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Abstract: Diabetic sensorimotor polyneuropathy (DSPN) is a major complication in patients with
diabetes mellitus (DM), and early detection or prediction of DSPN is important for preventing
or managing neuropathic pain and foot ulcer. Our aim is to delineate whether machine learning
techniques are more useful than traditional statistical methods for predicting DSPN in DM patients.
Four hundred seventy DM patients were classified into four groups (normal, possible, probable, and
confirmed) based on clinical and electrophysiological findings of suspected DSPN. Three ML methods,
XGBoost (XGB), support vector machine (SVM), and random forest (RF), and their combinations were
used for analysis. RF showed the best area under the receiver operator characteristic curve (AUC,
0.8250) for differentiating between two categories—criteria by clinical findings (normal, possible,
and probable groups) and those by electrophysiological findings (confirmed group)—and the result
was superior to that of linear regression analysis (AUC = 0.6620). Average values of serum glucose,
International Federation of Clinical Chemistry (IFCC), HbA1c, and albumin levels were identified as
the four most important predictors of DSPN. In conclusion, machine learning techniques, especially
RF, can predict DSPN in DM patients effectively, and electrophysiological analysis is important for
identifying DSPN.

Keywords: machine learning; diabetes mellitus; diabetic sensorimotor polyneuropathy; random
forest; prediction; electrophysiology

1. Introduction

Type 2 diabetes mellitus (T2DM), the most common form of diabetes, is a major dis-
ease in humans worldwide [1], and its incidence is increasing with aging and lifestyle
changes [2]. There is evidence that half of T2DM patients experience neurological disorders
and a progressive disability of nerve fibers in the course of diabetes, and serious neurologi-
cal symptoms lead to poor quality of life [3]. Diabetic sensorimotor polyneuropathy (DSPN)
is a common neurological complication resulting from neuroinflammation, mitochondrial
dysfunction, and apoptosis due to hyperglycemia, dyslipidemia, and altered insulin sig-
naling, and leads to various symptoms and signs, including neuropathic pain, decreased
sensation, and foot ulceration [4,5]. The management of DSPN is not limited to controlling
hyperglycemia, and multidisciplinary programs, such as patient education, lifestyle modi-
fication, and physical activity, are required to control various physical and psychological
symptoms and foot complications [6]. Therefore, early detection and prediction of DSPN is
very important in DM patients.
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The classification of DSPN has been defined in previous studies [7–10]. Typical DSPN
is the most common form in DM patients and chronic, symmetrical, and length-dependent
sensorimotor polyneuropathy [11]. Tesfaye et al. defined the minimal criteria for typical
DSPN to estimate severity: possible, probable, confirmed, and subclinical based on clinical
symptoms and signs and electrophysiology [7]. Numerous staging and scoring systems
have been developed to assess the severity of DSPN; however, choosing the optimal scoring
system is confusing because the results of previous studies are different regarding which
system is effective [12–14]. Electrophysiological assessments, including nerve conduction
studies (NCS), are important for diagnosing DSPN objectively [15,16]; however, special
equipment is needed, and these assessments cannot be performed routinely for patients
without clinical symptoms or signs because of the discomfort caused by electrical stimu-
lation or needle insertion. Because the pathophysiology of diabetic neuropathy reveals a
broad spectrum of axonal involvement and segmental demyelination, electrophysiological
findings also indicate both axonal degeneration and demyelination [17]. Numerous predis-
posing factors for the development of DSPN have been found [18–21]. DSPN is significantly
correlated with poor glucose control [18,19], longer duration of diabetes, poor metabolic
management, smoking and the presence of cardiovascular disease, and DSPN severity is
correlated with hypertension, dyslipidemia, microalbuminuria, alcohol consumption, and
body mass index [20,21]. Most previous studies on the prediction of DSPN used various
statistical methods. While traditional statistical methods draw only population inferences
from clinical information, recently developed machine learning (ML) methods focus on
developing predictive models from general-purpose learning algorithms [22]. Therefore,
ML is considered to be a better way to predict DSPN in DM patients.

ML is a computationally broad and powerful data mining technique that can accom-
modate a large set of proposed variables as inputs to identify factors related to the results of
interest [23], and ML develops algorithms that can learn patterns and decision rules, such
as early detection, prediction and diagnosis, from data that are attributable to the medical
field. Recent studies have used various ML techniques to predict complications, including
retinopathy, nephropathy, foot ulceration and DSPN, in T2DM patients [24–28], and ML
was effective for prediction of DSPN severity [24], 3-year complication developments [25],
high-risk retinopathy, and numerous complications in nonadherent T2DM [27]. Haque
et al. found that machine learning algorithms, especially random forest (RF), were effective
in predicting DSPN severity based on the scoring system using Michigan Neuropathy
Screening Instrumentation [29], which is not used widely, and that study assessed only
type 1 diabetes mellitus (T1DM) patients.

The purpose of the current study was to delineate whether machine learning tech-
niques are more useful than traditional statistical methods for predicting DSPN in type
2 DM patients, and whether the widely used classification for DSPN, which is based on
clinical and electrophysiological findings, is amenable to the use of predictive models.

2. Materials and Methods
2.1. Subjects

Medical records of patients with T2DM who visited Dankook University Hospital for
the management of DM were collected, and 746 subjects were initially enrolled (Figure 1).
Patients were diagnosed with T2DM by a physician at the Department of Endocrinology,
based on the guideline of the American Diabetes Association [30]. Patients who did not
undergo electrophysiological studies (n = 206) or had incomplete clinical data (n = 53) were
excluded at first, and then patients who had other types of polyneuropathies, including
heavy alcohol use (n = 3), hepatic failure (n = 2), renal failure (n = 4), chemotherapy for
malignancy (n = 7), and typical musculoskeletal anomalies (n = 1), were subsequently
excluded. As a result, 470 patients were included in the study (Figure 1). This study
was approved by the Dankook University Hospital Institutional Review Board (IRB No.
2019-12-009).
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Figure 1. Flow and grouping of patients.

2.2. Classification

Subjects were classified into 4 groups according to definitions of minimal criteria
for typical DSPN based on the area of clinical care by Tesfaye et al. [7]: normal, possible,
probable, and confirmed. The normal group (n = 93) consisted of subjects without any
neurological symptoms or signs as previously described [7], and the possible group (n = 91)
comprised subjects with one of the neurological symptoms or signs. The probable group
(n = 13) comprised subjects with two or more neurological symptoms or signs. The
confirmed group (n = 273) consisted of subjects with abnormal electrophysiological findings



J. Clin. Med. 2021, 10, 4576 4 of 18

and neurological symptoms or signs. Electrophysiological assessments were performed
according to the guidelines of the American Academy of Neurology [16], and NCS and
electromyography of the upper and lower extremities were conducted. According to
electrophysiological findings, the confirmed group was divided into two subgroups: A
demyelinated subgroup (n = 87) with subjects who predominantly showed demyelination
and a mixed subgroup (n = 186) with subjects who showed abnormal spontaneous activities
during needle electromyography and demyelination (Figure 1).

2.3. Clinical Data

All subjects’ clinical information, such as baseline characteristics, past medical history,
current health status, diabetic complications, and medications, was analyzed. Baseline
characteristics included age, sex, weight, height, body mass index (BMI), disease duration
(from initial diagnosis of T2DM to the date of the last follow-up at the hospital), smoking
(current smoking, past smoking, or nonsmoking), family history of T2DM, and diabetes
education. Past medical history included hypertension (HTN), dyslipidemia, and history
of stroke and coronary artery disease. HTN was defined as systolic blood pressure >
140 mmHg, diastolic blood pressure > 90 mmHg or the use of antihypertensive medica-
tions. Diabetic retinopathy was included in diabetic complications. Medications for DM,
HTN and dyslipidemia were included; medications for DM were metformin, sulfonylureas,
thiazolidinediones (TZDs), dipeptidyl peptidase-4 inhibitors (DPP4is), sodium-glucose
cotransporter-2 inhibitors (SGLT2is), and insulin; medications for HTN were calcium chan-
nel blockers (CCBs), angiotensin-converting-enzyme inhibitors (ACEis), angiotensin II
receptor blockers (ARBs), beta blockers (BBs) and thiazides; and medications for dyslipi-
demia were statins. BMI was calculated as weight in kilograms divided by the square of
height in meters.

2.4. Laboratory Data

A total of 432 laboratory codes from blood and urine tests were obtained from all
subjects, and we divided subjects into a control group (n = 197) with normal electrophysi-
ological findings and a test group (n = 273) with abnormal electrophysiological findings
within the criteria of DSPN to identify the optimal number of laboratory codes (Figure 2).
Forty-eight codes could be obtained for more than half of the subjects (n = 98) in the control
group, and 62 codes could be obtained for more than half of the subjects (n = 135) in the
test group (Figure 2a). When the results of the two groups were combined, 39 laboratory
codes were ultimately selected (Figure 2b). Each laboratory code was assessed several
times during the follow-up periods (range: 31–18368 days, mean value: 5202.9 days), and
various changes in the values were observed within the period (Figure 2c).

Three methods were used to standardize the values of laboratory codes for ML analysis.
Method 1 refers to the average value of each laboratory code during the follow-up period,
method 2 is the first value of each laboratory code when T2DM was initially diagnosed
while visiting the hospital, and method 3 refers to the pattern of laboratory code changes.
The pattern was defined as −1, 0, and 1 as follows. If the initial value was 10% or more
lower than the overall average of the values excluding the initial value, it was considered
−1; if the change was less than 10%, it was regarded as 0; and if the initial value was greater
than 10% of the overall average of the values excluding the initial value, it was regarded
as 1.
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Figure 2. Selection of laboratory codes for machine learning analysis. (a) The distribution of laboratory codes according to
tested subject numbers in the control and test groups, (b) lists of 39 selected laboratory codes, (c) graphs showing the changes
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in 39 selected laboratory codes at the initial and follow-up periods. Abbreviations: ALP = alkaline phosphatase; ALT (GPT) =
alanine aminotransferase (glutamic pyruvate transaminase); AST (GOT) = aspartate aminotransferase (glutamic oxaloacetic
transaminase); BST = blood sugar test; BUN = blood urea nitrogen; Diff = differential; T4 = thyroxine; Hb = hemoglobin;
HbA1c = hemoglobin A1c; HCT = hematocrit; HDL = high-density lipoprotein cholesterol; IFCC = International Federation
of Clinical Chemistry; LDL = low-density lipoprotein cholesterol; MCH = mean corpuscular hemoglobin; MCHC = mean
corpuscular hemoglobin concentration; MCV = mean cell volume; PLT = platelet; RBC = red blood cell; TG = triglyceride;
TSH = thyroid-stimulating hormone; SG = specific gravity; WBC = white blood cell.

2.5. Machine Learning Analysis

First, to define which variable set will be used for the classification model, a random
forest (RF) model trained by different variable combinations was tested. As described
above, there are four different variable sets: clinical data and methods 1, 2, and 3 for
laboratory data. RF was trained with all possible combinations of four variable sets.
Because of the limitation of the sample size, the sample was divided into ten groups, and
each group was used as the test set. For each test set, the remainder of the samples were
divided into a training set and a validation set at a 4:1 ratio by preserving the percentage of
samples for each class. Fivefold cross-validation was performed for each test set, and the
final performance was defined as the average of the performance over 10 iterations [31].
The combination set of clinical data and methods 1 and 3 for laboratory data (total, 105
variables) showed the best performance in cases of classifying patients [area under the
curve (AUC) = 0.8350 and accuracy = 74.85%, Table 1; therefore, the combination set was
used as an input variable for model training.

Table 1. Identification of the selection of data and methods for machine learning analysis of subjects.

Feature Set Used Lab Feature Extraction Method Feature Counts AUC Accuracy (%)

Laboratory data only

Method 1 39 0.7954 73.74
Method 2 39 0.7790 71.53
Method 3 36 0.7226 65.32

Method 1 + 3 75 0.8095 73.83
Method 2 + 3 75 0.7950 72.26

Method 1 + 2 + 3 114 0.8012 73.06
Clinical data only - 30 0.7493 69.79

Laboratory and clinical data

Method 1 69 0.8284 76.09
Method 2 69 0.8096 72.68
Method 3 66 0.8100 72.98

Method 1 + 3 105 0.8350 74.85
Method 2 + 3 105 0.8141 73.02

Method 1 + 2 + 3 144 0.8219 74.21

Note: method 1 = average value of each laboratory code during the follow-up period; method 2 = the first value of each laboratory code
when T2DM was diagnosed initially; method 3 = the pattern of laboratory code changes (−1, 0, or 1), Abbreviations: AUC = area under
the curve.

The DSPN predictor model was trained with the input variables identified above. The
model performance was tested with the same method used when identifying the input
variables. Three ML algorithms were used: XGBoost (XGB) [32], support vector machine
(SVM) [33], and random forest (RF) [23], which were used alone or in combinations of two or
more, that is, an ensemble of models for improvement of the model performance by fusion
of the contents learned by different models and reduction of overfitting problems [34].
Among the various methods, the model averaging method for averaging the predicted
values of several models was used in this work. AUC, accuracy, sensitivity, and specificity
were used as performance metrics.

Finally, the feature importance of the best model among 7 models (XGB, SVM, RF,
ensemble of XGB and SVM, ensemble of XGB & RF, ensemble of SVM and RF and ensemble
of XGB and SVM and RF) was extracted from each model. If the best model was an
ensemble of more than two models, the average feature importance obtained from each
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model was used as the feature importance of the ensemble model. Next, the models
were retrained and evaluated with input features by adding features one by one, from
the most to the least important. This was done to select the best set of features for DSPN
prediction based on feature importance, and the performance was better when using the
top 69 features for AUC and top 38 features for accuracy rather than all 105 features.

2.6. Statistics

To compare the predictability of ML results, traditional statistical methods were also
carried out. All statistical analyses were performed with SPSS 26 (IBM, Armonk, NY, USA).
The Shapiro-Wilk test was performed to assess the normal distribution of all quantified
histological and functional data from each group. Categorical parameters were compared
by likelihood ratio, and numerical parameters among groups were compared by one-way
analysis of variance (ANOVA) and the Games–Howell post hoc test. Logistic regression was
performed using statistically significant parameters and parameters that were identified to
be important in previous studies, and the AUC, accuracy, sensitivity, and specificity were
analyzed. p-values less than 0.05 were considered to indicate statistical significance.

3. Results
3.1. Baseline Characteristics among the Four Groups

When comparing baseline characteristics among the four groups, disease duration
was significantly longer in the confirmed group than in the normal and possible groups
(4543.18 ± 2849.75 days and 4464.03 ± 2934.87 days vs. 5686.67 ± 3648.57 days and
in the normal, possible, and confirmed groups, respectively), and height was higher in
the confirmed group than in the normal group (1.61 ± 0.09 m vs. 1.64 ± 0.09 m in the
normal and confirmed groups, respectively). BMI and the initial values of BST and HbA1c
were also different between the confirmed group and normal group and between the
confirmed group and possible group (Table 2). The incidence of diabetic retinopathy was
higher in the confirmed group (51.6%) than in the other groups (23.1–28.6%). Age; sex;
weight; incidence of hypertension and dyslipidemia; smoking habit; past medical history of
coronary artery disease, cerebrovascular disease, and stroke; and number of subjects who
received diabetes education were not different among the groups (Table 2). Medications for
diabetes control were different among groups; metformin (89.2–94.5%), sulfonylureas (68.1–
68.8%), dipeptidyl peptidase-4 inhibitors (66.7–71.4%), and sodium-glucose cotransporter-2
inhibitors (17.2–20.9%) were used by a higher proportion of subjects in the normal and
possible groups, whereas the proportion of subjects in the confirmed group who used
insulin (65.6%) was higher than that in other groups (Table 2).

Table 2. Baseline characteristics of participants.

Normal (A)
(n = 93)

Possible (B)
(n = 91)

Probable (C)
(n = 13)

Confirmed (D)
(n = 273) p-Value Post Hoc

Disease duration (days) 4543.18 ± 2849.75 4464.03 ± 2934.87 4933.46 ± 3463.31 5686.67 ± 3648.57 0.004 A<>D, B<>D
Age (years) 51.33 ± 12.30 49.74 ± 11.51 53.85 ± 8.92 51.32 ± 14.91 0.676
Sex (male) 48 (51.6) 48 (52.7) 5 (38.5) 176 (64.5) 0.027
Height (m) 1.61 ± 0.09 1.62 ± 0.09 1.59 ± 0.09 1.64 ± 0.09 0.006 A<>D
Weight (kg) 66.10 ± 11.76 66.26 ± 11.14 62.21 ± 11.41 64.29 ± 11.92 0.308

BMI (kg/m2) 25.33 ± 3.81 25.26 ± 3.48 24.65 ± 4.07 23.82 ± 3.66 0.001 A<>D, B<>D
Initial BST 211.78 ± 98.75 196.51 ± 87.62 178.21 ± 104.57 249.06 ± 117.68 0.000 A<>D, B<>D

Initial HbA1c 8.69 ± 2.18 8.72 ± 2.06 9.03 ± 3.09 9.59 ± 2.54 0.002 A<>D, B<>D
DM retinopathy 25 (26.9) 26 (28.6) 3 (23.1) 141 (51.6) 0.000

Hypertension 54 (58.1) 56 (61.5) 8 (61.5) 186 (68.1) 0.304
Dyslipidemia 76 (81.7) 70 (76.9) 10 (76.9) 197 (72.2) 0.29

Smoking
No 61 (65.6) 57 (62.6) 12 (92.3) 163 (59.7)

0.172Current 18 (19.4) 19 (20.9) 1 (7.7) 57 (20.9)
Past smoking 14 (15.1) 15 (16.5) 0 (0.0) 53 (19.4)

Family history of DM 28 (30.1) 51 (56.0) 4 (30.8) 106 (38.8) 0.003
CAD Hx 25 (26.9) 24 (26.4) 6 (46.2) 93 (34.1) 0.248
CVD Hx 43 (46.2) 33 (36.3) 6 (46.2) 134 (49.1) 0.205
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Table 2. Cont.

Normal (A)
(n = 93)

Possible (B)
(n = 91)

Probable (C)
(n = 13)

Confirmed (D)
(n = 273) p-Value Post Hoc

Stroke Hx 25 (26.9) 16 (17.6) 2 (15.4) 63 (23.1) 0.427
Diabetes education 43 (46.2) 36 (39.6) 8 (61.5) 128 (46.9) 0.412

Medications
Metformin 83 (89.2) 86 (94.5) 11 (84.6) 201 (73.6) 0.000

Sulfonylureas 64 (68.8) 62 (68.1) 5 (38.5) 159 (58.2) 0.048
TZDs 11 (11.8) 5 (5.5) 1 (7.7) 3 (13.6) 0.158

DPP4is 62 (66.7) 65 (71.4) 8 (61.5) 147 (53.8) 0.011
SGLT2is 16 (17.2) 19 (20.9) 1 (7.7) 21 (7.7) 0.004
Insulin 37 (39.8) 32 (35.2) 8 (61.5) 179 (65.6) 0.000
CCBs 32 (34.4) 26 (28.6) 7 (53.8) 104 (38.1) 0.204
ACEis 10 (10.8) 10 (11.0) 1 (7.7) 32 (11.7) 0.965
ARBs 51 (54.8) 54 (59.3) 7 (53.8) 156 (57.1) 0.933
BBs 21 (22.6) 24 (26.4) 6 (46.2) 76 (27.8) 0.355

Thiazides 15 (16.1) 20 (22.0) 2 (15.4) 47 (17.2) 0.723
Statins 78 (83.9) 70 (76.9) 10 (76.9) 192 (70.3) 0.058

Note: Values are presented as the mean ± standard deviation or number of subjects (%). p < 0.05 among the four groups by one-way
ANOVA for continuous data or likelihood ratio for categorical data. Post hoc testing was performed using the Games–Howell test.
Abbreviations: BMI = body mass index; BST = blood sugar test; HbA1c = hemoglobin A1c; DM = diabetes mellitus; Hx = history; CAD =
coronary artery disease; CVD = cerebrovascular disease; TZDs = thiazolidinediones; DPP4is = dipeptidyl peptidase-4 inhibitors; SGLT2is =
sodium-glucose cotransporter-2 inhibitors; CCBs = calcium channel blockers, ACEis = angiotensin-converting-enzyme inhibitors; ABRs =
angiotensin II receptor blockers; BBs = beta blockers.

3.2. Identification of an Appropriate Classification for Prediction Using Machine
Learning Analysis

Using ML algorithms, four groups of normal (A), possible (B), probable (C), and
confirmed (D) samples were analyzed with various combinations. When comparing all
groups separately (A vs. B vs. C vs. D) using the combined analysis of XGB and RF, the
AUC was 0.8546, and the accuracy was 60.85% (Table 3). One of the classifications set to
three groups (combination of A and B vs. C vs. D) showed the highest AUC value (0.8925)
using the same analysis (XGB + RF); however, this classification was not appropriate
because the number of group C patients was small (n = 13), which can result in imbalanced
results [35]. When looking at the classification that combined group C with other groups,
rather than alone, the classification with the combination of A, B and C vs. D showed
a higher value of AUC (0.8250) than the other classifications and the highest value of
accuracy (74.47%) (Table 3). Therefore, we performed all ML analyses and statistics based
on this classification (A + B + C vs. D).

Table 3. Values of AUC and accuracy of machine learning analysis when comparing each group or
their combinations.

Classification ML Model Which Showed
the Best Result AUC Accuracy (%)

A vs. B vs. C vs. D XGB + RF 0.8546 60.85
A vs. B vs. C + D RF 0.8105 62.34
A vs. B + C vs. D RF 0.8075 61.32
A + B vs. C vs. D XGB + RF 0.8925 73.40
A + B vs. C + D RF 0.8103 72.68
A + B + C vs. D RF 0.8250 74.47

Note: A = normal group, B = possible group, C = probable group, D = confirmed group. Abbreviations: AUC =
area under the curve; XGB = XGBoost; RF = random forest; SVM = support vector machine.

3.3. Identification of an Appropriate ML Algorithm for the Prediction of DSPN and Analysis of
Predictive Values

When we compared various ML techniques (XGB, SVM, RF, and their combinations),
RF showed the best AUC (0.8250) and accuracy (74.47%), and the sensitivity and specificity
were also higher (0.7940 and 0.6720, respectively) than those of any other single algorithm
or their combination (Table 4). Logistic regression analysis was performed to compare the
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combination of normal, possible, and probable groups with the confirmed group using
meaningful parameters of the following basic characteristics and laboratory data: disease
duration, initial value of HbA1c, DM retinopathy, family history of DM, use of metformin
and insulin, serum levels of glucose, HDL cholesterol, albumin, and creatinine. The results
of logistic regression analysis showed lower AUC (0.6620) and specificity (0.3519) values
than RF. The receiver operating characteristic (ROC) curves of each ML algorithm and
logistic regression analysis are shown in Figure 3. The AUC of RF was the highest (0.8250)
among the 7 ML models, as described earlier, whereas the AUC of logistic regression was
the lowest AUC value (0.6620).

Table 4. Values of machine learning and logistic regression analysis using the classification of the
combination of the normal, possible, and probable groups versus the confirmed group.

Model AUC Accuracy (%) Sensitivity Specificity

XGB 0.7604 69.83 0.7708 0.5899
SVM 0.7535 66.81 0.6643 0.6721
RF 0.8250 74.47 0.7940 0.6720

XGB + SVM 0.7822 71.28 0.7712 0.6363
XGB + RF 0.8235 74.47 0.7927 0.6743
SVM + RF 0.8070 73.19 0.7957 0.6478

XGB + RF + SVM 0.8105 73.62 0.8103 0.6342
Logistic regression 0.6620 84.76 0.9721 0.3519

Abbreviations: AUC = area under the curve; XGB = XGBoost; RF = random forest; SVM = support vector machine.
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3.4. Development of a Decision-Making Model Using Influential Features from the RF Algorithm

RF analysis using the classification of the combination of the normal, possible, and
probable groups versus the confirmed group was used to derive influential features, which
consisted of clinical data and methods 1 and 3 for laboratory data. When these features
are accumulated in the order of the importance score, the AUC and accuracy increase and
then reach a maximum value at a certain moment (Figure 4a,b). In the case of AUC, the
maximum value was reached when the number of parameters reached 69 (0.8302), and in
the case of accuracy, the maximum value was reached when the number of parameters
was 38 (76.17%) (Figure 4a,b). From this classification, the average value of HbA1c was
identified as the first single discriminator for group determination between the combination
of the normal, possible, and probable groups and the confirmed group (Figure 4c). The
top 69 influential features are shown in Table 5. The average serum glucose level during
the follow-up period was the most important feature (importance score = 0.997768) for
determining the group in the classification, and the average values of the International
Federation of Clinical Chemistry (IFCC; 0.794161), HbA1c (0.789265), and albumin levels
(0.731579) during the follow-up period are shown in order of importance score (Table 5).

Table 5. Top 69 influential features in the classification of the combination of the normal, possible, and probable groups
versus the confirmed group.

Ranking Feature Name Importance Score Ranking Feature Name Importance Score

1 Avg glucose 0.997768 36 Avg WBC 0.280162
2 Avg IFCC 0.794161 37 Avg PLT 0.262754
3 Avg HbA1c 0.789265 38 Avg chloride 0.250326
4 Avg albumin 0.731579 39 Avg uric acid 0.246706
5 Height 0.57069 40 CP IFCC 0.246499

6 Avg Diff count
(lymphocyte %) 0.546759 41 CP creatinine

(spot urine) 0.242497

7 Avg creatinine
(spot urine) 0.493981 42 Avg MCV 0.240183

8 Avg Diff count
(neutrophil %) 0.486409 43 Avg Diff count

(eosinophil%) 0.237532

9 Disease duration 0.467576 44 Avg MCH 0.229848

10 Avg sodium 0.455435 45 Avg Diff count
(monocyte %) 0.225926

11 Avg HCT 0.451166 46 CP HbA1c 0.225847
12 Avg ALT (GPT) 0.450865 47 Avg MCHC 0.222184
13 Avg RBC 0.417525 48 Avg bilirubin 0.217108
14 Avg Hb 0.383685 49 Avg free T4 0.208568
15 BMI 0.375055 50 CP urine SG 0.204239

16 Avg HDL 0.374211 51 Avg Diff count
(basophil %) 0.201151

17 Avg BUN 0.351033 52 Diabetic retinopathy 0.176286
18 Avg AST (GOT) 0.348776 53 CP TG 0.155261
19 Avg ALP 0.342055 54 Use of insulin 0.14617
20 Avg BST 0.33438 55 CP HDL 0.146164
21 Avg creatinine 0.332449 56 CP cholesterol 0.127665
22 Age 0.319338 57 CP WBC 0.096003
23 Avg urine pH 0.31512 58 CP PLT 0.09567
24 Avg calcium 0.309396 59 Sex 0.084762
25 Avg TG 0.307935 60 CP BST 0.083089
26 Avg LDL 0.305571 61 CP ALP 0.080399
27 Avg TSH 0.303504 62 Smoking 0.068729
28 Avg protein 0.302998 63 CP creatinine 0.065407
29 CP glucose 0.297945 64 CP Diff count

(lymphocyte %) 0.065285
30 CP urine pH 0.290718 65 CP bilirubin 0.060325
31 Avg cholesterol 0.287416 66 Use of sulfonylurea 0.05838
32 Avg potassium 0.286635 67 CP AST (GOT) 0.052956
33 Weight 0.285151 68 CP ALT (GPT) 0.050693
34 Avg urine SG 0.282845 69 Use of metformin 0.048544
35 CP LDL 0.280875

Abbreviations: Avg = average; IFCC = International Federation of Clinical Chemistry; HbA1c = hemoglobin A1c; Diff = differential; HCT =
hematocrit; ALT (GPT) = alanine aminotransferase (glutamic pyruvate transaminase); BST = blood sugar test; RBC = red blood cell; Hb =
Hemoglobin; BMI= body mass index; HDL = high-density lipoprotein cholesterol; BUN = blood urea nitrogen; AST (GOT) = aspartate
aminotransferase (glutamic oxaloacetic transaminase); ALP = alkaline phosphatase; TG = triglyceride; LDL = low-density lipoprotein
cholesterol; TSH = thyroid-stimulating hormone; CP = change pattern; SG = specific gravity; WBC = white blood cell; PLT = platelet; MCV
= mean cell volume; MCH = mean corpuscular hemoglobin; MCHC = mean corpuscular hemoglobin concentration; T4 = thyroxine.
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Figure 4. Application of random forest algorithm and process of extraction of important features in the classification
of the combination of the normal, possible, and probable groups versus the confirmed group. (a) Model performance
according to the number of input features sorted by importance, (b) the result of arranging input features in order of
importance score, (c) a decision tree using the random forest algorithm with the classification of the combination of the
normal, possible, and probable groups versus the confirmed group. Note: Group 1 = a group in which the normal, possible,
and probable groups are combined, Group 2 = the confirmed group. Black arrow = positive results for the above features,
red arrow = negative results for the above features, gini = gini index. Abbreviations: AUC = area under the curve; ALP =
alkaline phosphatase; ALT (GPT) = alanine aminotransferase (glutamic pyruvate transaminase); AST (GOT) = aspartate
aminotransferase (glutamic oxaloacetic transaminase); Avg = average; BST = blood sugar test; BUN = blood urea nitrogen;
CP = change pattern; Diff = differential; T4 = thyroxine; Hb = hemoglobin; HbA1c = hemoglobin A1c; HCT = hematocrit;
HDL = high-density lipoprotein cholesterol; IFCC = International Federation of Clinical Chemistry; LDL = low-density
lipoprotein cholesterol; MCH = mean corpuscular hemoglobin; MCHC = mean corpuscular hemoglobin concentration;
MCV = mean cell volume; PLT = platelet; RBC = red blood cell; TG = triglyceride; TSH = thyroid-stimulating hormone; SG
= specific gravity; WBC = white blood cell.
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3.5. ML Analysis of the Confirmed Group to Identify Demyelinated and Mixed Types of DSPN

We compared the demyelinated subgroup with the mixed subgroup, as shown in
electrophysiological studies of the confirmed group, using various ML algorithms and
logistic regression analysis (Table 6). ML analysis revealed that the combination of XGB
and SVM models showed the highest AUC and accuracy values of 0.5698 and 67.78%,
respectively, whereas the statistical method using logistic regression showed a higher
AUC value (0.6350). However, the overall AUC values of all ML algorithms and logistic
regression analysis were much lower than the AUC value (0.8250) when RF was used
to compare the combination of the normal, possible, and probable groups versus the
confirmed group, and the specificity was quite low (0 and 0.3889 for RF and logistic
regression, respectively) to predict the two subgroups within the confirmed group (Table 6).

Table 6. Machine learning and logistic regression results analyzing the demyelinated type vs.
mixed type.

Model AUC Accuracy (%) Sensitivity Specificity

XGB 0.5492 62.39 0.8329 0.1797
SVM 0.5105 68.15 1.0000 0.0000
RF 0.5426 64.25 0.9245 0.0436

XGB + SVM 0.5698 67.78 0.9947 0.0000
XGB + RF 0.5579 64.52 0.9317 0.0378
SVM + RF 0.5457 67.41 0.9889 0.0000

XGB + RF + SVM 0.5601 67.41 0.9897 0.0000
Logistic regression 0.6350 70.97 0.8812 0.3889

Abbreviations: AUC = area under the curve; XGB = XGBoost; RF = random forest; SVM = support vector machine.

4. Discussion

Interest in machine learning algorithms is widely increasing in the medical field
because they can be used to predict disease development and generate semantic interpreta-
tions [36]. In the field of endocrinology, the prediction of diabetes is expected to be very
useful for preventing disease progression and complications [37]. In this study, we have
performed conventional statistics, as well as various ML algorithms to compare predictive
power expressed in AUC and accuracy. Logistic regression analysis, a traditional statistical
method, has an obvious limitation compared to the ML analysis. Only a small number
of clinical and laboratory data (9 variables among over 400 data) were used during the
statistical processing, which inevitably resulted in poor AUC whereas ML analysis could
include over 100 meaningful data. Classical statistics usually draw population inferences,
but become less precise when input variables that exceed the number of subjects, therefore
appropriate ML method can help overcome this limitation [22].

As in all other fields, for the results of ML analysis to be more accurate, the input
data must have extensive and accurate information. Laboratory data are usually obtained
numerous times for a single subject during the follow-up period, and effective processing
of meaningful data can have a significant impact on the establishment of predictive models.
In this study, we tried various methods to optimize input data during the preprocessing
step, especially for standardization of laboratory tests conducted at various time points.
First, from the 432 types of laboratory data received for all patients, only 39 datapoints
repeatedly obtained for more than half of all patients were filtered out. Then, depending
on the timing of the laboratory data received, data were classified into average, initial,
and change patterns of each value, and we found that average and changed patterns were
meaningful parameters for ML analysis. Through these preprocesses, we are confident that
we have increased the reliability of laboratory data and created a more accurate predictive
model. When compared to previous studies that made predictive models of DSPN using
ML algorithms in diabetic patients (Table 7), they did not explain what time point was
used or whether there was any consideration of the amount of change in the laboratory
data in addition to the data imputation process that handles missing data [24,25,27,38]. In
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addition, they did not provide any diagnostic tools, such as decision tree or nomogram,
except Dagliati et al. [25].

Table 7. Comparison of previous studies that used machine learning algorithms to predict DPSN in type 2 diabetes mellitus
patients.

References Criteria to
Diagnose DSPN

Suggested ML
Models AUC/Accuracy Laboratory Data

Processing
Providing Decision-

Making Tool

Kazemi et al.,
2016 [24]

clinical (T1DM and
T2DM) MSVM UC/0.76 UC N

Dagliati et al.,
2018 [25] UC LR 0.726/0.746 UC nomogram

Fan et al., 2021 [27] UC EM 0.847/0.783 UC N
Maeda-Gutierrez

et al., 2021 [38] clinical RF 0.65/UC UC N

Current study electrophysiological RF 0.825/0.7447 average/change
pattern decision tree

Abbreviations: ML = machine learning, AUC = area under the curve; MSVM = multicategory support vector machine; LR = logistic
regression; EM = ensemble model; RF = random forest; UC = uncheckable; N = none.

Various criteria for defining DSPN have been developed, and many of them have
been designed to classify the severity of DSPN based on clinical signs and symptoms
alone [39] or in combination with physical examination [40,41] or electrophysiological
findings [7,10]. Neurological signs, especially sensory abnormalities, are sensitive and
specific findings for diagnosing DSPN and have been correlated with electrophysiological
findings in previous studies [12,42,43]; however, we found that clinical data alone, which
was categorized as normal, possible and probable groups defined in a previous study [7],
was not effective in predicting DSPN in T2DM patients. Other studies have revealed that
clinical symptoms and signs are too variable and inaccurate [44] and do not correlate well
with the development of pathophysiological changes in the peripheral nervous system [13].
On the basis of our results, we confirmed that severity grading based on clinical symptoms
and signs is not helpful and that electrophysiological assessment is essential in predicting
DSPN. However, small fiber involvement, which is frequently occurs in early DSPN, is
not identified by conventional NCS. Therefore, more specialized diagnostic tools such as
quantitative sensory testing, skin biopsy, and corneal confocal microscopy are needed to
identify small fiber damage [45,46].

We failed to classify the demyelinated and mixed types in the confirmed group in this
study. Axonal involvement is frequently observed in DSPN, as is demyelination [17], and
even axonal loss, which precedes demyelination, in sural nerves or plantar nerves of DSPN
patients might be a primary finding [47,48]. Electrophysiological analysis, which shows
decreased conduction velocity of sensory and motor nerves, decreased compound muscle
action potential, and prolonged latency of F-wave, is considered to be highly sensitive for
early diagnosis of DSPN [16,49], but NSC cannot be used to assess therapeutic effects in
diabetic patients [49]. Electromyography can be useful for detecting abnormal spontaneous
activities in distal muscles in moderate to severe DSPN [50], although this test is also
useful for ruling out other neuropathies, such as radiculopathies, mononeuropathies, or
myopathies. In this study, we could not find axonal involvement without demyelination
within DSPN patients. In T2DM, segmental demyelination is prominent with a milder
axonal involvement whereas axonal loss is more severe in T1DM [51,52]. Initially, we
considered abnormal electromyographic findings with abnormal NCS (mixed type) to be
advanced or severe type DSPN, and diabetic patients with mixed type DSPN might show
abnormal clinical and laboratory findings more frequently than those with demyelinated
type DSPN. However, ML analysis and logistic regression did not effectively suggest any
difference between the demyelinated and mixed types. Therefore, electrophysiological
analysis is necessary to differentiate these two types of diabetic patients.
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Numerous ML algorithms have been used to predict DM and diabetic complications
such as retinopathy, nephropathy, foot ulceration and DSPN [24–29]. XGB is a scalable
end-to-end tree boosting system [32] and is more suitable for small sample sizes unless the
data are not highly dispersed when predicting glucose variability in T2DM patients [53].
SVM was used for microarray or high-dimensional data and is suitable for predicting DSPN
in DM patients with a clinical data-based classification [24] and distinguishing retinopathy
between diabetic patients and normal controls [26]. RF is an ensemble of decision trees
and can minimize the individual error of trees [23]. RF has shown good performance in
predicting the development and classification of DSPN based on clinical symptoms and
examinations of type 1 diabetic patients [29]. Logistic regression analysis is a common
statistical method used to develop a model for binary outcomes in the medical field [54] and
can also be used as a supervised learning technique in ML methods. Even though various
ML algorithms have been successfully developed as predictive models for the purpose
of preventing the occurrence of diseases or their complications, some recent studies have
shown that logistic regression has similar results to ML analysis [55,56], and attempts to
combine logistic regression and ML methods also appear to enhance the performance of
statistical methods in an automated manner [57]. In our study, the AUC of RF was superior
to that of logistic regression when subjects were classified into two groups: confirmed vs.
other combinations (Table 4), but the AUC of logistic regression was higher than that of
ML algorithms for comparison between the demyelinated and mixed subgroups within
the confirmed group (Table 6). The development of proper hybrid models for statistical
and ML algorithms might increase the power of DSPN prediction in future studies.

In previous studies, numerous predisposing factors have been associated with DSPN
in diabetic patients, particularly, duration of diabetes and HbA1c in T2DM patients [21,58];
moreover, old age, increased height, obesity, higher body mass index, poor glucose control,
alcohol abuse, smoking, hypertension, cardiovascular disease, low level of HDL, dys-
lipidemia, hypertriglyceridemia, and microalbuminuria have also been shown to be risk
factors in previous studies [18–21,58–61]. We found that the average values of numerous
laboratory datapoints during the follow-up period (serum glucose, IFCC, HbA1c, albumin,
and differential counts of lymphocytes and neutrophils) were important predisposing
factors, as were clinical data such as height and disease duration (Table 5). The albumin
has important antioxidant and anti-inflammatory properties, and the lower level of serum
albumin was associated with the prevalence of DSPN or peripheral nerve dysfunctions in
T2DM patients in previous studies [62,63] In our study, average value of HbA1c is the most
sensitive node of a decision tree among the influence features, and average differential
counts of lymphocytes and neutrophils are the second node (Figure 4c). Although there is
no standardized decision-making algorithm for DSPN diagnosis, HbA1c qualifies as an im-
portant diagnostic criterion for DPSN because HbA1c a major risk factor for microvascular
complications and closely associated with DSPN in T2DM [64] The neutrophil-lymphocyte
ratio is an inflammatory marker and an important factor that predicts cardiovascular dis-
ease [65] and foot ulcer infection [66] in diabetic patients. Neutrophil level was also the
most sensitive node for decision making of DPSN prediction in a previous study [67], and
higher neutrophil-lymphocyte ratio might be related to chronic inflammatory process and
increase the risk of DSPN [68].

In this study, we analyzed a small-sized sample, especially the probable group (n = 13),
which might cause problems for pattern recognition and poor accuracy [69]. Many studies
in the medical field often have only a small number of patients. In this study, we tried
to increase the accuracy by dividing the patients into ten groups for use as a test set and
a tenfold stratified cross validation set to compensate for the small sample size [31], but
a more accurate prediction might be achieved with a larger number of diabetic patients.
We further plan to perform ML analysis to predict various complications in diabetic
patients in a prospective multicenter study and develop an application attached to an
existing electronic health record system for easier transfer of patient data that can assist
in predicting complications in diabetic patients. In addition, it was difficult to use deep
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learning model because insufficient sample size can lead to overfitting. If sufficient data is
accumulated, it is possible to build deep learning model using time-series laboratory data
or to apply a method of transfer learning with DSPN patient using pre-trained models for
all diabetic patients.

5. Conclusions

In this study, we revealed that the ML algorithms, whose AUC values were superior
to logistic regression, can be applied to type 2 DM patients to predict DSPN and that the
classification depending only on clinical symptoms and signs of suspected DSPN was not
appropriate for the application of ML algorithms to develop prediction models. In addition,
ML algorithms cannot predict the type of electrophysiological features in DSPN, namely,
demyelinated and mixed subgroups. We concluded that ML techniques, especially RF, can
predict DSPN effectively when comparing the combination of the normal, possible, and
probable groups with the confirmed group of DM patients and that electrophysiological
analysis is important for identifying DSPN.
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