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Abstract: The endometrium is necessary for implantation, complete development of the placenta, and
a successful pregnancy. The endometrium undergoes repeated cycles of proliferation, decidualization
(differentiation), and shedding during each menstrual cycle. The endometrium—including stromal,
epithelial, vascular endothelial, and immune cells—is both functionally and morphologically altered
in response to progesterone, causing changes in the number and types of immune cells. Immune
cells make up half of the total number of endometrial cells during implantation and menstrua-
tion. Surprisingly, immune tolerant cells in the endometrium (uterine natural killer cells, T cells,
and macrophages) have two conflicting functions: to protect the body by eliminating pathogenic
microorganisms and other pathogens and to foster immunological change to tolerate the embryo
during pregnancy. One of the key molecules involved in this control is the cytokine interleukin-15
(IL-15), which is secreted by endometrial stromal cells. Recently, it has been reported that IL-15 is
directly regulated by the transcription factor heart- and neural crest derivatives-expressed protein
2 in endometrial stromal cells. In this review, we outline the significance of the endometrium and
immune cell population during menstruation and early pregnancy and describe the factors involved
in immune tolerance and their involvement in the establishment and maintenance of pregnancy.

Keywords: endometrium; immune tolerance; endometrial stromal cells; uterine natural killer cells;
regulatory T cells (Treg); macrophages; heart- and neural crest derivatives-expressed protein 2
(HAND2); interleukin-15 (IL15); galectin 9

1. Introduction

The human menstrual cycle duration ranges from 24–38 days [1]. During the repro-
ductive age of today’s women, the cycle occurs nearly 450 times until a woman reaches
menopause [1–3]. The human endometrial lining undergoes regeneration, differentiation,
and shedding during each menstrual cycle. Therefore, the endometrial cycle is divided
into three dominant phases: the proliferative phase, the secretory phase, and the menstrual
phase. These phases are governed by the changes of two ovarian steroid hormones, estro-
gen (E2) and progesterone (P4). The endometrium, including stromal, epithelial, vascular
endothelial, and immune cells, is both functionally and morphologically altered in response
to these hormonal levels [4]. In the proliferative phase, the endometrium regenerates and
proliferates under the influence of increased E2 levels due to the growth of ovarian follicles.
After ovulation, the development of the corpus luteum occurs, starting with the ruptured
follicle, and P4 is secreted from the corpus luteum. In the secretory phase, endometrial
glandular epithelial cells transform into a secretory form and endometrial stromal cells
(ESCs) differentiate into decidual cells in response to increasing P4 [5]. Menstruation is
triggered by a decrease in P4 levels due to the absence of implantation and reset of the en-
dometrial cycle occurs. Once implantation is established, syncytiotrophoblasts increasingly
produce human chronic gonadotropin to preserve P4 levels by maintaining the corpus
luteum [6]. The production of P4 by the corpus luteum is essential for supporting embryo
implantation and the establishment of the placenta [7].
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2. Decidualization: Morphological Differentiation in the Human Endometrium

Decidualization is characterized by significant functional and morphological differen-
tiation of human ESCs, and is critical for blastocyst implantation and the maintenance of
pregnancy [2]. Decidualization is driven by increases in P4 and then local cyclic adenosine
monophosphate (cAMP) production [8,9]. In the human endometrium after ovulation, ESCs
transform from fibroblast-like cells in the proliferative phase to epithelium-like cells with
cytoplasmic expansion, large pale nuclei, and rounded shapes in the secretory phase [10]
(Figure 1), a process that involves complex cytoskeletal rearrangements [11]. The phospho-
rylation of myosin light chain and concentrated F-actin induce the intracellular remodeling
and resulting morphological changes [12–14]. These morphological changes in human ESCs
are observed even during in vitro decidualization by P4 or cAMP stimulation [9,15–18]. P4
and local cAMP production enhance the biosynthesis of intracellular complex networks
and secreted proteins necessary for decidualization [19]. In presence of P4, ESCs also
transform into epithelium-like forms and secrete decidual proteins, such as insulin-like
growth factor binding protein-1 (IGFBP-1) and prolactin (PRL) [17,18] (Figure 1). P4 also
enhances the production of several factors, including interleukin-15 (IL-15) [20–25]. The
P4 receptor antagonist, RU-486, completely inhibits P4-induced PRL production during
decidualization [15].
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Figure 1. Differentiation in human endometrial stromal cells (ESCs) during decidualization. Decidualization is driven
by increases in progesterone (P4) and then local cyclic adenosine monophosphate (cAMP) production. In the human
endometrium, ESCs transform from fibroblast-like cells in the proliferative phase to epithelium-like cells with cytoplasmic
expansion, large pale nuclei, and rounded shapes in the secretory phase. IGFBP-1, insulin-like growth factor binding
protein-1; PRL, prolactin.

3. Functional Differentiation in Human Endometrium: IGFBP-1 and PRL as
Decidual Markers

P4 functions by binding to and activating the progesterone receptor (PGR) [26]. Ligand-
binding PGR is recruited to P4-response elements in the promoters of target genes and
regulates their transcription [27]. PGR pathways and/or accumulations of cAMP induce the
expression of decidual transcriptional regulators, epigenetic modifications, rearrangement
of signal transductions, and posttranscriptional modifications [8]. Once the decidualization
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begins, decidual ESCs secrete a number of cytokines, chemokines, growth factors, and
angiogenic factors to promote decidualization for blastocyst implantation (Figure 1). The de-
cidual process proceeds by interacting with all cells in the endometrium, including decidual
ESCs, glandular cells, vascular endothelial cells, and local immune cells [28]; consequently,
decidual ESCs secrete many specific proteins including IGFBP-1 and PRL. IGFBP-1 and PRL
stimulate trophoblast growth and invasion via the PRL receptor and/or integrins [29,30].

The decidua, cytotrophoblasts, placental trophoblasts, and amniotic epithelial cells
express PRL receptors [31]. Moreover, endometrial stromal and glandular cells exhibit
PRL receptor expression during the menstrual cycle [32]. It has been suggested that PRL
may play a role in the implantation process through immune environment modification
and/or regulation of the factors that control trophoblast proliferation and invasion into the
endometrium [33,34]. Upregulation of functional PRL receptors is found in the secretory
phase of ESCs and glandular cells [35]. Further, decidual PRL may influence glandular
epithelial function/secretion through a paracrine mechanism and direct gene transcription
via the Janus kinase/signal transducer and activator of transcription signaling [34,36].

An increase in cell migration is the main cause of trophoblast invasion [37,38]. Tro-
phoblast invasion of the human uterus is mediated through cell surface integrins. IGFBP-1
stimulates cell migration; it has been substantiated that in vitro trophoblast migration
needs integrin α5 and β1 subunits [37]. Moreover, IGFBP-1 has the potential to induce ESC
decidualization via integrin α5β1 [30].

4. Spontaneous Decidualization of Human ESCs

In contrast to several most other mammals, the spontaneous decidualization of human
ESCs occurs even without blastocyst implantation. The occurrence of decidualization inde-
pendent of the presence of a blastocyst is observed in a handful of species, including some
primates (humans, apes, and Old World monkeys), some bats, spiny mice, and the elephant
shrew [8,39–43]. In a recent study, the ancestral gene regulatory program from which
the core network of decidual ESCs evolved has been identified due to analyzing in vitro
response of opossum endometrial stromal fibroblasts (ESFs) to progesterone and cAMP
which differentiate human ESFs into human decidual ESCs [44]. As core components of the
decidual gene regulatory network are responsive to stimuli in opossum ESF, components
of cellular stress responses, such as apoptotic and oxidative stress response, rather than
undergoing human ESC differentiation were determined. This opossum study suggests
that the decidual ESCs evolved based on a physiological stress response that appears to be
directly concerned with the invasion of trophoblast into maternal endometrium [44]. There
is a high prevalence of chromosomally abnormal preimplantation embryos in humans,
therefore reproductive success is largely limited [45,46]. Human ESCs are suggested to be
potential biosensors for embryo quality upon decidualization [47]. It is believed that the
human endometrium is essentially capable of adaption to variations in embryo quality
by rebalancing its receptivity and selectivity traits [48]. Previous studies showed that
decidualized ESCs act as both a gatekeeper as well as a chief modulator against local
immune cells [48]. Human decidualized ESCs selectively recognize developmentally im-
paired human embryos and inhibit secretion of key implantation mediators (e.g., IL-1β and
heparin binding epidermal growth factor) and immunomodulators (e.g., IL-5, -6, -10, -11,
-17, and eotaxin), whereas undifferentiated ESCs fail to recognize them [47]. Mid-secretory
endometrial biopsies from 10 women with recurrent pregnancy loss showed decreased
PRL mRNA [49]. Further, differentiated ESCs from women with recurrent pregnancy loss
demonstrate attenuation in PRL mRNA [49]. Furthermore, ESCs from women with recur-
rent miscarriage have a higher migratory response to trophoblast spheroids than ESCs from
normally fertile women [50]. Increasing evidence suggests that impaired decidualization
predisposes to late implantation, causes quality control malfunction of embryo develop-
ment, and induces early placental insufficiency, regardless of the embryonic karyotype;
thus, recurrent pregnancy loss is likely to be the result of these processes. In other words,
spontaneous decidualization is not only necessary for the development of placenta, but
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also for the ability to perceive, respond to, and eliminate the implantation of defective
embryos [51] (Figure 2).
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Figure 2. Decidualization of human endometrial stromal cells (ESCs) is essential for reproductive success. During the
secretory phase, decidualized ESCs interact with all cells in the endometrium, including uterine natural killer (uNK) cells,
which are representative local immune cells, vascular endothelial cells, and blastocysts. This decidual process leads to
successful pregnancy, i.e., embryo implantation, balanced trophoblast invasion, spiral artery remodeling, establishment of
the placenta, and the maintenance of pregnancy. Therefore, aberrant decidualization results in reproductive and perinatal
impairment, including implantation failure, miscarriage, preeclampsia, fetal growth restriction, and placenta accreta. EVT,
extravillous trophoblast cell.

5. Uterine Natural Killer (uNK) Cells in Human Endometrium

The essential roles of decidualization are to avoid the embryo from maternal immuno-
logical refusal and to provide a nutritional environment for the developing embryo before
placentation [52]. The major secretory components from ESCs, PRL and IGFBP-1, not only
stimulate trophoblast growth, but also prevent maternal immunological rejection, modulate
local immune cells, including uNK cell survival, and promote angiogenesis [8,16,53]. uNK
cells are the most prominent immune cells in the endometrium [54] and make up ~70% of
all white blood cells in the human endometrium during the secretory phase and early preg-
nancy [55,56]. In contrast to peripheral NK cells that are predominantly CD56dim, CD16+,
uNK cells are mainly CD56bright, CD16- and are poorly cytotoxic lymphocytes [56]. uNK
cells have important roles in the establishment and maintenance of early pregnancy, such
as promotion of angiogenesis in decidua, remodeling of spiral arteries, and trophoblast
invasion [56–58]. Recent studies indicate that human uNK cells co-operating with decid-
ual cells eliminate senescent decidual cells which resists P4 and pro-senescent decidula
response associates with recurrent pregnancy loss [48,59,60]. These results provide new
insights into the pivotal role of innate immune cells in preventing the destruction in human
endometrium caused by excessive senescence occurring in early pregnancy.
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Generally, the function of NK cell is controlled via their membrane NK cell receptors
that bind to major histocompatibility complex (MHC) class I molecules and non-MHC
ligands [61]. After implantation, placental extravillous trophoblast cells (EVTs) invade the
decidua and migrate towards the spiral artery [62]. Although sufficient changes of the
arteries are required, excessive invasion must be prevented to ensure appropriate allocation
of resources to the mother and baby [63]. Hence, the invasion of EVTs needs to be properly
controlled. In cases with placenta accreta where the placenta implants on a previous
Caesarean section scar, i.e., in the absence of decidua, uncontrolled and life-threatening
trophoblast invasion occurs, thus identifying the pivotal role of the decidua [64]. Fetal
EVTs have a unique human leukocyte antigen (HLA) profile: they do not have class I
HLA-A and HLA-B, or class II molecules, which are dominant T cell ligands [65,66], but
do have polymorphic HLA-C class I molecules, HLA-E, and HLA-G [67]. Disturbance of
antigen presentation on EVTs is induced based on the absence of these HLA molecules [67];
therefore, their absence facilitates one of the key mechanisms to avoid T-cell recognition of
invading fetal cells. Moreover, EVT HLA ligands interact with NK cell receptors that are
expressed on uNK cells [28].

For instance, uNK cells express killer cell immunoglobulin-like receptors (KIRs),
including inhibitory KIR2DL1, KIR2DL2, and KIR2DL3 receptors, in addition to activating
KIR2DS1 and KIR2DL4 receptors, some of which bind to HLA-C molecule [68–70] (Figure 3).
Allorecognition of paternal HLA-C by maternal KIRs may influence trophoblast invasion
and vascular remodeling, with subsequent effects on placental development and pregnancy
outcome [71,72]. Pregnancy disorders, including recurrent pregnancy loss, pre-eclampsia,
and fetal growth restriction share a common primary pathogenesis of defective arterial
transformation, assisted by the same combination of maternal KIRs and fetal HLA-C
genotypes [68,73]. A combination of “a paternally derived HLA-C2 epitope” and “increased
frequency of KIR AA genotype in mother” is associated with the pregnancy disorders [71].
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Figure 3. Molecular interactions among extravillous trophoblast cells, uterine natural killer (uNK) cells, and endometrial
stromal cells. Extravillous trophoblast cells express human leukocyte antigen (HLA)-C, HLA-G, and HLA-E class I molecules
and interact with killer cell immunoglobulin-like receptors (KIRs), activating C-type lectin receptor CD94/NKG2C, and
leukocyte immunoglobulin-like receptor, subfamily B (LILRB1) on the surface of uNK cells to avoid immunological
recognition. Endometrial stromal cells secrete interleukin (IL)-15 and galectin-9 (GAL9) to suppress inflammatory reactions
of uNK cells via IL-15RB/G and Hepatitis A virus cellular receptor 2 (HAVCR2). EVT secretes progesterone (P4) and
profilin-1 to regulate ESC decidualization.
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It is well known that HLA-E binds to C-type lectin receptor CD94/NKG2 heterodimers,
inhibitory NKG2A, and activating NKG2C [74,75]. CD94/NKG2A is highly prevalent on
the uNK cells with strong expression [76] (Figure 3). As a result, the total CD94/NKG2
interaction with HLA-E inhibits the cytotoxic effects of decidual NK cells [76].

HLA-G binds to members of the leukocyte immunoglobulin-like receptor, subfamily
B (LILRB) family, including LILRB1 and LILRB2 [77]. LILRB1 functions as an inhibitory
receptor for peripheral blood NK cells, whereas it acts as an activating receptor in the
decidua [78]. The LILRB1 receptor is found on approximately 30%–40% of uNK cells.
HLA-G binding to LILRB1/2 on responding antigen-presenting cells (APCs) inhibits the
proliferation of allogeneic lymphocytes [79]. HLA-G is the only HLA-I molecule that forms
dimers with β2-microglobulin to increase avidity against LILRB1 in the endometrium. Thus,
decidual APCs are suppressed by a placental-specific signal from an HLA-G-LILRB1/2
interaction [79] (Figure 3).

Cultured EVTs from human chorionic villi explants secrete progesterone [80]. In vitro
EVT secretes profilin-1, which acts to promote ESC decidualization via the down-regulation
of ALOX5 in ESC [81]. Profilin-1 also down-regulates ALOX5 in macrophages where it
likely regulates cytokine production and induces immune tolerance [81] (Figure 3).

6. IL-15

As uNK cells arise from maternal endometrial progenitors, their repertoires form
in response to local signals from fetal EVTs as well as endometrial immune, epithelial,
glandular, and stromal cells in human [56,71]. IL-15 that is secreted in the secretory
phase plays a main role in postovulatory restitution of peripheral blood NK cells into the
human endometrial tissues [82] (Figure 4). IL-15-deficient mice are depleted for uNK cells,
indicating that uNK cells require IL-15 for their development [83]. Moreover, incubation
in decidual ESC conditioned medium supplemented with IL-15 and stem cell factors
converts peripheral blood NK cells to cells that phenotypically resemble decidual uNK
cells in human [84]. Moreover, uNK cells are activated by IL-15 secreted from differentiated
human decidual cells [59]. Then, activated uNK cells eliminate senescent endometrial cells
via exocytosis of cytotoxic granules [59]. However, it is unclear whether uNK cells originate
from endometrial precursors or are replenished from peripheral NK cells. Although IL-15
is essential for uNK cell differentiation and is secreted from ESCs via P4 stimulation, uNK
cells and other endometrial white blood cells do not express the P4 receptor in human [85].

IL-15 is a 14–15 kDa polypeptide and a member of the 4-α-helix bundle cytokine
family [86]. Generally, the intracellular effects of IL-15 are mediated via a heterotrimetric
membrane receptor comprising IL-2RB, IL-2RG, and IL-15RA [87]. Several studies indicate
that IL-15 plays various important roles in NK cell biology via binding these receptors [88].
Previous quantitative polymerase chain reaction (PCR) studies show that IL15 expression
is significantly higher during the secretory phase in the human endometrium [10,25].
Histological analysis using human endometrial tissues also indicates that IL15 increases
in the secretory phase [10] and is observed in many ESCs in the endometrium during this
phase [10]. Moreover, cultured human ESCs increase IL-15 secretion during the progestin-
induced decidualization [89]. A customized microarray (endometrial receptivity array)
has defined IL15 as a significant indicator of the endometrial window of implantation [90].
Recent single cell analysis from human first-trimester placentas further suggests that the
interaction between IL-15 and a heterodimetric receptor IL-15RB/G is one of the critical
events between decidual stromal cells and decidual NK cells [28] (Figure 3). Taken together,
these observations indicate that IL-15 produced by ESCs has a critical role in regulation of
the differentiation and function of uNK cells in human endometrium.
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7. Heart- and Neural Crest Derivatives-Expressed Protein 2 (HAND2): A key Decidua
Transcription Factor for IL15 Transcription

To date, although some decidua transcription factors have been reported, such as
PGR [91,92], homeobox A10 [93,94], forkhead box O1 (FOXO1) [95,96], the STAT fami-
lies, and HAND2 [97,98], in both humans and animals, transcription factors that directly
affect IL15 transcription in human ESCs have not been identified. However, a recent
study confirmed that HAND2 directly upregulates human IL15 transcription in ESCs [10]
(Figure 4).

In murine fetal development, HAND2 was originally identified as a transcription fac-
tor required for embryonic heart development [99,100]. Further, in the reproductive field,
HAND2 has a crucial role in the receptivity and implantation of embryos in mice [97,101].
During decidualization, HAND2 expression in human ESCs is altered by medroxyproges-
terone, a representative progestin, in a dose- and time-dependent manner [102]. PGR re-
cruits to the promoter region of the HAND2 locus and PGR knockdown induces differential
gene expression during decidualization in human [103]. Furthermore, the PGR antago-
nist, RU486, blocks the induction of HAND2 mRNA expression in human ESCs [102,104].
Therefore, these data suggest that PGR directly regulates HAND2 transcription.

HAND2 expression is also significantly increased during the secretory phase in the
human endometrium, as determined by quantitative PCR and histological analysis [10].
Moreover, HAND2 and IL15 transcription in the human endometrium showed strong
positive correlation during the menstrual cycle [10]. In human ESCs, HAND2 silencing
reduces both morphological differentiation and decidual-specific factors, including PRL,
fibulin-1, FOXO1A, tissue inhibitor of metalloproteinase-3, and IL15 [98]. Hence, HAND2
is a master mediator of P4 action in human ESC decidualization. A recent study identified
a CCTCTGG sequence as a HAND2 motif in the upstream (promoter) region of the human
IL15 gene; HAND2 directly upregulates IL15 transcription in ESCs through this motif [10]
(Figure 4).
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8. T Cell

CD4 + CD25 + FOXP3 + regulatory T cells (Tregs), which are formerly known as
suppressor T cells, and a subpopulation of T cells that modulate the immune system,
maintain tolerance to self-antigens, prevent autoimmune disease, and increase in the
decidua at implantation site and in early pregnancy until mid-gestation of human [105].
Tregs were originally identified in mice as immunosuppressive and generally suppress or
downregulate induction and proliferation of effector T cells [106]. Tregs are important in
mediating maternal immune tolerance to the allogeneic fetus during embryo implantation
and early pregnancy, but may not be necessary for maintenance of the late allogeneic
pregnancy in mammals [107–111]. Treg cells are critical for maternal tolerance of the
embryo, embryolemma, and placenta in mice, and the Treg cell pool expansion via antigen-
specific and nonspecific pathways allows their suppressive effects to be exerted during the
critical peri-implantation phase of pregnancy [112]. In human beings, the accumulation
of Treg cells in the decidua and the elevation in maternal blood are found from early in
the first trimester [112]. In women, insufficient numbers of Treg cells or their functional
deficiency have been linked to infertility, miscarriage, and preeclampsia [112]. Studies
conducted in animal models have shown that depletion of Treg cells leads to the greatest
elevation in miscarriage rates, which were associated with the expansions of activated CD4+
and CD8+ T cells occurring only in the uterine draining lymph nodes [113]. Women with
recurrent pregnancy loss have decreased Treg cells even in their peripheral blood compared
to normal women [105,114]. In humans, the incidence of repeated spontaneous abortion
(RSA) elevates with decreased or increased levels of Treg or Th17 cells, respectively [115].
A higher Th17/Treg cell ratio at the fetal-maternal interface was observed in a woman with
an unknown RSA history [116].

Although no change in the CD8+ cell number was found in the human endometrium,
endometrial CD8+ T cytotoxicity is maintained during the proliferative phase but that activ-
ity is suppressed by the decidua microenvironment during the secretory phase [28,117,118].
There is a general agreement that pregnancy is associated with Th2 dominance, and Th1
immune response is associated with embryonic rejection in human [119]. Intracellular Th1
cytokine expressions are increased over Th2 cytokine expressions in women with RSA and
infertility of multiple implantation failures [120].

A recent report showed that the interaction between all cytotoxic maternal T or NK
cells and fetal trophoblast cells are blocked in the human decidua microenvironment [28].
In humans, specifically, high levels of PDL1, a ligand for PD1, that suppresses the damaging
cells was found in EVTs, which first invade the decidual ESCs with high galectin 9 (GAL9;
also called LGALS9) expression [28]. GAL9, secreted by human ESCs, interacts with
their respective inhibitory receptors and Hepatitis A virus cellular receptor 2 (HAVCR2),
which is expressed by subsets of uNKs [28], thereby enabling decidual ESCs to suppress
inflammatory responses (Figure 3). In mice, HAVCR2, a newly defined regulatory factor,
downregulates T helper (Th)1 responses through transduction of apoptosis signaling
by engaging GAL9 [121,122]. Thus, HAVCR2 may regulate the Th1-Th2 balance even
in the human endometrium. The percentage of uNK cells with HAVCR2 expression is
decreased in human miscarriages and abortion-prone murine models [123]. Moreover,
decreased Th2-cytokine and increased Th1-cytokine levels are observed in uNK cells with
HAVCR2 expression, but not in those without HAVCR2 expression from human and
murine miscarriages [123]. Hence, the decidual immunological microenvironments could
potentially suppress inflammatory reactions that are induced by trophoblast invasion. It
has been suggested that macrophages that secrete GAL9 ligand are activated by Th1 cells
expressing HAVCR2 through HAVCR2-GAL9 interactions with an unidentified GAL9
receptor on the macrophage cell surface in mice [124]. Therefore, the next research step
using human samples should focus on experiments with addition of HAVCR2 peptides to
the medium or HAVCR2-coated culture dishes to elucidate HAVCR2-GAL9 interactions
between uNK and ESCs (Figure 5).
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Figure 5. Endometrial stromal cells (ESCs) may be regulated by a Hepatitis A virus cellular receptor 2 (HAVCR2)-
galectin 9 (GAL9) interaction via unknown receptors on ESCs. (A) Decidual ESCs increase secretion of the ligand GAL9
(I). Secreted GAL9 interacts with HAVCR2 on uterine natural killer (uNK) cells (II). These interactions induce the deactivation
of uNKs (III). As a result, immune tolerance, apoptosis, and eliminations may occur, similar to that in Th1-macrophage
interactions. (B) Feedback regulations of the HAVCR2-GAL9 interaction via known or unknown membrane proteins are
suggested in ESCs through uNKs (IV).

9. Other Immune Cells

Several other immune cells exist in the human superficial endometrial layer and
mature gradually from the proliferative to ovulatory phase during the menstrual cycle.
In addition to the predominant uNKs and T cells, macrophages, mast cells, neutrophils,
dendritic cells (DCs), and B cells are also present in the human endometrium and may
participate in immune tolerance and embryo implantation [125]. In women, the percentage
of endometrial immune cells varies according to the phases of menstrual cycle [125].
Immune cells make up 30% of the total number of cells in the human endometrium
during early pregnancy [126,127]. Although uNKs and other endometrial white blood cells
apparently respond to P4, these leukocytes do not express PGR [85]. P4 exerts its effects
through ESCs that express PGRs and may indirectly communicate with immune cells via
ESC-secreted soluble factors, including cytokines in human.

In women, although a very low number of CD45RA+ B cells is found all the time
during the cycle [118], whether or not these cells produce immunoglobulin within the
tissue has not been identified yet.

CD68+ macrophages are also found during all phases of the menstrual cycle with
increased numbers during the proliferative phase in human [118,128]. They are found
scattered all over the human endometrium, especially around the glands [129]. The number
of these macrophage is significantly increased prior to menses during the secretory phase,
and a notable increase is found at the implantation site in human [130,131]. The density
of human endometrial mature CD83+ DCs is significantly lower than that of immature
CD1a+ DCs [130]. However, there is no difference in the number of CD1a+ and CD83+

DCs in the fundus and isthmus of the human uterus [130]. During implantation and
subsequent pregnancy in mice, both macrophages and DCs conglomerate around the
decidua and in the uterus [132]. Then, uterine DCs start to produce transforming growth
factor (TGF)-β1 [133], which promotes Treg cells and suppresses cytolytic CD8+ T cells in
mice [134]. These studies suggest that successful decidualization and embryo implantation
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need endometrial DCs in animals. Even in humans, the proportion of DC1 cells is increased
compared to that of DC2 cells [28]. Additionally, co-expression of programmed cell death
protein 1 (PD1) has also been found [28], suggesting that the functions of decidual CD8+

T cells might be suppressed by DC1 cells in human. PD1 regulates immune responses
as an immune-checkpoint protein [135–138]. Therefore, it is suggested that local T-cell
activation in the human endometrium is limited by uterine DCs [28]. On the other hand,
the differentiation of Treg cells are induced by tolerogenic DCs having immunosuppressive
properties in the endometrium and other tissues in human [139–141]. Additionally, human
endometrial mast cells are perpetually found during the menstrual cycle, and that mast
cell activation is most pronounced immediately before menstruation [142].

Neutrophils have been detected in the human endometrium based on the presence of
the neutrophil-specific protease elastase and their morphology [143]. CD11bbright, CD66b+,
and CD16+ cells in the human endometrium are defined as endometrial neutrophils [144].
Neutrophils are almost undetectable in the normal human endometrium; however, their
proportion rapidly reaches 6%–15% during the perimenstrual stage [143]. In patients
with high-dose oral progestin administration, increased neutrophils are also found in
the endometrial breakdown areas [145]; in patients with implanted levonorgestrel, they
reached densities similar to those seen in the menstrual endometrium [146]. Eosinophils
have also been detected with eosinophil cationic proteins in the human endometrium [143].
Like neutrophils, eosinophils are absent in the normal human endometrium during most
of the menstrual cycle, but drastic and immediate increase in their number occurs prior to
menstruation [142,146].

10. Conclusions

In this paper, we investigated immune tolerance in human endometrium and decidua
mainly during implantation and early pregnancy. The role of uNK cells differentiation and
activation promoted by decidual ESCs secreted-IL15, and the essential role of Treg cells in
the decidua at implantation site from early pregnancy to mid-gestation are becoming more
and more obvious.

Meanwhile, HAND2 acts as a master mediator of P4 action in decidualization for ESCs.
Further investigations into the factors regulated by HAND2, HAND2 post-translational
modifications, and their interactions will help understand the pathogenesis of immune
tolerance in the endometrium. It is expected that these studies will ultimately lead to
the elucidation of the mechanisms of implantation failure and embryo miscarriage with
unknown origin and result in therapeutic development.
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