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Abstract: Diabetic retinopathy (DR) is a complication of diabetes and one of the leading causes of
vision loss worldwide. Despite extensive efforts to reduce visual impairment, the prevalence of
DR is still increasing. The initial pathophysiology of DR includes damage to vascular endothelial
cells and loss of pericytes. Ensuing hypoxic responses trigger the expression of vascular endothelial
growth factor (VEGF) and other pro-angiogenic factors. At present, the most effective treatment
for DR and diabetic macular edema (DME) is the control of blood glucose levels. More advanced
cases require laser, anti-VEGF therapy, steroid, and vitrectomy. Pan-retinal photocoagulation for
non-proliferative diabetic retinopathy (NPDR) is well established and has demonstrated promising
outcomes for preventing the progressive stage of DR. Furthermore, the efficacy of laser therapies
such as grid and subthreshold diode laser micropulse photocoagulation (SDM) for DME has been
reported. Vitrectomy has been performed for vitreous hemorrhage and tractional retinal detachment
for patients with PDR. In addition, anti-VEGF treatment has been widely used for DME, and recently
its potential to prevent the progression of PDR has been remarked. Even with these treatments,
many patients with DR lose their vision and suffer from potential side effects. Thus, we need
alternative treatments to address these limitations. In recent years, the relationship between DR,
lipid metabolism, and inflammation has been featured. Research in diabetic animal models points
to peroxisome proliferator-activated receptor alpha (PPAR«) activation in cellular metabolism and
inflammation by oral fenofibrate and/or pemafibrate as a promising target for DR. In this paper, we
review the status of existing therapies, summarize PPAR«x activation therapies for DR, and discuss
their potentials as promising DR treatments.

Keywords: diabetic retinopathy; diabetic macula edema; anti-VEGF therapy; vitrectomy; laser
photocoagulation; fenofibrate; pemafibrate

1. Introduction

Diabetic retinopathy (DR) is a severe complication of diabetes mellitus (DM) and
is one of the leading causes of vision loss worldwide. The Vision Loss Expert Group
(VLEG) reported that DR accounted for 1.25% of moderate to severe visual impairment
and 1.07% of blindness [1]. A meta-analysis reviewed that the percentage of blindness
caused by DR varied regionally from 2% in Oceania and East and Southeast Asia to
5.5% in Southern Latin America [2]. They also reported that DR caused blindness in
regions with older populations, such as Eastern and Western Europe and Southern Latin
America, compared to regions with relatively younger populations [2]. Regarding the
type of DM, DR is observed in 42.1% of type 1 DM and 25.5% of type 2 DM [3]. Another
study showed that type 1 DM patients were diagnosed with DR in 32.58% of cases, while
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type 2 DM patients were 23.04% of cases [4]. DR represents a dramatic socioeconomic
cost for healthcare systems, and its prevalence has continuously increased in the aging
society [5-8]. The public health burden of DR underlines the significance of searching for
promising therapeutic approaches, as well as the advancement of current standards of DR
care, including laser, anti-vascular endothelial growth factor (VEGF) therapy, steroid, and
vitrectomy [9]. Although surgical or pharmacological therapeutic approaches in DR have

been improved, the pathological mechanisms of DR have yet to be fully elucidated. In this

study, we review the current proposed pathophysiology of DR and the status of existing
surgical and/or pharmacological therapies. Furthermore, we summarize recent promising
oral therapies in diabetes; fenofibrate and pemafibrate, well-known agonists of peroxisome

proliferator-activated receptor alpha (PPARw) in treatments for dyslipidemia [10] and
discuss their recent potentials as promising oral DR treatments

2. Pathophysiology of DR

To date, there have been various insights into the pathophysiology of DR (Figure 1).
Firstly, it was simply considered a microvascular disease [11], and hyperglycemia was
thought to be the leading cause of retinal microvascular damage [12]. In this regard,
pathological metabolic pathways such as accumulation of advanced glycation end products

(AGESs) and induction of the protein kinase C (PKC), the polyol, and the hexosamine

pathways have been implicated in retinal microvascular damage [13,14]
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Figure 1. A schematic illustration of the pathophysiology and stages of diabetic retinopathy (DR).
Hyperglycemia evokes various pathological metabolic mechanisms such as accumulation of AGEs
and induction of PKC, the polyol, and the hexosamine pathways. Microvascular injuries, inflam-
mation, and glutamate excitotoxicity combine to damage the diabetic retina more severely after
induction of these pathways. During these processes, representative features are highlighted: loss of
pericytes/endothelial cells, thinning of the basement membrane, increases in IL-6, IL-13, CCL-2, and
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TNF-«, retinal vascular permeability, and loss of neuroprotective molecules. These outcomes exacer-
bate neuronal dysfunction, retinal hypoxia, and increases in various angiogenic factors, including
VEGE, which ultimately causes retinal neovascularization. All processes are inter-connected to the
development and progression of DR. Furthermore, lipid metabolic abnormalities (changes in levels of
lactate, ascorbic acid, arginine, proline, glycine, or creatine) in diabetes could aggravate the intensities
of retinal injuries. The stages of DR depending on the severity of the disease: mild NPDR (microa-
neurysm), moderate NPDR (hemorrhage), severe NPDR (more severe hemorrhage, venous beading,
and intraretinal microvascular abnormalities), PDR (new vessel formation, retinal detachment, and
vitreous hemorrhage); DME (retinal detachment). Solid line; direct interaction, Dash line; indirect
interaction. AGEs; advanced glycation end products, PKC; protein kinase C, CCL; Chemokine (C-C
motif) ligand TNF; tumor Necrosis Factor, VEGF; vascular endothelial growth factor, DR; diabetic
retinopathy, DME; diabetic macular edema, NPDR; non-proliferative diabetic retinopathy.

In the early stage of DR, loss of pericytes can lead to the eventual destruction of the
microvasculature, as these cells physiologically enwrap the microvasculature and support
endothelial cells [15]. Disturbing the interaction of pericytes with endothelial cells showed
aggravation in diabetes-induced microvascular dysfunction [16]. Experimental studies
showed that hyperglycemia caused the death of pericytes in vitro and in vivo [17,18].
Additionally, endothelial cell death and thinning of the basement membrane were also
described in the early stage of DR [19,20]. Loss of pericytes and endothelial cells can cause
capillary occlusion, which leads to retinal ischemic conditions.

Retinal ischemic conditions could lead to more severe stages in DR. Retinal ischemia
induces increases in VEGF levels [21-23], and VEGEF takes part in the mechanism that
restores the blood supply to the ischemic retina. This process damages the retina more
severely, termed neovascularization-induced retinal damages, and may cause the retina to
wrinkle or detach [24,25]. The boundary between proliferative diabetic retinopathy (PDR)
and non-PDR (NPDR) is determined by the condition of neovascularization (Figure 1).
Neovascularization usually occurs at the vitreoretinal interface [26]. In some cases of
NPDR, diabetic macular edema (DME) occurs as a complication. The macula in DME
swells with fluid leaked from the damaged vasculature [27]. These conditions from PDR or
DME are often related to the development of retinal detachment and vitreous hemorrhage
leading to loss of vision in DR patients [27]. Accordingly, research scientists and clinicians
have focused on controlling VEGF in DR experimentally and clinically, as they recognized
the importance of its principle pathological role [21,23]. Several studies showed that up-
regulation of VEGF could be mediated by hypoxia-inducible factors (HIFs) [28]. Genes
regulated by HIFs (angiogenin-2; ANGIO2, stromal-derived growth factor-1; SDF-1, and
platelet-derived growth factor-B; PDGF-B) also play critical roles in retinal neovasculariza-
tion [29,30]. Therefore, the regulation of HIFs with VEGF and other angiogenic genes has
been targeted for the treatment of DR.

Retinal inflammation, as well as retinal degeneration, can be detected from the
early stage to the chronic stage in DR. Elevation in various inflammatory cytokines
and chemokines (monocyte chemoattractant protein 1/chemokine C-C motif ligand 2;
MCP-1/CCL2, tumor necrosis factor-o; TNF-«, interleukin 13; IL-18, interleukin 6; 1L-6)
were described in the serum as well as the vitreous and aqueous humor of patients with
DR [31-40]. Many experimental studies showed that increases in these cytokines and
chemokines contributed to cell death of retinal neurons in DR [41,42]. Specifically, massive
chronic inflammatory responses (such as infiltration of inflammatory cells to the retina,
activation of retinal microglia, and retinal vascular permeability) consisting of numerous
cytokines and chemokines are considered critical in the progression of DR, as opposed
to individual inflammatory proteins. When it comes to retinal degeneration, increases
in the expression of Bax and activation of caspase-3 were detected in retinal neuronal
cells in experimental models of diabetes and humans [43-45]. Glutamate excitotoxicity
with loss of neuroprotective molecules was also suggested to cause retinal neuronal cell
death in the diabetic retina [9]. Taken together, there is no doubt that various factors, from
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microvascular abnormality to retinal cell death, are interconnected in their contributions to
the development and progression of DR.

In addition to hyperglycemic dysregulation, lipid metabolic dysregulation has been
implicated as a potential risk factor for the development and progression of DR. Clinical
studies demonstrated there were strong associations between changes in plasma levels
of high-density and low-density lipoproteins (HDL and LDL) and the development of
severities of DR as well as diabetes [46-52]. Abnormal levels of lipids in the blood (termed
dyslipidemia), including elevation of LDL, free fatty acids, and triglycerides, reduction of
HDL, and inhibition of reverse cholesterol transport gene expressions, could be promoted
under insulin-resistant conditions [53-55]. A higher frequency of retinal abnormalities was
reported in diabetic subjects with dyslipidemia [56,57]. Even though more experimental
evidence on lipid metabolic dysregulation with the development and progression of DR
are needed, emerging evidence has shown that lipid-modifying drugs could exert possible
protective effects in DR at the current stage [58,59].

Recently, several studies performed metabolomics with the vitreous humor in PDR
patients. Metabolomics analysis of the vitreous humor could serve as a potential tool
to identify new pathways associated with the development and progression of PDR.
Barba et al. showed that lactate levels increased while ascorbic acid levels decreased
in PDR patients compared to control patients [60]. Paris et al. showed that arginine
and proline levels were upregulated in PDR patients [61]. Haines et al. demonstrated
that the purine-related pathways were activated, and pyruvate levels increased in PDR
patients [62]. Furthermore, our group showed that glycine levels increased, and creatine
levels decreased in the vitreous humor of PDR patients [63]. Although research from new
angles is underway, the pathophysiology of PDR has not yet been elucidated. More efforts
are needed to elucidate the recent issue above.

3. Laser Treatment
3.1. Treatment for DR

The Diabetic Retinopathy Study (DRS) indicated four risk factors for vision loss in DR.
These risk factors include the presence of vitreous or preretinal hemorrhage, the presence
of new vessels, the location of new vessels on or near the optic disc, and finally, the severity
of pathological conditions in new vessels [64]. According to this study, eyes with three or
more risk factors are considered “at high risk” of vision loss in DR.

Laser treatment for DR has been well established for several decades. Since pan-retinal
photocoagulation (PRP) can reduce retinal neovascularization, it has been performed to
reduce the high-risk development of PDR [65,66]. An analysis using a rabbit model
of retinal ischemia showed that photocoagulation suppressed ischemia-induced VEGF,
vascular permeability, and angiogenesis promoted by VEGF [67]. In addition, the level of
VEGF was lower in eyes treated with PRP compared with that in untreated eyes [68]. For
this reason, it is thought that destroying the retinal non-perfusion areas (NPAs) with a laser
could reduce pathological angiogenesis from these areas. Therefore, PRP is considered an
essential therapeutic tool in controlling DR activity. The optimal timing for PRP is between
severe NPDR and early PDR, according to the Early Treatment Diabetic Retinopathy Study
(ETDRS) [69]. Clinical trials have shown that PRP reduced the risk of severe vision loss by
50% or more in DR. Furthermore, only 1% of patients and 4% of eyes experienced severe
vision loss in 5 years following photocoagulation [70,71]. This approach seemed promising
to suppress the progression of DR. However, there were several problems reported in PRP
therapies, such as peripheral visual field loss, delayed dark adaptation, and atrophic creep
in long-term studies [72-75].

The pattern scan laser was developed in an attempt to solve these problems [76]. It
has been reported that the decrease in the nerve fiber layer (which can be generally seen
after PRP) was significantly improved after using the advanced laser. The degree of pain
for the patient and the expansion of the coagulation zone were also reduced compared
to those in the conventional laser. In addition, it has been reported that the amount
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of inflammatory cytokines induced following its treatment was lower than that of the
conventional methods [77]. Finally, the operation time could be shortened, a significant
point during the surgery [78,79]. Despite these benefits, the pattern scan laser has a narrow
safety margin because of the short-pulse laser features and is easily influenced by hazy
media such as vitreous hemorrhage. It is also known that the coagulation spot tends to
shrink over time [80]. Besides, the pattern scan laser has been reported to lead to a higher
frequency of retinal neovascularization, iris neovascularization, and neovascular glaucoma
than the conventional PRP [81], which implies more investigations into conventional PRP
and pattern scan laser therapies in DR may be needed.

Targeted retinal photocoagulation (TRP) has been used for patients with NPDR in
some countries. This technique involves selective photocoagulation of the areas in retinal
vascular occlusion. It has been reported that the progression rate of PDR could be slowed
with selective photocoagulation in patients with multiple NPAs of one papillary diameter
or more in NPDR [82]. In addition, a randomized clinical trial showed that extended TRP
was effective in early PDR regression with fewer coagulation spots than the conventional
PRP [83]. Recently, the navigated pattern laser (NAVILAS), a fundus camera-based photo-
coagulation system, has been developed. This system enables the delivery of navigated
pattern PRP, selectively applied to NPAs [84]. However, in any of the described methods,
fluorescence angiography (FA) is necessary to identify NPAs to determine the indication for
photocoagulation. On the other hand, a recent randomized trial showed that combination
therapy with ranibizumab and widefield FA-guided TRP did not improve visual acuity
or reduce the number of anti-VEGF injections compared to ranibizumab alone in DME
patients [85]. Therefore, further studies are needed.

3.2. Treatment for DME

The ETDRS showed that the focal/grid laser produced better outcomes than the
natural course in patients with severe DME [86,87]. Severe macular edema is defined as
retinal thickening that involves or threatens the macula’s center. The focal/grid laser is
recommended especially for DME that does not include the fovea and does not require
frequent visits to the hospital for treatment. However, large or dense coagulation near the
macula may result in a paracentral dark spot. Furthermore, complications such as atrophic
creep may occur in this chronic condition [88]. Based on these problems, the modified
ETDRS laser was proposed in the Diabetic Retinopathy Clinical Research (DRCR) net in
2007 [89]. It is based on direct photocoagulation of capillary aneurysms with a minimally
invasive setting and is becoming the standard.

Recently, subthreshold diode laser micropulse photocoagulation (SDM), invisible
retinal phototherapy, has been developed to treat DME. It applies heat to the retinal
pigment epithelium under conditions that do not cause cell death. The current indications
for the SDM for DME are the localized edema outside the fovea and the mild macular
edema, including the fovea. To date, several reports have shown a significant efficacy of
SDM alone for DME [90-92]. Randomized controlled trials have also reported that the
SDM is more effective than the modified ETDRS laser [91]. In general, this treatment alone
is indicated for cases with relatively mild edema, and combined treatment with anti-VEGF
therapy is indicated for severe DME [93].

4. Anti-VEGF Treatment
4.1. Treatment for DR

Protocol S reported that anti-VEGF treatment (ranibizumab) resulted in significantly
better visual acuity than PRP treatment for PDR patients [94]. In addition, the anti-VEGF
group had substantially less peripheral visual field loss, faced fewer cases of DME, and a
decreased need for vitrectomy compared to those in the PRP group. Other studies have
also shown improvements in Diabetic Retinopathy Severity Scale (DRSS) scores as well as
a lower risk of vitrectomy and DME with intravitreal anti-VEGF treatment (ranibizumab),
compared to PRP [95,96]. The Clinical Efficacy and Mechanistic Evaluation of Aflibercept
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for Proliferative Diabetic Retinopathy (CLARITY) trial was specifically designed to evaluate
the efficacy of PRP versus aflibercept for patients with PDR without DME [97]. A study
group showed that ranibizumab suppressed neovascularization and maintained better
visual acuity than PRP treatment during the first 12 months of the PRIDE study, but it is
not sustained after 24 months under real-world conditions [98,99]. Although these results
suggest that anti-VEGF therapy could be more valuable for preventing the progression
of DR than PRP, it should be noted that anti-VEGF treatment requires frequent follow-
up, compared to general laser photocoagulation, which has a permanent effect on the
operated eyes.

With regard to frequent follow-up in anti-VEGF treatment, there is a possibility of
worsening retinopathy in patients who stop coming to the clinic. It is reported that anti-
VEGEF therapy alone has a worse prognosis than photocoagulation if a patient ceases the
treatment [100]. Because anti-VEGF drugs are expensive and require multiple visits to the
clinic, the management of PDR should be guided by both cost and patient-specific factors
such as visit compliance.

4.2. Treatment for DME

A multicenter randomized clinical trial showed that anti-VEGF drugs had a thera-
peutic effect for DME that involves the central macula [101]. The RESTORE study showed
that ranibizumab and laser therapy improved visual acuity more than focal/grid laser in
patients with DME [102]. The RISE and RIDE study showed that ranibizumab improved
visual acuity and macular edema in patients with DME [103]. On the other hand, the
VISTA and VIVID studies showed that aflibercept had better visual improvement and more
reduction in central retinal thickness than the focal/grid laser alone for DME involving the
fovea [104,105]. In terms of the efficacy of bevacizumab, ranibizumab, and aflibercept for
DME, it is controversial in randomized clinical trials. Although aflibercept was superior to
bevacizumab and ranibizumab in eyes with visual acuity of 20/50 or worse at one year,
aflibercept was no longer superior to ranibizumab at two years [106,107]. Another study
showed that aflibercept could be more efficient in treating moderate or severe visual acuity
loss cases, but aflibercept, bevacizumab, and ranibizumab had comparable effects for mild
DME [108]. However, because of the short duration of the drug effect, multiple injections
are required to maximize visual improvement. Thus, it is recommended that anti-VEGF
therapy for DME involving the fovea may be combined with focal/grid laser therapies to
reduce the number of injections [109].

Anti-VEGF injection may increase the risk of high intraocular pressure, infectious
endophthalmitis, and cataract [110-112]. In addition, the intraocular injection may cause
retinal damages or tractional retinal detachment. Furthermore, there is a possibility that
anti-VEGF (which is intended to be injected into the vitreous) may unexpectedly diffuse
to systemic circulation. The indication for the treatment and re-administration should
be determined based on the patient’s general condition as well as their visual acuity and
conditions of central retinal thickness.

5. Steroid Treatment
Treatment for DME

Steroid treatment is indicated when edema is diffuse throughout the macula. Steroids
have an anti-inflammatory effect that helps to downregulate both pro-inflammatory and
pro-angiogenic mediators, which are crucial for the development of DME. General steroid
treatments have the possibility of multiple side effects, so topical corticosteroid treatments
are preferable for DME. There are several options for administering steroids, such as
intravitreal injection, subtenone injection, and dexamethasone intravitreal implant (DEX).

Intravitreal triamcinolone acetonide injection (IVTA) has played an essential role
in treating DME for many years, especially prior to the approval of anti-VEGF injec-
tions [113,114]. Substantial improvements in macular thickness and visual acuity have
been reported with IVTA [115]. Another group showed that a single IVTA injection to
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DME induced a significant improvement in macular thickness and visual acuity at three
months after the treatment [116]. However, because of the short effective duration, mul-
tiple injections are required to maintain its efficacy. A clinical trial reported that there
was no significant change between the bevacizumab vs. bevacizumab + IVTA groups in
terms of best corrected visual acuity and central macular thickness changes, compared
to the baseline at 24 weeks. Nonetheless, the bevacizumab + IVTA group showed earlier
visual improvement [117]. Thus, combined therapy with anti-VEGF treatment may be
recommended for the early visual improvement.

Subtenone triamcinolone acetonide injection (STTA) is also used to treat DME patients.
Several studies have shown that STTA reduced retinal thickness and improved visual
acuity [118,119]. However, it is still controversial regarding results for the DME treat-
ment [118,119]. In addition, because it also has a short duration of effects, patients need
multiple injections as they do with IVTA. To overcome this problem, STTA is often used
in conjunction with anti-VEGF treatment. For example, a retrospective study compared
the combination therapy of STTA and intravitreal anti-VEGF injection with anti-VEGF
monotherapy to treat anti-VEGF-resistant DME. The thirty-eight eyes treated with the
combination therapy showed significantly improved visual acuity and macular thickness
after six months of treatment. Although STTA injection is less effective for short-term
DME than IVTA injection, it has been shown that STTA resulted in less steroid-responsive
intraocular pressure elevation than intravitreal steroids [120,121]. Another group showed
that STTA treatment with bevacizumab improved morphological changes and reduced
the frequency of bevacizumab treatments in DME patients [122]. Thus, STTA may be a
useful adjunctive therapy in anti-VEGF-resistant DME in the case of existing concerns for
steroid-induced glaucoma.

The DEX implant, an FDA-approved DME treatment, has become an alternative injec-
tion method to IVTA and STTA in several countries. It has provided a longer-term option for
steroid therapy. Several retrospective studies have shown that in anti-VEGF-resistant eyes,
a single DEX implant improved macular thickness and visual acuity [123-126]. Another
group treated 16 eyes with a single DEX implant and reported significant improvements in
macular thickness at one, two, and three months. However, the DRCR network showed
that combination therapy of DEX implant and anti-VEGF did not improve visual acuity at
twenty-four weeks more than anti-VEGF treatment alone [127]. Intravitreal fluocinolone
acetonide is another implant with longer effective periods than the DEX implant. Multiple
studies have shown that the intravitreal fluocinolone acetonide implant could be useful
for treating anti-VEGF-resistant DME, with sustained beneficial visual acuity and macular
thickness outcomes [128-132]. The systematic review included seven randomized clini-
cal trials that suggested IVTA and surgical implantation of steroids may improve visual
outcomes in eyes with refractory DME [133]. However, since each treatment can carry
additional glaucoma and cataract progression risks, special care is needed to avoid these
complications [134,135]. In addition, ophthalmologists need to be cautious of noninfectious
endophthalmitis (NIE) in that ocular inflammation occurs after intravitreal injection of
corticosteroids [136]. A recent study indicates that the incidence rate of NIE lies between
0.1% and 7.3% [137].

6. Surgical Treatment
6.1. Treatment for DR

PDR patients with dense and recurrent vitreous hemorrhage or tractional retinal
detachment close to the retina or rhegmatogenous retinal detachment require surgical
treatments. Vitrectomy refers to the surgery for retinal and vitreous diseases. During the
surgery, surgeons remove the vitreous and replace it with another solution. Photocoag-
ulation is needed to attach the retina if there is an NPA or retinal tear. In PDR patients,
the longer a macular detachment occurs, the more difficult it becomes to restore vision
due to the deterioration of macular photoreceptor function. In recent years, the devel-
opment of small-incision vitrectomy such as the 23-, 25-, and 27-gauge and wide-angle
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viewing systems (for instance, Resight®) has contributed to the improvement of vitreoreti-
nal surgery [138-141]. These techniques make vitrectomy less invasive and safer so that
earlier vitrectomy, in cases with macula dragging due to fibrovascular tissue overlying the
macula, may be indicated in patients with PDR [142]. Furthermore, these operations are
shown to be safer following anti-VEGF pretreatment [143,144]. Thus, the indications of
vitrectomy for the treatment of PDR have been expanded by the early intervention [145].

However, there are many cases of poor prognosis in PDR following vitrectomy. Per-
manent vision loss may occur due to retinal detachment involved in the macula, glaucoma,
or ischemic changes. Re-bleeding may occur after vitrectomy for vitreous hemorrhage,
although a small incision vitrectomy reduces this recurrence [146,147]. Cataract formation
should be considered after vitrectomy in patients with phakia. Although the incidence is
low, it is also necessary to pay attention to postoperative endophthalmitis.

6.2. Treatment for DME

Vitrectomy has been reported to improve visual acuity for DME accompanied by
an epiretinal membrane or thickened posterior vitreous cortex with vitreomacular trac-
tion [148-150]. Vitreoretinal surgery may also be considered a treatment option when the
outcomes were not satisfactory from retinal photocoagulation and drug therapies such as
anti-VEGF and steroids. Posterior vitreous detachment and peeling of the internal limiting
membrane can be performed for DME. This is because the inner limiting membrane could
become a scaffold for proliferative myofibroblasts [151], which may cause the recurrence of
macular edema with the epiretinal membrane.

Long-term results showed improved visual acuity after vitrectomy for DME in 496 eyes,
comparable to those shown in anti-VEGF therapy [152]. Vitrectomy caused a more signifi-
cant central macular thickness reduction than IVTA 12 months after treatment, although
it showed no statistically significant change in visual acuity [153]. It was reported that
vitrectomy was morphologically effective after six months compared to the grid laser, but
there was no significant difference in visual function. In addition, there was no significant
difference in morphology or visual function after one year. On the other hand, it has
been reported that the presence or absence of an internal limiting membrane detachment
did not affect the prognosis of visual function in vitrectomy for DME without macular
traction [154]. Recently, Imai et al. reported the effectiveness of cystotomy for long-term
anatomical and functional improvements of refractory cystoid macular edema secondary
to DR. However, it is necessary to accumulate many cases for the concrete conclusion of
the effectiveness of cystotomy [155,156]. Overall, there is the possibility of the same risks
as other vitrectomies, and care must be taken when choosing potential patients.

Importantly, all of these treatments are for advanced diseases. There is no safe and
effective ophthalmic treatment other than controlling of blood glucose levels, even if the
early stage of DR is observed. Thus, we need preventive treatments for DR.

7. Fenofibrate Therapy in DR

Fenofibrate is a well-known peroxisome proliferator-activated receptor alpha (PPAR«)
agonist. PPAR« is one of the members in the nuclear receptor family of ligand-activated
transcription factors [13]. Heterodimerization of PPAR«x with the retinoic X receptor
regulates the transcription of genes involved in cellular metabolism [13]. Fenofibrate could
reduce free fatty acids levels by upregulating the synthesis of molecules for fatty acid
transport and -oxidation through the activation of PPAR« [13,157,158]. Furthermore,
fenofibrate has the potential to induce an increase in the synthesis of apolipoproteins and
high-density lipoprotein cholesterol [159-161]. In this regard, fenofibrate could be used
as a therapeutic drug in metabolic syndrome. Fenofibrate has been effectively used in the
US to manage patients with dyslipidemia since 1998 [162]. As metabolic syndrome is a
common finding in patients with diabetes, the future use of fenofibrate in the management
of patients with DR was also examined in the Fenofibrate Intervention and Event Lowering
in Diabetes (FIELD) study [163] and the Action to Control Cardiovascular Risk in Diabetes
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(ACCORD)-Eye study [164]. Based on the FIELD study, the fenofibrate-administered group
showed a significant reduction of relative risk in need for laser treatment for DME and
PDR. When it comes to the ACCORD-Eye study, the progression of DR was significantly
reduced in the fenofibrate-statin-administered group compared to that in the only statin-
administered group. Taken together, fenofibrate was suggested as a promising therapeutic
for slowing the progression of DR.

Experimental animal studies also supported the notion that fenofibrate may have
protection against DR [165-167]. Oral administration of fenofibric acid, the active metabo-
lite of fenofibrate, reduced ganglion cell death and preserved amplitudes in oscillatory
potentials and implicit time of b-wave in diabetic db/db mice [165]. Upregulated expres-
sions of II-6, II-18, P53, Bax, and Vegf and their protein expressions in the diabetic rat retina
were reduced by oral administration of fenofibrate [166]. Similar effects of fenofibrate
treatment were found in human retinal microvascular endothelial cells under high glucose
stimulation [166]. Another study showed that oral administration of fenofibrate attenuated
oxidative stress and neuroinflammation in the diabetic mouse retina via increasing expres-
sions of a master regulator of antioxidative defense, nuclear factor erythroid 2-related
factor 2 (Nrf2) and its target genes, including heme oxygenase 1 (Ho-1), and decreasing the
formation of reactive oxygen species [167]. Taken together, fenofibrate appears viable for
the treatment of DR.

Even though fenofibrate is a generally well-tolerated drug, its effects on increases
in serum levels of creatinine were continuously reported [168-170]. This finding raised
concerns regarding deleterious damages to renal function. Safety issues surrounding the
use of fenofibrate are still debated. As such, fenofibrate is not highly recommended for
use in patients with severe renal impairment. Along with this issue, researchers have been
attempting to develop better therapeutics for PPARwx activation.

8. Pemafibrate Therapy in DR

Pemafibrate is a new selective PPARx modulator, recently synthesized by Kowa
Company, Ltd. as a more efficient and safer alternative to fenofibrate. Clinical studies
in Japan demonstrated that pemafibrate showed superior effects on cellular metabolism
compared to fenofibrate by improving liver function and increasing serum creatinine levels
less likely or decreasing the estimated glomerular filtration rate [10,171,172]. One of the
possible reasons is that pemafibrate is metabolized in the liver and excreted into the bile,
while other fibrates, including fenofibrate, are predominantly excreted from the kidney. In
this regard, pemafibrate could be a safer option in patients with severe renal impairment.

Experimental animal studies showed that pemafibrate could be used as a promising
drug in diabetes and DR. In diabetic mice, oral administration of pemafibrate reduced
plasma levels of triglycerides and vasoconstrictive eicosanoids [173]. Furthermore, im-
paired endothelial function in diabetic mice was attenuated by treatment with pemafi-
brate [173]. In high-fat diet mice with a femoral artery endothelial denudation injury,
oral administration of pemafibrate increased serum levels of fibroblast growth factor 21
(FGF21) and decreased serum levels of insulin, attenuating neointima formation [174]. In
our previous paper, long-term oral administration of pemafibrate improved blood glucose
levels, modulated cellular metabolism, upregulated PPAR« target genes in the liver (not in
the retina), and increased serum levels of FGF21, to protect against diabetes-induced retinal
dysfunction (amplitudes in oscillatory potentials) in mice [175]. Furthermore, we found
that FGF21 could increase retinal protein expression of synaptophysin, one of the important
molecules for maintaining oscillatory potentials [175]. Another study suggested that oral
administration of pemafibrate directly inhibited retinal inflammation in diabetic rats by
decreasing expressions of MCP-1 and VCAM-1 [176]. Furthermore, oral administration
of pemafibrate inhibited diabetes-induced retinal vascular leukostasis by upregulating
thrombomodulin expression [176]. Pemafibrate was recently suggested to protect against
N-methyl-D-aspartate (NMDA) excitotoxicity-induced cell death in the rat retina (analyzed
by TUNEL assay) [177]. This effect was associated with the inhibition of phosphorylated
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c-Jun, one of the possible links to the expression of apoptosis-related genes [177]. In terms
of retinal neovascularization in DR, we previously demonstrated that oral administration
of pemafibrate showed a significant reduction in retinal neovascularization in a murine
model of oxygen-induced retinopathy [178]. Furthermore, a significant increase in serum
levels of FGF21 and decreases in retinal HIF-1o immunostaining and Vegfa expression were
found after oral administration of pemafibrate [178]. Taken together, pemafibrate therapy
experimentally shows promise as a potential therapy for diabetes and DR.

Pemafibrate to Reduce cardiovascular OutcoMes by reducing triglycerides IN patiENts
with diabeTes (PROMINENT), a phase 3 randomized clinical trial, has been ongoing
(ClinicalTrials.gov Identifier: NCT03071692). Patients with dyslipidemia with type 2
diabetes were recruited in this study. Although DR had also been evaluated in the sub-
analysis, because the number of recruited subjects for the DR study did not meet the
criteria, it was suspended. However, if pemafibrate has therapeutic effects for metabolic
syndromes, drug-repositioning of pemafibrate could be applied to treat retinal diseases,
including DR, in the future.

9. Conclusions

This study summarized current therapies such as laser, anti-VEGEF, steroid, and surgery
for DR and DME. Figures 2 and 3 show suggested treatments for PDR and DME. Typically,
patients with severe NPDR can be treated with PRP, however, if the NPA can be assessed
in FA, then TRP can be a viable option as well. Patients with PDR need PRP or anti-VEGF
therapy depending on the clinical and socioeconomic situation of the patients (Figure 2).
The treatment of DME is divided according to whether the edema involves the fovea. If
the edema does not include the fovea, patients could be treated by focal/ grid laser. If it
includes the fovea, patients may be treated by anti-VEGF or steroid therapy. SDM is also
an option, if available (Figure 3).

NPA+ \

[ (e e
Vitrectomy

Figure 2. A flowchart of suggested treatment for diabetic retinopathy (DR) without macular edema. DR is categorized as
non-PDR (NPDR) and PDR. NPDR falls into three subcategories: mild, moderate, and severe. The control of glucose and
lipid levels and blood pressure is crucial at any stage. NPDR; non-proliferative diabetic retinopathy, DME; diabetic macular
edema, TRP; Targeted retinal photocoagulation, FA; Fluorescein angiography, NPA; non-perfusion area.
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Figure 3. A flowchart of suggested treatment for diabetic macular edema (DME). The strategy of treatment is decided by

whether the edema includes the fovea or not. Controlling levels of glucose, lipid, and blood pressure is crucial at any stage.
SDM; subthreshold diode laser micropulse photocoagulation, DME; diabetic macular edema.

Through every stage, the control of glucose and lipid levels is essential. However,
all of these treatments can be applied for progressed diseases. Even if the early stage of
DR is observed, clinicians can only contribute control of blood glucose levels, lipids, and
hypertension [163,164,179-181]. It is also reported that controlling diabetic nephropathy;,
anemia, and sleep apnea is important for preventing DME [182]. This systemic medication
is crucial to prevent and slow down the progression of DR. In addition, existing treatments
are for vascular disorders, not for neurological disorders. Therefore, neuroprotection or
preventive therapy for the early stage of DR needs to be developed as soon as possible.
Future treatments may also be required with fewer side effects than the current therapies.
At this point, many clinical studies with various therapeutic strategies are ongoing for
slowing the progression of DR (searched in ClinicalTrials.gov).

Based on the outcomes summarized in this review, oral non-invasive PPARx agonists
(fenofibrate and pemafibrate) treatments could be one of the promising therapeutics to
prevent the development and/or the progression of DR (Figure 4). Even though more
investigations are needed, we hope that ophthalmologists can prevent DR with these drugs.

Gemafibrate/Fenofibrata

'

[ Hyperglycemia ] [Lipid metabolic abnormalities]

| J

]

Figure 4. A flowchart of promising treatments for diabetic retinopathy (DR) and diabetic macular

edema (DME). PPAR« activation by pemafibrate/fenofibrate is associated with modulating energy
homeostasis in hyperglycemia and lipid metabolic abnormalities through the regulation of both lipid
and glucose levels. Continuous control of levels of glucose and lipid is available with this promising
treatment. DR; diabetic retinopathy, DME; diabetic macular edema.
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