated with
an increased risk of complications from cardiovascular disease and kidney disease [2].
However, diagnostics and therapeutics are limited. Currently, NASH can only be di-
agnosed by pathological evaluation of liver biopsy, and is defined by the presence of
excessive fat deposition in the liver exceeding 5% of hepatocytes, hepatocyte balloon-
ing, and lobular inflammation, with or without fibrosis [3]. The pathogenesis of NASH
has not been fully elucidated [4]. A “two-hit” hypothesis has been proposed in which
“liver steatosis”, the “first hit” increases the susceptibility to NASH through a “second
hit” such as endoplasmic reticulum and oxidative stress [5,6]. There are no markers
with sufficient sensitivity and accuracy for the clinical use of non-invasive diagnosis of
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NASH [7,8]. Genome-wide association studies (GWAS) have identified robust and repro-
ducible loci that contribute to NAFLD pathogenesis and variability of prognosis, including
the non-synonymous single nucleotide polymorphisms (SNPs) in PNPLA3 (phospholi-
pase domain-containing 3), TM6SF2 (transmembrane 6 superfamily member 2), MBOAT7
(membrane-bound O-acyltransferase domain-containing protein 7), GCKR (glucokinase
regulator), and HSD17B13 (17-beta hydroxysteroid dehydrogenase 13) [9]. While the her-
itability estimates of NAFLD range from 20–70% in population, family-based, or twin
studies, the proportion of heritability explained by known risk variants is still a modest
10–20% [10–12]. In addition, GWAS alone does not suffice to elucidate the functional roles
of the identified genetic variation in disease onset and progression [13].

Regulation of gene expression gives rise to different cell types as determined by their
transcriptional states, and therefore represents a pivotal link between genetic structure
and the molecular phenotype. Transcriptomics can quantify up to tens of thousands of
transcripts in cells or tissues and has been included in many routine biological studies.
Single-cell RNA sequencing has identified 20 discrete resident cell populations in human
liver providing an in-depth map of the human hepatic immune microenvironment [14].
A recent study applied bulk RNA sequencing to a group of 206 NAFLD patients, and
identified gene expression signatures associated with early stages and stepwise progression
of the disease [15]. Integration with publicly available single-cell RNAseq data allowed
the authors to further dissect the likely relative contribution of specific intrahepatic cell
populations to NAFLD pathogenesis and progression. These results showed that changes in
the transcriptome represent potential clinically relevant markers of disease progression [15].

While transcriptomics gives a rough estimate of the expression level of transcripts into
proteins, proteomics confirms the presence of proteins and provides direct measurements
of their quantity and modification status, so it is closer to disease phenotype. Therefore,
the study of protein profiles (proteomics) is integral to many research fields including
biomarker discovery, drug development, and elucidation of disease mechanisms [16,17].
Metabolomics and its sub-field lipidomics are the most downstream members of the omics
family. Despite the rapid progress in the field, the overwhelming chemical complexity and
diversity of small biomolecules still pose great challenges to identification and quantifica-
tion strategies and downstream bioinformatics analysis. Nevertheless, lipidomics is a very
important technology in the study of NAFLD. Several lipid classes have been linked to
lipotoxicity and progression of the disease [18,19]. Finally, an increasing number of studies
applying multi-omics technologies to generate “big data” are being performed to address
the pathophysiology and diagnostics of NASH.

In this review, we focus on the technological aspects of mass spectrometry (MS)-based
omics and the integrated application of omics in NASH research. In the first of three
sections, we describe MS-based proteomics, metabolomics, and lipidomics technologies
with a focus on state-of-the-art technical workflows. This is followed by highlights from
recent proteomics studies and a systematic literature review describing metabolomics and
lipidomics studies in NASH. Finally, we summarize the existing literature on emerging
omics biomarkers and the application of multi-omics to NASH research.

2. State-of-the-Art Proteomics, Metabolomics, and Lipidomics Technologies
2.1. MS-Based Proteomics

While genome sequencing deciphers the blueprint of human life, which is mostly static,
the human proteome is a highly dynamic entity in terms of both number of proteoforms,
their copy numbers, and their spatiotemporal expression. On top of the approximately
20,000 human protein-coding genes, a single protein-coding gene can easily produce as
many as 100 proteoforms, including products of alternative splicing, those containing
single amino acid polymorphisms arising from non-synonymous SNPs, and those carrying
post-translational modifications (PTMs) [20,21].

In MS-based proteomics, “bottom-up” (or “shotgun”) proteomics is the most widely
used workflow, in which proteins are subjected to proteolytic cleavage, and the resulting
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peptides are analyzed by liquid chromatography coupled online to tandem mass spectrome-
try (LC-MS/MS) [22–24]. Peptide identification relies on tandem MS/MS spectra matching
to a database containing in silico or empirically generated peptide fragmentation patterns.
A similarity score will be calculated to assign peptide-spectrum match (PSM) typically with
a false discovery rate (FDR) controlled below 1% by a “target-decoy” approach [25]. Not
all peptides can be detected by MS due to differences in their physicochemical properties,
abundance, and ionization efficiency typically leading to a median sequence coverage
of around 30% in tissue proteomes [26]. Consequently, proteins indistinguishable from
each other based on identified peptides are grouped to form a protein group. The major
alternative workflow to “bottom-up” proteomics is “top-down” proteomics, in which intact
proteins are introduced into and measured by LC-MS/MS without enzymatic digestion [27],
in principle allowing different proteoforms derived from one protein-coding gene to be
distinguished. However, experimental challenges render this approach so far not amenable
to large-scale proteomics investigations. In contrast, state-of-the-art bottom-up proteomics
routinely identifies more than 6000 protein groups in cells and tissues in single run analyses
and more than 10,000 protein groups after fractionation [26,28,29]. Blood plasma has one of
the most complex proteomes with a dynamic range of protein concentrations of more than
10 orders of magnitude with the top 22 proteins comprising already 99% of total protein
mass [30,31]. Due to the high dynamic range of plasma proteome and limitations in sensi-
tivity that mass spectrometers can currently reach, measuring all plasma proteins remains
elusive. The human Plasma Proteome Database (PPD) contains more than 10,000 protein
products corresponding to 3778 distinct protein-coding genes [30,32]. The largest human
plasma proteome dataset generated in a single study to data contains over 5300 proteins
by ‘super-depletion’, extensive fractionation, and isobaric labelling—corresponding to
5002 genes [33]. These deep plasma proteomes entail additional experimental steps such as
peptide fractionation and depletion of high-abundant proteins. These approaches increase
the overall analysis time per sample and introduce variability to the workflow and are
thus not preferred for large-scale proteomics investigations in a clinical setting [17]. At the
current state of the MS technology, cost and investment of time are still often prohibitive
for such workflows, even if low abundant proteins could be detected. The throughput
and proteome depth of a given study have to be balanced depending on the budget and
scope of the study. Depending on the LC-MS/MS instruments and acquisition methods
used, current high-throughput methods, potentially applicable in the clinics, enable routine
analysis of 30–60 plasma samples per day without depletion or pre-fractionation with a
depth of 300–500 protein groups in a single run [34–36].

2.2. Proteomics Platforms beyond MS

While high-throughput MS-based plasma proteomics workflow routinely quantifies
hundreds of the top abundant proteins, non-MS-based platforms in principle offer the
simultaneous detection of thousands of proteins in a plasma sample. These technologies
include the SOMAscan assay [37,38] and the proximity extension assay (PEA) commer-
cialized by Olink Biosciences. Both technologies rely on reagents binding to proteins
of interest (chemically modified nucleotides in SOMAscan and oligonucleotide-labeled
antibody-pairs in PEA) for the “identification”, and the amplification of reporter sequences
by quantitative real-time PCR or DNA microarrays for the quantification [37,39]. These
immunoaffinity-based platforms could serve as complementarity to MS-based proteomics
for detecting low-abundant proteins that are difficult to detect by MS, such as the Olink
Inflammation panel that targets 92 inflammation-related protein biomarkers. However,
there are long-recognized limitations associated with antibodies and other binders such
as nonspecific binding and cross-reactivity, particularly in a highly multiplexed setting.
Besides, both SOMAscan and the PEA assay are optimized for body fluid samples, i.e.,
plasma and serum, and are not designed for binding sites with PTMs or peptide variants
that impede the binding of reagents.
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MS-based proteomics has the advantage of specifically discovering and quantifying
proteins in an untargeted manner, and is clearly the most powerful platform for analyzing
tissue proteomes, PTMs, protein-protein interactions, and protein variants. In the case of
plasma to solve the dynamic range issue, a recent trend is to combine multiple platforms to
cover a broader range of proteins taking advantages of the complementary strengths of
both targeted and untargeted approaches [40,41].

2.3. MS-Based Metabolomics and Lipidomics

Metabolomics is the study of metabolites broadly defined as non-peptide molecules
of less than 1.5 kDa [42]. Lipidomics, as a subset of metabolomics, is dedicated to lipid
analysis with tailored extraction protocols, analytical methods, and data analysis strate-
gies [43–46]. The main polar compound classes in the human metabolome comprise car-
bohydrates, ketones, amino and other organic acids, as well as biogenic amides, whereas
the hydrophobic ones, namely lipids, are grouped into eight categories, namely fatty acyls,
glycerolipids, glycerophospholipids, sphingolipids, saccharolipids, polyketides, sterol and
prenol lipids [47] (Table 1). Among these small molecules, bile acids are of particular
interest in NASH given their potent roles in mediating metabolic functions [48], as illus-
trated by the fact that several agonists of the bile acid receptor—Farnesoid X receptor (FXR)
and its downstream target FGF19 are in phase I and II trials in treating NASH [49–51].
The structural diversity of the human metabolome poses a major challenge for analyti-
cal methods [52] resulting in various analytical approaches suited for detecting different
classes of small molecules based on MS: LC-MS, gas chromatography mass spectrometry
(GC-MS), imaging mass spectrometry, capillary electrophoresis–mass spectrometry, nuclear
magnetic resonance, and Fourier transform infrared spectroscopy [53,54]. MS is the most
commonly applied technology in metabolomics for the possibility of structural elucidation
based on MS/MS spectra and metabolite annotation with higher confidence [55]. Com-
pared with GC, where sample derivatization is often required, LC-MS based workflows are
advantageous in clinical research for easier sample preparation. Hence, in the following
section, we have chosen to focus on LC-MS-based workflows applied in metabolomics
and lipidomics.

In a typical LC-MS-based metabolomics workflow, hydrophilic metabolites are ex-
tracted using solvents such as acetonitrile or methanol [56], followed by separation using
reversed-phase LC with a C18 stationary phase or hydrophilic interaction LC (HILIC) prior
to MS analysis [57]. In untargeted studies, mass analysis is typically performed via high-
resolution, accurate mass MS instruments such as the Orbitrap or TOF analyzers [58–60].
Chromatographic peaks across samples are then detected and reported as a list of metabolic
“features” for further statistical analysis. There are multiple commercial and freely acces-
sible software packages for this, including MZmine [61], XCMS [62], MSDial [63], Meta-
boScape (Bruker Daltonics, Germany), and Compound Discoverer (Thermo, Germany).
Annotation of detected features (metabolite identification) is done based on LC-MS related
properties including accurate mass, retention time, tandem mass spectra, and recently
ion mobility [64]. However, due to the enormous chemical diversity of possible isobaric
and isomeric structures, the identification of metabolites and the elucidation of chemical
structures remain challenging. To illustrate, searching the mass 181.07066 (glucose, M+H
adduct) in the human metabolome database [65] even with a 5 ppm mass accuracy already
yields 24 compounds, not including known unknowns (molecules that have previously
been mass measured but not identified) as well as complete unknowns. Recent develop-
ments in bioinformatics aim at partially annotating unknown metabolites by comparing
their tandem mass spectra to those of known ones existing in online databases [66–70].

Unlike hydrophilic metabolites, extraction of lipids from biological samples is typically
done using highly apolar solvents, like chloroform and methyl tert-butyl ether (MTBE)
following four most commonly used standardized methods [71–75]. MS analysis of lipid
extracts is performed using either direct infusion (termed shotgun lipidomics) or in conjunc-
tion with LC [76]. In LC-MS-based approaches, reversed-phase analysis on C18 columns
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dominates, which separates lipid species of the same class based on the interaction of fatty
acyl chains with the stationary phase. In contrast, HILIC mainly separates lipids by polar
head groups. A recent trend is to integrate ion mobility spectrometry into conventional
MS-based workflows [77], to separate ions in the gas phase by their size and shape, which
can be advantageous in resolving isomers. We have recently demonstrated the benefits of
trapped ion mobility spectrometry and a highly sensitive data acquisition method (PASEF)
in generating comprehensive lipidomics profiles from a small sample amount equivalent
to 10 µg of liver tissue per injection [64]. Feature detection in lipidomics is often performed
using the same tools as the polar part of the metabolome, but lipid annotation is done using
dedicated modules and separate software [78,79]. Despite the seemingly simple structure
of lipids, annotation faces various challenges arising from the multitude of isomers due
to the positioning of double bonds and acyl chains in the molecule. In addition, liver and
plasma samples might also contain lipids of odd-chain fatty acids derived from food intake
and bacterial products in the gastrointestinal tract [80].

Table 1. Overview of proteomics, LC-MS based metabolomics, and lipidomics platforms.

Aim of the Analysis Proteomics Proteomics Proteomics Metabolomics Lipidomics

Platform Mass spectrometry Proximity Extension
Assay (Olink)

Aptamer-based
platform (SomaScan) Mass spectrometry Mass spectrometry

Analytes Proteins Proteins Proteins

Polar small
molecules (below

1500 Da), including
carbohydrates,

ketones, aminoacids
andbiogenic amides

Apolar molecules,
including

glycerolipids, glyc-
erophospholipids,

sphingolipids,
saccharolipids,

polyketides, sterol
and prenol lipids [47]

Analyte separation Liquid
chromatography No No Liquid

chromatography

Liquid
chromatography (no
for direct infusion)

Analysis of body
fluids (e.g., plasma,

serum, urine, saliva)
Yes Yes Yes Yes Yes

Analysis of
tissue/cell culture Yes Not optimal Not optimal Yes Yes

Analysis of
proteoforms (PTMs,

isoforms,
coding-variants)

Yes No No Not applicable Not applicable

Analyte
multi-plexing

Varies depending on
the workflow and
specimen, up to
>10,000 proteins

[29,81] (300–5000 in
plasma) [33,35,36]

1472 proteins
(targeted panels of
48–384 proteins) a

7000 proteins b

Varies depending on
the workflow and

specimen [82]
(expected up to 10%
of molecular features

identification) [83]

Varies depending on
the workflow and

specimen [82],
currently up to 1108
lipids in plasma [64]

Dynamic range
High-medium

abundance in case
of plasma

(pg/mL to µg/mL) c (femtomolar to
micromolar) d

(picomolar to
milimolar) [42,84]

(picomolar to
nanomolar) [85]

Reproducibility Medium

Medium to High
(Intra-assay CV
10–12% for the

384-protein panels) e

High
(Median intra-assay

CV 4.6% for the
1300-protein
platform) f

Medium to high
[83,86] Medium to high [86]

Throughput (per day
per system)

Low to medium
(10 s–100 s) High (100 s) High (100 s) Medium to high

(10 s–100 s)
Medium to high

(10 s–100 s)

Quantification Relative or absolute
for targeted assays

Relative or absolute
for targeted assays Relative Relative or absolute

for targeted assays
Relative or absolute
for targeted assays

a https://www.olink.com/products/olink-explore/; b https://somalogic.com/life-sciences/; c https://www.olink.com/content/uploads/
2017/02/1068-v1.0-Proseek-Multiplex-Development-Validation-data_final.pdf; d https://somalogic.com/dynamic-range/; e https://
www.olink.com/content/uploads/2021/03/Explore_Demo_Certificate-of-Analysis_2021-03-30.pdf; f https://mohanlab.bme.uh.edu/
wp-content/uploads/2017/02/SSM-002-Rev-4-SOMAscan-Technical-White-Paper.pdf. All the above webpages were last accessed on 1
October 2021.

https://www.olink.com/products/olink-explore/
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https://somalogic.com/dynamic-range/
https://www.olink.com/content/uploads/2021/03/Explore_Demo_Certificate-of-Analysis_2021-03-30.pdf
https://www.olink.com/content/uploads/2021/03/Explore_Demo_Certificate-of-Analysis_2021-03-30.pdf
https://mohanlab.bme.uh.edu/wp-content/uploads/2017/02/SSM-002-Rev-4-SOMAscan-Technical-White-Paper.pdf
https://mohanlab.bme.uh.edu/wp-content/uploads/2017/02/SSM-002-Rev-4-SOMAscan-Technical-White-Paper.pdf
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3. Proteomics-Based Biomarker Discovery Studies in Liver Disease

Hundreds of proteomics-based biomarker discovery studies in liver disease have
been reported during the past two decades. In a recent literature review, we observed
a significant bias towards hepatocellular carcinoma (HCC) and viral hepatitis among
all causes of liver diseases, with only a small fraction of studies focusing on NAFLD
and alcohol-related liver disease (ALD) despite them being the most prevalent types of
liver disease [87]. More than 200 different proteins potentially useful for the diagnosis,
prognosis, and progression stratification in NAFLD have been reported, typically in the
form of a list of dysregulated proteins [88]. However, these can be difficult to interpret
for clinicians or researchers engaged in translational research. Only a few of these studies
took a step further to demonstrate the predictive or discriminative power of proposed
biomarkers by building machine learning-based classification models, often predicting only
one type of pathological condition: fatty liver [89,90], and recently fibrosis [91]. In addition,
currently proposed candidate biomarkers suffered from low reproducibility and robustness,
demonstrated by only one overlapping protein—MET (hepatocyte growth factor receptor)
in the proposed protein marker panels for fatty liver in the two above-mentioned studies
using immunoaffinity-based proteomics platforms. Furthermore, simply diagnosing fatty
liver does not help clinical decisions, which are more concerned with liver fibrosis, the
strongest predictor of liver- and all cause-related mortality as well as hepatic inflammation,
which reflects disease activity [92]. In a recent study, a 12-protein panel was identified using
the SomaScan proteomics platform which can distinguish between fibrosis stages F0–1 and
F2–4 in patients with NAFLD with an area under the Receiver Operating Characteristics
curve (AUROC) of 0.74 [91].

Recent progress in MS-based proteomics has enabled the generation of large datasets
in clinical studies, accompanied by increasingly reproducible results. In an early effort,
we identified polymeric immunoglobulin receptor (PIGR) as a predictor of NAFLD inde-
pendent of insulin resistance [36], and this association between PIGR and NAFLD was
subsequently reproduced in other studies [35,93,94]. Even though the focus of this review
is NAFLD, ALD is indistinguishable under the microscope in terms of histological features,
and hence might share common biomarkers. In a more recent effort, we acquired plasma
proteomes from close to 600 individuals of biopsy-verified ALD and healthy controls, as
well as 79 liver proteomes from the disease group [35]. Among the major findings, we iden-
tified proteomic marker panels to predict significant liver fibrosis (AUROC = 0.88), mild
inflammation (AUROC = 0.83), and any presence of steatosis (AUROC = 0.89) with superior
or comparable performance compared to existing best-in-class clinical tests including the
FibroScan, the M30 apoptosis marker for hepatic inflammation, and the CAP value for liver
steatosis. By integrating proteome changes in paired liver- and plasma samples, we could
attribute the tissue origins of many of the proposed candidate markers. Comparing with
the previous NAFLD study, three proteins PIGR, ALDOB, and LGALS3BP were common
and robust markers for NAFLD and ALD. Given a NAFLD study of equivalent size and
patient heterogeneity, it is likely to identify more circulating markers common to NAFLD
and ALD. Recently, PIGR was also reported to be upregulated in patients with COVID-19
infection [95], possibly indicating it might not be specific to liver disease but reflect a
general inflammation process. In any case, based on current results, PIGR is an indicator
of hepatic inflammation and liver fibrosis in the context of liver disease. Importantly,
proteomics-based biomarker discovery allows the identification of not only one single
protein but rather panels of proteins, which collectively reflect the complex nature of the
disease pathology and the need to study it from a systems biology perspective [35].

4. Metabolomics-Based Biomarker Discovery Studies in NASH

To provide an overview of recent metabolomics studies in NASH, we systemati-
cally searched for publications in the PubMed database using the logic terms “(nonalco-
holic steatohepatitis OR NASH OR non-alcoholic fatty liver disease OR NAFLD) AND
(lipidomics OR metabolomics) AND (human OR clinical)” for the period from 1 September
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2015 to 1 September 2020. In this review, we only considered original research articles,
which use MS and human samples. High complexity of the liver metabolome has opened
up various MS applications in biomarker discovery (Table 2), ranging from polar metabo-
lites [96] to lipids [97] using both targeted [98] and increasingly popular untargeted ap-
proaches [99]. Most of the studies shown in Table 2 reported perturbations in triglycerides,
amino acids, fatty acids, and basic mitochondrial energy metabolism in NASH/NAFLD.
Due to the diverse changes associated with NAFLD/NASH across many classes of lipids
and metabolites, there is no clear consensus among the studies on candidate biomarkers or
biochemical pathways (Table 2). This is potentially due to the large inter-individual varia-
tions in the metabolome and its extremely dynamic nature. Having a separate validation
cohort for the biological confirmation of newly identified biomarker signatures might help
to avoid misinterpretation of any study outcome and achieve more reproducible findings.
Making data publicly available can further promote reproducible and transparent research.
Surprisingly, our review shows that only three out of the 25 reviewed publications validated
their findings in a separate study [100–102]. Moreover, none of the 25 studies released
data in a public repository for future meta-analyses, although an initiative to standardize
the reporting of metabolomics studies has been formed years ago [103,104]. Nine of the
25 studies not only proposed potential biomarkers but also evaluated the classification
performance. These proposed marker candidates are summarized in Table 3 together
with other omics markers. In brief, sample sizes range from 31 to 1479 with five studies
having a sample size of below 100. Only five studies validated the marker performance in
a validation cohort, with sample sizes ranging from 22 to 192. Most of these studies focus
on predicting NASH in NAFLD patients, with a few exceptions, which predict significant
or advanced fibrosis in patients with NASH, or distinguish between NAFLD and healthy
individuals [100,102,105,106]. Based on these studies, circulating metabolome has good
predictive power in identifying NASH and fibrosis in patients with NAFLD, as well as
distinguishing between patients with NAFLD and healthy individuals. With a logistic
regression model based on a biomarker panel consisted of eight lipids, one amino acid, and
one carbohydrate, the AUROC for identifying advanced fibrosis (F3–4) in NAFLD was 0.94
in the discovery cohort (n = 156) and 0.84 in the validation cohort (n = 142) [100]. In another
study of a smaller cohort (n = 31), an AUROC of 1.0 was achieved in predicting significant
fibrosis (F2–4) with a support vector machine based on a marker panel of 10 lipids including
diglycerides, triglycerides, and (lyso)phosphatidylcholines [105]. However, a validation co-
hort was not provided. Using a panel of 11 triglycerides or a combination of 11 metabolite
features and three clinical markers, an AUROC of 0.9 and 0.94 was achieved respectively in
identifying patients with NAFLD against healthy individuals [102,106]. Similarly, modest
to high performance was achieved in predicting NASH in patients with NAFLD with
AUROCs ranging between 0.65 and 0.95 (Table 3). Agreements of the AUROC between
discovery and validation cohorts are generally good, with extremes differing as much
as 0.16 (worse in validation) [102]. Apart from the highly dynamic nature of the human
circulating metabolome, a few additional factors may contribute to such huge discrepancy
in model performance between discovery and validation cohorts including differences
in the distribution of disease severity, over-fitting in model training, or underpowered
study design.

Similar to metabolomics, we retrieved publications from PubMed database using the
logic terms “(nonalcoholic steatohepatitis OR NASH OR non-alcoholic fatty liver disease
OR NAFLD) AND (multiomics OR multi-omic)”, for the period from 1 September 2015 to
1 September 2020. This search strategy generated 27 records. We only considered articles
that were not reviews or conference proceedings. The PubMed query did not retrieve
three other relevant works, which we added manually. In total, this resulted in 14 papers
meeting our criteria (Figure 1 and Table 4). We were first surprised by the small number of
studies that have applied multi-omics techniques in this field so far. Although irrelevant to
this review, replacing the keyword of “NASH” to “liver disease”, the search query resulted
in 114 records, with a large proportion of studies focusing on hepatocellular carcinoma
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and other types of liver cancer. These search results implied limited resources of multi-
omics datasets that have been generated on the topic of NASH, and a study bias towards
liver cancer among all liver diseases, which is in concordance with a recent review on
plasma proteomics efforts in liver disease [87]. Below, we describe the omics data types,
research aims, experimental design, data integrative strategies, and study outcomes of the
selected papers.

Table 2. Overview of MS-based metabolomics in NASH/NAFLD human studies.

Study
Number Study Aim Sample Type Data Release Omics Type Analytical

Method
Metabolic

Alterations Reference

1 D liver NA UL LC-MS TG, FA, CER (Luukkonen et al., 2016) [107]

2 D serum NA TM LC-MS AA, TCA (Sookoian et al., 2016) [108]

3 D plasma NA UM LC-MS AA (Jin et al., 2016) [109]

4 D serum NA UM LC-MS PL, PN, PTA, CE,
I (Tan et al., 2016) [110]

5 DV serum NA UM LC-MS AA, OA, B, CR,
PC, lyso-PC (Chen et al., 2016) [101]

6 D serum NA TM, TL LC-MS Lyso-PC, PC,
AA, SM (Feldman et al., 2017) [111]

7 DV plasma NA UM, UL LC-MS,
GC-MS AA, lyso-PC, PE (Zhou et al.„ 2016) [112]

8 D serum, liver NA UL LC-MS,
GC-MS FA, TG, PC (Luukkonen et al., 2017) [97]

9 D serum NA UM, UL LC-MS TG, DG, FA, CER (Alonso et al., 2017) [99]

10 D liver NA UL LC-MS
PS, TG, CER, PE,
PC, PI, SM, CE,

DG, FA
(Chiappini et al., 2017) [113]

11 D urine NA UM LC-MS NAC, AA (Dong et al., 2017) [114]

12 D urine NA UM GC-MS G; AAD; X (Troisi et al., 2017) [115]

13 D RBC UR TL GC-MS FA (Notarnicola et al., 2017) [116]

14 D serum NA UM LC-MS AAD (Qi et al., 2017) [117]

15 D serum NA TM, TL LC-MS AA, CE, SM,
CER, GPC (Papandreou et al., 2017) [118]

16 D serum NA UL LC-MS TG (Yang et al., 2017) [119]

17 D serum NA TL LC-MS NS (Hu et al., 2018) [120]

18 DV serum NA UM, UL LC-MS TG (Mayo et al., 2018) [102]

19 D serum NA UL LC-MS PC, SM (Tiwari-Heckler et al., 2018) [121]

20 D plasma, liver NA UL LC-MS PC, CL, CoQ,
ACR (Peng et al., 2018) [122]

21 DV serum NA UM LC-MS,
GC-MS

AA, PT, FA, BA,
ST (Caussy et al., 2018) [100]

22 D serum NA UM LC-MS AA, PC, UR (de Mello et al., 2020) [123]

23 D plasma NA UM LC-MS AA, lyso-PC (Khusial et al., 2019) [106]

24 D liver NA TM LC-MS RPD (Zhong et al., 2019) [98]

25 D serum NA UL, TM LC-MS,
GC-MS

DG, PC, PG, SM,
PE, FA, GL (Perakakis et al., 2019) [105]

D: discovery; V: validation; NA: no information available; UR: data available upon request; U: untargeted; T: targeted; M: metabolomics;
L: lipidomics; LC-MS: liquid chromatography-mass spectrometry; GC-MS: gas chromatography-mass spectrometry; RBC: red blood
cells; TG: triglycerides, FA: free fatty acids; DCE: dihydroceramides; CER: ceramides; TCA: Krebs cycle; PL: phospholipase; PN: purine
nucleotide; PTA: phosphatidic acid; CE: cholesterol ester; I: inosine; OA: oleamide; B: bilirubin; PC: phosphatidylcholines; CR: carnitines;
SM: sphingomyelin; PE: phosphoethanolamine; DG: diglycerides; PI: phosphatidylinositols; PS: phosphatidylserines; NAC: nucleic
acids; AAD: amino acids derivatives; G: glucose; X: xylitol; GP: glycerophosphocholines; NS: nothing significant in omics data; CL:
cardiolipin, CoQ: ubiquinone; ACR: acylcarnitine; PT: pentose; BA: bile acids; ST: steroids; UR: uridine; RPD: retinoid derivatives; PG:
phosphatidylglycerol; GL: glycosMulti-omic studies in NASH.
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Table 3. Emerging omics markers and their classification performance for diagnosing NAFLD/NASH.

Platform Sample Type Number of Analytes
Quantified in Total

Sample Size
(Discovery Cohort)

Sample Size
(Validation Cohort) Classifier Prediction Target Markers AUROC Reference

Omics Serum

1129 proteins
(SomaScan), 1

genotype, >200
clinical variables

n = 443 n = 133 Logistic regression Hepatic steatosis
in obesity

8 proteins + 1 genotype + 12
clinical variables: ACY1, SHBG,
CTSZ, MET, GSN, LGALS3BP,

CHL1, SERPINC1,
PNPLA3 variant.

0.935 (0.914 in
validation cohort)

(Wood et al., 2017)
[90]

Omics Serum

860 proteins,
288 metabolites,
108 SNPs, 16,209
protein-coding

genes,
58 clinical variables

n = 1049 No for the
omics model Random forest Fatty liver 185 clinical and omics features 0.84 (Atabaki-Pasdar

et al., 2020) [89]

SOMAscan
proteomics serum 1305 proteins n = 113 n = 71,

n = 32 Elastic-Net Fibrosis F0–1 against
F2–4

serum amyloid P, fibrinogen,
olfactomedin, and SHBG

0.74 (0.52–0.78 in
validation cohorts) (Luo et al., 2021) [91]

SOMAscan
proteomics serum 1305 proteins n = 113 n = 71,

n = 32 Elastic-Net Fibrosis (F3–4
against F0–2)

latent transforming growth factor
beta binding protein 4, IGF-1,

vascular cell adhesion molecule 1,
interleukin-1 soluble receptor

type-1, IL18BP, thrombospondin-2,
collectin kidney 1, SHBG,

interleukin-27 receptor subunit
alpha, leukemia inhibitory factor

receptor, soluble, fibulin-3,
and plexin-B2

0.83 (0.74–0.78 in
validation cohorts) (Luo et al., 2021) [91]

MS-based
proteomics Plasma 235–277 proteins n = 19 NA Unclear Fibrosis F2–4

against F0–1

Complement component C7,
α-2-macroglobulin, Fibulin-1,
Complement component C8 γ
chain; α-1-antichymotrypsin

0.79–1 for each
individual protein

(Hou et al., 2020)
[93]

Metabolomics serum 365 lipids, 61 glycans
and 23 fatty acids n = 31 NA support vector

machine
Fibrosis F2–4
against F0–1

10 lipids: DG(36:3), LPC(18:0),
PC(36:2), PC(37:2), PC(40:5),
TG(38:0), TG(50:0), TG(51:1),

TG(57:1), TG(60:2)

1 (Perakakis et al.,
2019) [105]

Metabolomics Serum 365 lipids, 61 glycans
and 23 fatty acids n = 80 NA Support vector

machine
NASH vs. NAFL

vs. Healthy

29 lipids:
AcCa(10:0), Cer(d34:2), DG(34:1),
DG(36:4), LPC(20:0e), LPC(22:5),
LPE(16:0), PC(32:0), PC(32:1e),
PC(34:0), PC(34:2e), PC(35:3),
PC(36:4), PC(36:5e), PC(37:2),
PC(40:6e), PC(40:7), PC(40:8),
PC(42:6), PE(38:1), PE(38:6),

PI(36:1), SM(d32:0), SM(d32:2),
SM(d40:1), TG(38:0), TG(38:2),

TG(43:1), TG(53:5)

0.94–0.99
(one vs. rest)

(Perakakis et al.,
2019) [105].
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Table 3. Cont.

Platform Sample Type Number of Analytes
Quantified in Total

Sample Size
(Discovery Cohort)

Sample Size
(Validation Cohort) Classifier Prediction Target Markers AUROC Reference

Metabolomics Plasma 13,008 metabolic
features n = 559 NA Random forest NAFLD vs.

non-NAFLD

11 metabolite features + 3 clinical
variables: serine,

leucine/isoleucine, tryptophan,
three putatively annotated

compounds, two unknowns,
lysoPE(20:0), lysoPC(18:1), WC,

WBISI, and triglycerides

0.94 (Khusial et al., 2019)
[106]

Metabolomics Serum 652 metabolites n = 156 n = 142 Logistic regression Fibrosis F3–4 vs.
F0–2 in NAFLD

8 lipids + 1 amino acid + 1
carbohydrate:

5alpha-androstan-3beta
monosulfate,

pregnanediol-3-glucuronide,
androsterone sulfate,

epiandrosterone sulfate,
palmitoleate,

dehydroisoandrosterone sulfate,
5alpha-androstan-3beta disulfate,

glycocholate, taurine, fucose

0.94 (0.84–0.94 in
validation cohort)

(Caussy et al., 2019)
[100]

Metabolomics Serum 540 lipids and
amino acids n = 467 n = 192 Logistic regression NAFLD vs. Healthy 11 triglycerides 0.9 (0.88 in

validation cohort)
(Mayo et al., 2018)

[102]

Metabolomics Serum 540 lipids and
amino acids n = 467 n = 192 Logistic regression NASH against

NAFL 20 triglycerides 0.95 (0.79 in
validation cohort)

(Mayo et al., 2018)
[102]

Metabolomics Serum

Sphingolipids and
branched fatty acid
esters of hydroxy

fatty acids

n = 1479 NA Logistic regression oleic acid-hydroxy oleic acid 0.61 (Hu et al., 2018) [120]

Metabolomics Serum 1761 metabolic
features n = 59 NA Unclear NASH against

NAFL pyroglutamate 0.846 (Qi et al., 2017) [117]

Metabolomics Urine Unclear n = 78 NA Unclear NASH against
NAFL Pyroglutamic acid 0.65 (Dong et al., 2017)

[114]

Metabolomics Serum Unclear n = 223 n = 95 Logistic regression NASH against
non-NASH

glutamate, isoleucine, glycine,
lysophosphatidylcholine 16:0,

phosphoethanolamine 40:6, AST,
and fasting insulin

0.882 (0.856 in
validation cohort)

(Zhou et al., 2016)
[112]

Lipidomics Serum 239 lipids n = 42 n = 22 Logistic regression NASH in NAFLD Monounsaturated triglycerol
0.83 in both

discovery and
validation cohorts

(Yang et al., 2017)
[119]
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Table 4. Overview of multi-omics studies in NASH/NAFLD.

Study Aim Sample Type Species New Data Data Release Sample Size Omics
Integration G T P M L MetaG Reference

C Liver, serum,
fecal samples Human Y Y n = 10, 7 Data Y Y Y Y Y (Mardinoglu et al., 2018) [124]

C liver Mice Y n = 9 for TP, n = 6 for
scRNAseq

Data and
results Y Y (Ægidius et al., 2020) [125]

C Liver, serum Human Y Y n = 18 for plasma, n = 9
for liver T Y Y Y (Wruck et al., 2015) [126]

C Cell culture Human Y n = 20 Results Y Y (Mesnage et al., 2018) [127]

C Liver Rat Y n = 10, 10 Results Y Y (Mesnage et al., 2017) [128]

C Liver, plasma,
feces Mice, human Y Y n = 10 in mice, n = 14

in patients Data Y Y Y (Qian et al., 2020) [129]

B Serum Human Y
n = 795 for T2D,

n = 2234 for high risk
of T2D

Data Y Y Y Y Y (Atabaki-Pasdar et al., 2020) [89]

B Liver, plasma Human Y n = 576 Data Y Y (Wood et al., 2017) [90]

B Liver Mice Y Y n = 48 for liver, n = 16
for plasma

Data and
results Y Y (Veyel et al., 2020) [94]

C Liver Mice Y Y n = 385 Data Y Y Y (Jha et al., 2018) [130]

C Liver Human, mice Data Y Y (Lee et al., 2017) [131]

C
Liver,

adipose
tissue

Mice Y Y n = 228 from 113
mouse strains Data Y Y (Krishnan et al., 2018) [132]

C
Liver,

adipose
tissue

Mice Data Y Y (Kurt et al., 2018) [133]

C Liver Human, mice Y Y n = 144 in human,
n = 6 in mice

Data and
results Y Y (Xiong et al., 2019) [134]

C: characterization; B: biomarker discovery; G: genotyping; T: transcriptomics; P: proteomics; M: metabolomics; L: lipidomics; M: metagenomics. Y: yes.
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Figure 1. Flow chart of studies identified, excluded, and included.

4.1. Characteristics of Studies

Among these 14 studies, six characterized a specific biological or disease model using
multi-omics datasets. For instance, a systemic approach was used to characterize the
molecular alterations of a carbohydrate-restricted diet on hepatic steatosis in humans [124],
and to describe the molecular profiles of a diet-induced obese model of NASH [125].
Only three studies focused on finding biomarkers or identifying discriminative molecular
signatures for predicting fatty liver disease using multi-omics data [89,90,94]. These studies
performed omics technologies on human (36%), mouse, or rat (43%) or a combination of
both (21%) (Figure 2a). In terms of sample types, most of the studies used liver biopsies
followed by blood plasma/serum, fecal samples, and adipose tissue of human and rodent
origin (Figure 2b).

Transcriptomics was the most frequently performed (86% of all studies), followed
by proteomics (64%) and genotyping (43%) (Figure 2c). Metabolome, lipidome, and
metagenome were the least commonly generated data types, accounting for only 36%,
21%, and 21%, respectively. Transcriptomics and proteomics are most frequently com-
bined. This could reflect to some extent the maturity, throughput, and accessibility of these
technologies to non-specialized researchers. The majority of these studies generated new
omics data along with the publications, however, only half of them made the data publicly
accessible. The inaccessibility of publicly available datasets in turn hinders in silico-only
studies. Most of the RNA sequencing data were made publicly available at the NCBI
Gene Expression Omnibus and the NCBI Sequence Read Archive (SRA) database. Among
the nine studies that included proteomics data, five used MS-based proteomics with the
remaining adopting antibody-based approaches. Despite the growing consensus in the
proteomics community about making mass spectrometry raw data accessible and reusable
by uploading to a public database like PRIDE [135], only one study [94] did so (project
identifier: PXD014751). In line with what we found in our above-described metabolomics
review, only one study [126] deposited metabolomics data at the MetaboLights database
(https://www.ebi.ac.uk/metabolights/), a database for metabolomics experiments main-

https://www.ebi.ac.uk/metabolights/
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tained by the European Bioinformatics Institute (EMBO EBI). One study [130] deposited
lipidomics mass spectrometry data at the Chorus project (http://chorusproject.org).
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4.2. Overview of Data Integration Strategies

One of the advantages of applying multi-omics technologies to the same biological
system is to understand the flow of information underlying disease and interpret the data
in a holistic way in the context of biological networks and molecular interactions. Currently,
omics data integration methods generally fall into two categories: multi-staged analysis
and meta-dimensional analysis [136]. The difference between these two approaches is
that multi-staged analysis performs data integration in a stepwise manner, adding one
additional omics layer at a time, whereas meta-dimensional analysis attempts to incor-
porate and analyze all the types of data simultaneously. A systematic review of such
existing tools can be found elsewhere [137]. In the surveyed literature, data integration
was performed at different stages, predominantly at data analysis (data level, Table 4),
followed by statistical and pathway data integration (result level, Table 4). Among those
that perform integration at data level, various bioinformatics techniques were used, in-
cluding machine learning-based approaches [89,90,134], correlation between two data
types [129,130,134], quantitative trait loci (QTL) analysis [130,132], and network-based
association analysis [132,133] for integrating more than one dataset, and weighted gene
co-expression network analysis (WGCNA) [130] on a single layer of omics data (Figure 2d).
Functional enrichment analysis including gene set enrichment analysis (GSEA) for KEGG
pathways and GO terms were commonly employed in studies that integrate data at the
level of statistical and bioinformatics results [125,127,128] (Supplemental Table S1). In
one of them, the authors performed liver proteomics and metabolomics analysis to in-
vestigate the molecular mechanism underlying the Roundup pesticide in inducing liver
pathology using a rat model [128]. By performing differential expression analysis followed
by functional annotation using pathway analysis tools, the authors identified proteome
changes associated with lipid detoxifying metabolic processes indicating lipid peroxida-
tion, oxidative stress, and hepatocyte injury, all NASH-like pathological features. This
association with a NASH-like phenotype was further supported in the metabolome profile
by an increase in metabolites of oxidative stress and fibrosis markers.

4.3. Multi-Omics Classifiers and Discriminative Disease Signatures

When the aim is to select predictive features for disease, machine learning approaches
can treat multi-omics variables equally, also considering interaction between variables
across omics layers. Three studies performed model-based integration at the data level
to identify discriminative omics signatures for predicting disease phenotype [89,90,94].
Baseline data from the deep phenotyped IMI DIRECT cohorts (n = 1514) were used to
build machine learning models for predicting NAFLD [89]. With a selected set of clinical
and omics variables, a random forest machine learning model predicts NAFLD with an
AUROC of 0.84, higher than those using only clinical data or any other omics data alone.
Interestingly, when examining the predictive ability of each omics dataset as input variables
alone, proteomic markers yielded the highest predictive accuracy surpassing genetic-, blood
transcriptomics-, and metabolomics data. The proteomics data generated in this study
derived from a combination of various immunoassays that target proteins with known
associations to disease. Whether the use of an unbiased proteomics technology, i.e., MS-
based proteomics, affects the predictive accuracy requires further investigation. In another
biomarker discovery study, a multi-component classifier for NAFLD was developed, based
on genotyping, serum proteomics, and clinical data such as plasma glucose level, HDL,
and ALT [90]. The authors assessed the performance of classifiers based on each data
domain alone and found that proteomics achieved the highest AUROC of 0.913, followed
by phenomics data (0.886) and PNPLA3 genotyping data (0.596). Combining all markers
selected from each individual data domain achieved an AUROC of 0.935. Similarly, in a
biomarker discovery pre-clinical study, liver transcriptomics and proteomics as well as
plasma proteomics were performed on a rat model of NASH aiming to characterize the
molecular pathophysiology of NASH and to identify new plasma biomarkers [94]. By
collecting molecular signals associated with NASH pathogenesis, the authors developed
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a multi-dimensional ranking approach integrating multi-omics data with liver histology
characterization and prior knowledge and uncovered known as well as novel marker
candidates of NASH and fibrosis. This study demonstrated that the integration of liver
transcriptomics with liver- and plasma proteomics captured the translation of molecular
changes from the diseased liver at the RNA level to the changes of liver and plasma
protein level, and increased the biological resolution of discovered potential non-invasive
biomarkers. Of the above-mentioned studies, only the one that utilized the IMI DIRECT
data performed external validation using the UK biobank cohort on selected prediction
models that were built on widely available clinical parameters.

5. Conclusions and Prospects

MS-based omics technologies are powerful tools to study human health and disease,
and have a great potential to revolutionize tomorrow’s clinical laboratory diagnosis. De-
spite the extremely low translation rate of basic scientific findings into clinical applications
in the early efforts, we are starting to see more reproducible and convincing results gen-
erated across clinical cohorts by independent research groups, especially in biomarker
discovery studies in liver disease using MS-based proteomics. As clinical proteomics is
increasingly capable of large-scale analysis of patient samples, machine learning-based
approaches are emerging in large clinical studies to demonstrate the predictive power of
newly identified composite marker panels. Looking forward, the FDA has already cleared
a few MS-based devices for clinical use. However, as of today, no LC-MS-based diagnostic
test that measures proteins or peptides has been approved. Apart from biological and
clinical validation, a robust and quantitative proteomics assay needs to be established and
validated across hospital sites and instruments to be used in the clinic.

Existing clinical metabolomics and lipidomics studies in NASH have unveiled a broad
range of changes in multiple classes of metabolites and lipids. A few studies have also
identified potential biomarker panels for detecting different stages of fibrosis and NASH
in NALFD. However, collectively they do not converge in terms of the core dysregulated
metabolic pathways or potential biomarkers. As we have argued in the review, a well-
designed clinical study including the use of a validation cohort, standardization of the
experimental pipeline, and the potential release of the research data can help generate
reproducible and robust results, further unlocking the real power of clinical metabolomics
and lipidomics. Several pioneering studies have already integrated multi-omics data
types generated on the same cohorts to build classifiers for detecting NAFLD, including
genotyping, immunoaffinity-based proteomics, and MS-based metabolomics. Despite
the minimal overlap among the proposed biomarker panels in previous literature, these
newer studies clearly demonstrate the advantages of model performance when integrating
multiple layers of omics information compared with using single layers of omics data alone.

A common issue of omics-based biomarker discovery is the lack of classification
performance of the proposed biomarkers, and the lack of verification in independent co-
horts. Good practice in machine learning is necessary for training reliable, repeatable, and
reproducible models [138]. In general, external validation in independent cohorts is always
required to test the generalization ability of a learned model. From the surveyed literature,
we have observed that there is a moderate to good agreement in the predictive power
of candidate markers between discovery and validation cohorts. However, some studies
also show great discrepancies. As we inferred, this may be due to differences in disease
severity distribution, poor or insufficiently robust technical workflows for generating omics
data, overfitting during model training, or underpowered study design. Considering these
elements during study design will increase the success rate in future biomarker discovery
studies and the subsequent implementation in clinical practice. Depending on the perfor-
mance evaluation strategy and the disease severity distribution of the study population, it
may be difficult to compare model performance across studies. This should also be taken
into consideration when evaluating performance of emerging markers, especially across
platforms. As more and more data are generated in clinical studies of NASH/NAFLD, it is
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promising to develop a powerful composite marker panel based on omics to detect disease.
In addition to improving predictive power, compared with traditional markers that usually
focus on a single aspect of the disease, multi-omics composite biomarker panels may also
capture more biological complexity of disease pathogenesis and progression. However, if
omics-based marker panels only provide marginal gain in terms of diagnostic performance
compared to the best performing omics data type, practically it may be preferred to develop
a diagnostic test based on a single technology. We believe that future research should focus
on identifying diagnostic markers that can detect early stages of fibrosis and NASH in
high-risk populations, such as individuals with obesity or type 2 diabetes. In addition, only
a small percentage of patients progress from simple steatosis to NASH. Such predictive
markers of can also benefit the clinical management of disease progression. We predict
that prospective longitudinal studies to identify omics-based predictors of disease progres-
sion and therapeutic response will help to provide an alternative to liver biopsy, thereby
avoiding unnecessary invasive testing and expediting drug development. In addition, the
integration of omics datasets through powerful computational methods will help infer
causality and reveal new insights into disease mechanisms. Finally, image based spatial
omics provides unique opportunities to study the molecular profile of tissue sections at
the level of single cells and organelles. In spatial metabolomics in particular, it has become
possible to localize metabolites, lipids, and drugs in tissue sections through imaging mass
spectrometry [139]. Although spatial proteomics and metabolomics are emerging fields,
they will be a very valuable addition to research in liver diseases.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/jcm10204673/s1, Table S1: Metadata of the reviewed literature.
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