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Abstract: Hyperosmotic therapy is commonly used to treat intracranial hypertension in traumatic
brain injury patients. Unfortunately, hyperosmolality also affects other organs. An increase in plasma
osmolality may impair kidney, cardiac, and immune function, and increase blood–brain barrier
permeability. These effects are related not only to the type of hyperosmotic agents, but also to the
level of hyperosmolality. The commonly recommended osmolality of 320 mOsm/kg H2O seems to
be the maximum level, although an increase in plasma osmolality above 310 mOsm/kg H2O may
already induce cardiac and immune system disorders. The present review focuses on the adverse
effects of hyperosmolality on the function of various organs.

Keywords: osmolality; traumatic brain injury (TBI); hypertonic saline; mannitol; osmolar gap

1. Introduction

Hyperosmotic therapy has been recommended for treatment of cerebral edema (CE)
and increased intracranial pressure (ICP) in patients with traumatic brain injury (TBI) and
other cerebral diseases [1,2]. The main purpose of increasing the plasma osmolality is
to force the shift of water from the brain to the vascular space through the blood–brain
barrier (BBB) [2]. According to the Monroe–Kellie doctrine, the sum of the volumes of
intracerebral blood, cerebrospinal fluid (CSF), and brain is constant, therefore a decrease of
water from the interstitial space of the brain reduces cerebral volume and cerebral edema,
which may improve cerebral perfusion [3,4]. Experimental studies have also documented
that hyperosmolar therapy attenuates trauma-related inflammatory response by reducing
neutrophil activation and neutrophil-endothelium binding [5,6]. Currently, mannitol and
hypertonic saline (HTS) have only been recommended for the treatment of intracranial
hypertension (ICH) and cerebral edema, and the final goal of hyperosmotic therapy is the
achievement of plasma osmolality not higher than 320 mOsm/kg H2O [1,2,7]. The choice
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of agents depends on clinical experience and local protocol, however HTS is frequently
used to reduce ICH as well as tissue edema, whereas mannitol is used only to reduce
ICH [8,9].

2. The Most Popular Hyperosmotic Agents

The main problem for choosing hyperosmotic agents is their different osmotic activity.
The reflection coefficient (a number which reflects the difficulty for the molecule to pass
through the endothelium: 0 = fully permeable and 1.0 = completely impermeable) is 0.9 in
the normal brain and a little less in the injured brain [10]. It means that mannitol practically
did not pass through the BBB, but it penetrates the injured BBB and the intact BBB. Mannitol
at a daily dose of 0.5–1.5 g/kg body weight is commonly used as an osmotically active
medication in patients with TBI. Chemically, it is a metabolically inert sugar alcohol
(C6H14O6), which is similar to xylitol or sorbitol. It elevates plasma osmolality, which
enhances flow from the extravascular to the intravascular space. Interestingly, inhaled
mannitol was also indicated by the Food and Drug Administration (FDA) in the treatment
of cystic fibrosis in the lung [11,12].

HTS elevates plasma osmolality via plasma increase in osmotically active ions, such
as sodium. Additionally, HTS also reduces single erythrocyte volume, improving their
passage through the capillaries. Its reflection coefficient is 1 [13,14]. It seems to reduce
ICH and improve cerebral perfusion pressure more effectively than mannitol [15–17].
Some studies also documented better outcomes in patients treated with HTS compared
to mannitol, however the osmotherapy-related electrolyte disequilibrium appears to be
an independent predictor of poor outcome, regardless of the type of osmotically active
medication [18–20]. This improves the rheological properties of the blood and the osmotic
activity of aquaporin receptors in the BBB [21,22]. Clinicians commonly use HTS with
different 3%, 7.5%, or 23.4% solutions, and each of those presents a different osmotic activity
(Table 1) [21,22]. Regardless of the type of the osmotically active agents, the main target of
osmotherapy is to maintain plasma osmolality around 300–320 mOsm/kg H2O [1,2].

Table 1. Theoretical osmolality of the most popular osmotically active agents [17–25].

Solution 0.9%
NaCl

3%
NaCl

7.5%
NaCl

23.4%
NaCl

10%
Mannitol

15%
Mannitol

20%
Mannitol

1‰
Ethanol

Osmolality
(mOsm/kg H2O) 308 1026 2567 8008 550 825 1100 22

3. Basic Knowledge

Hyperosmotic therapy is based on osmosis—a phenomenon in which the water
molecules migrate through a semi-permeable barrier from a solution rich in osmotically
active molecules to a solution poor in the concentration of these agents. The difference
in solutes, which cannot pass across the semi-permeable membrane, causes a chemical
potential. According to the Gibbs–Duhen equation, the chemical potential and activity
of water molecules is higher in a solvent in which the activity of saluted agents is lower,
and the movement of water is forced from the solvent to the solution [26]. Osmolarity
is defined as the number of solutes per liter of solution, however the concentration of
solutes is very low in human body fluids. Therefore, the plasma osmolarity is calculated in
milliosmoles (mOsm/L). Osmolality is defined as the number of milliosmoles of solutes per
one kilogram of water (mOsm/kg H2O). Physiologically, Na+, K+, Cl−, HCO3

−, glucose,
and urea are the main osmotically active substances in the human body, however a lot of
medicaments exhibit osmotic properties. Some of them, such as urea and ethanol, freely
cross the cell membranes and are called “ineffective osmoles”, whereas others such as Na+,
K+, Cl−, HCO3

−, and glucose are called effective osmoles because they do not cross the cell
membranes, forcing water shifts through the cellular membranes (tonicity). Chemically,
osmolarity is strongly related to osmolality in solutions with the same composition but
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different concentrations of osmotically active agents. These relationship changes occur in
the blood because the blood contains lipids, proteins, and others small solutes contributing
to plasma osmolality, thus sodium solutions are not completely dissociated in the aqueous
medium. Additionally, the plasma contains only 93% of water [27]. Therefore, plasma
osmolality can be calculated by multiplying the plasma osmolarity by 0.93. Hence, osmotic
pressure is more closely related to plasma osmolality than osmolarity. Plasma osmolality
should be measured by a cryoscopy technique, which is considered as the reference method
for osmolality measurement [28]. However, several clinicians have calculated plasma
osmolality using a different equation. The most popular, the simplest, and the best is
known as the Worthley equation [25,27]:

Plasma osmolality = 2xNa+ +
Glucose (mg/dL)

18
+

BUN (mg/dL)
2.8

= 275 − 295 mOsm/kg H2O

The difference between the measured and the calculated plasma osmolality is called
the osmolal gap. Physiologically, its value ranges between −10 and +10 mOsm/L. An
osmolal gap higher than 10 mOsm/L documents the presence of osmotically active agents
in the blood, while its values above 20 mOsm/L suggest blood intoxication with strong
osmotic substances [29–31]. Despite the beneficial effect of elevated plasma osmolality
on cerebral water content in TBI patients with cerebral edema, hyperosmolality per se or
associated with high osmolal gap may affect organ function, increase the risk of multiorgan
dysfunction, and worsen the outcome in critically ill patients (Figure 1) [30–34]. The aim of
this article was to provide a narrative review regarding the effect of recommended plasma
hyperosmolality on organ function in patients treated for TBI.

Figure 1. General scheme showing the organs that can be damaged as a result of increased
plasma osmolality.

4. Plasma Hyperosmolality and the Heart

The disorders of plasma osmolality can impair cardiac function and increase the risk
of life-threatening cardiac arrhythmias and sudden cardiac death [32,35–38]. An analy-
sis of relationships between plasma osmolality, and the 30-day and 1-year outcomes in
985 patients diagnosed with acute coronary syndrome, showed a significantly higher
mortality rate in patients with hyperosmolal plasma [38]. Another clinical analysis of
3748 patients treated for acute coronary diseases also documented an increase in short and
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long mortality in patients with hyperosmolality [36]. Interestingly, the rate of ventricular
arrhythmias, cardiogenic shock, and major adverse cardiac events was two-fold higher in
those patients. Indeed, an increase in plasma osmolality following mannitol administration
above 313 mOsm/kg H2O significantly increased the risk for prolongation of corrected
QT interval above 500 ms, which is associated with the incidence of atrial fibrillation
in patients without any cardiac history treated for TBI [32]. An experimental study has
shown that HTS-induced hyperosmolality per se may exert potentially deleterious effects
on myocardial contractility, leading to systolic and diastolic dysfunction, cytosolic Ca2+

accumulation with diastolic contracture, and increased susceptibility to life-threatening
arrhythmias [27]. Additionally, HTS-related hyperosmotic stress is associated with an
increase in the intracellular Ca2+ concentration and generation of reactive oxygen species,
which promotes stress in the endoplasmic reticulum, leading to apoptosis and death of
adult and neonatal cardiomyocytes [39,40]. Plasma osmolality plays a crucial role in the
function of cardiac aquaporins. Hyperosmolality increases the mRNA of aquaporin-1,
mRNA of upregulated aquaporin-7, protein glycosylation, and intracellular translocation,
which may modulate water transport in cardiac myocytes [41–43]. A rapid increase in
plasma osmolality following hypertonic saline administration depresses the sensitivity of
the cardiac baroreflex independently of changes in blood pressure, causing an increase in
heart rate [44]. Accumulating data have shown that a rapid increase in plasma osmolal-
ity activates sympathetic nerve activity, both in humans and animals [45–47]. Moreover,
prolonged hyperosmolality also increases sympathetic nerve activity through activation of
osmoreceptors and raised excitatory amino acid release in the forebrain [47,48]. A dysregu-
lation of sympathetic/parasympathetic activity as well as dysfunction of cardiac myocytes
following an increase in plasma osmolality may depress cardiac function, leading to acute
cardiac failure. Thus, it can be speculated that hyperosmolality may play an important role
in cardiac dysfunction that develops in patients treated for TBI, which is commonly known
as the brain–heart interaction.

In some clinical situations, hyperosmolality may also have a beneficial effect on cardiac
function. Experimental studies documented that hyperosmotic perfusion significantly re-
duced total and intracellular myocardial water content, reduced sarcolemmal rupture, and
increased coronary flow in ischemia/reperfusion-induced cellular edema [49,50]. Another
study documented that hyperosmotic pretreatment also reduced the infarct size following
regional-induced ischemia in a rat heart model [51]. The beneficial effect of hyperosmotic
perfusion after cardiac ischemia may be explained by the relatively small osmotic gradient
between the intra- and extra-cellular spaces during reperfusion. An increase of the level of
intracellular lactate following ischemia-induced anaerobic glycolysis results in a relative
hyperosmotic condition within the ischemic area. Hence, the normo- or hypo-osmotic
reperfusion increases the water shift from the vascular into the intracellular space, leading
to cellular edema, whereas hyperosmotic reperfusion does not induce water extravasation
(Figure 2). It is also worth stressing that a lot of research analyzing the beneficial effect of
hyperosmolal reperfusion in ischemic heart with swollen cardiomyocytes showed that the
increased osmolality of the perfusate (with mannitol) had cardioprotective properties [52].
Taken together, we can suggest that hyperosmolality may impair cardiac function in TBI
patients without any previous history of cardiac diseases. Hence, osmotherapy requires
strict control of plasma osmolality (not osmolarity).
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Figure 2. General scheme showing the effect of hyperosmolality on the heart.

5. Plasma Hyperosmolality and the Kidney

Kidneys are especially vulnerable to disorders in plasma osmolality because they play
a crucial role in plasma osmolality regulation. The kidney is responsible for regulation of
salt and water excretion. Under physiological conditions, sodium is the predominant cation
affecting fluid osmolality in mammals, and the osmoregulation and the control of total body
sodium operate independently to its plasma concentration, at least to some extent [53]. Sev-
eral factors play a role in the regulation of kidney excretory function, and inner medullary
cells are especially vulnerable to elevation of plasma osmolality. Hyperosmolality induces
salt excretion, increasing its concentration in urea and inner medullary cells. This process
forces increased urea removal. It is noteworthy that Na+ and Cl− exert different effects on
cells due to their different permeability of the cell membranes, whereas urea penetrates the
cell membrane similarly to water. Extracellular hypertonicity following elevated extracel-
lular salt content increases passive water shift from the intracellular into the extracellular
space, leading to cellular shrinkage. On the other hand, elevated urea concentration in the
extracellular space forces its shift to the inner medullary cells due to osmosis. Accumulated
intracellular urea is a trigger for uncontrolled protein denaturation. Additionally, the non-
specific effect of hyperosmolality may result from osmolar-forced diuresis with activation
of tubulo-glomerular feedback associated with an increase in hydrostatic pressure in the
tubules and a decrease in intrarenal microcirculation flow, which ultimately reduces the
glomerular filtration rate. An impairment of renal blood flow disturbs oxygen delivery to
the renal cells, inducing hypoxia-related cell damage [54]. Hence, hyperosmolality itself
affects cell volume, cell metabolism, intracellular ion homeostasis, and stability of nucleic
acids, which can induce an apoptotic process and upregulate several genes in the renal
inner medullary cells [55–58]. A lot of osmotically active agents may also induce or inten-
sify hyperosmosis-related acute kidney injury (AKI). This pathology is commonly known
as “osmotic nephrosis” or “sucrose nephrosis” (Figure 3). Several studies showed that
intravenous administration of immune globulin, mannitol, contrast media, hydroxyethyl
starch solutions, or glucose can induce AKI injury via osmotic cell destruction [59–65]. It
was well-documented that osmotically active agents entered the tubular cells by means of
pinocytosis, leading to cellular edema with increased lysosomes and endocytotic vacuoles.
Interestingly, the use of iso-osmolar contrast media also results in nephrotoxicity, similar
to the effect of the hyperosmolar media, which cannot be explained by hyperosmolality
itself, but rather the increased viscosity of the iso-osmolar agents [65,66]. However, plasma
osmolality plays an important role for renal function. Clinical observations documented a
significant relationship between plasma osmolality and a higher incidence of AKI noted in
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patients with diabetic ketoacidosis when osmolality exceeded 320 mOsm/kg [67,68]. The
osmotic nephrosis is usually reversible after discontinuation of osmotically active agents;
however, some patients require temporary renal replacement therapy [63,68–71].

Figure 3. General scheme presenting an effect of hyperosmosis on glomerulus and tubular
cells [54–57,66].

Mannitol is not recommended for use in the management of severe TBI when ICP and
brain tissue oxygen are monitored [2]. Several studies documented AKI following mannitol
administration [62,69–71]. Mannitol-induced osmotic nephrosis has been well-documented,
as it exerts nephrotoxic activity [61–63,65,72]. There is a dose–response relationship between
the use of mannitol and the incidence and severity of AKI, with a cut-off of the daily dose
at 1.34 g/kg body weight [73]. Interestingly, the combined therapy of ICH with mannitol
and HTS did not increase the risk of AKI more than HTS alone, however several authors
suggested to use HTS, demonstrating its superiority over mannitol [13,14,16,18,74]. In
conclusion, it can be postulated that an increase in plasma hyperosmolality per se, as
well as the use of osmotically active medications, may impair renal function, and that
maintaining adequate renal perfusion may reduce the risk of AKI.

6. Plasma Hyperosmolality and Immune System

The effects of hyperosmolality on the immune system are still controversial and not
very well-recognized, however several in vitro studies have attributed an important role to
hypertonicity in the inflammatory response [75–80]. Elevated plasma osmolality is espe-
cially associated with stimulation of macrophages and dendric cells [5,75]. An increase in
plasma osmolality by 10 to 20 mOsm/kg suppresses neutrophil function by modulating
cellular signaling, fosters B cell activation and differentiation, and reduces macrophage
activation [5,76–78]. Several experimental studies have documented that increasing tonicity
inhibits the production of proinflammatory cytokines in pulmonary epithelial cells [78,79].
The inhibitory effect of hypertonicity on inflammatory responses is especially important
after brain injury. An increase in plasma osmolality following mannitol or HTS admin-
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istration reduces microglial activation and promotes the anti-inflammatory phagocytic
M2-like microglial phenotype in an experimental model of intracerebral hemorrhage [5].
Such relationships between hyperosmolality and the inflammatory response may result
from direct regulation of nuclear factor in the T cells, which affect TNF-α and lymphotoxin-
β [80]. Additionally, hyperosmotic stress leads to cell apoptosis that involves changes in
the apoptotic signaling molecules such as mitogen-activated protein kinase, c-Jun amino
terminal kinase, mitogen-activated kinase, and p38 mitogen-activated kinase in a primary
cultured nucleus pulpous cells [81]. Hyperosmolarity following mannitol administration at
the dose of 1.0–1.5 g/kg body weight induces programmed cell death in a dose-dependent
manner in both endothelial and smooth muscle cells [82]. The cell loss within the endothe-
lial monolayers was the most pronounced, with serum osmolarity above 320 mOsm/L.
Quite the opposite, it has been documented that hyperosmotic stress is associated with
pro-inflammatory cytokine secretion, such as: TNF, IL1-β, IL-6, and IL-8, and that hyper-
osmolality may be an important factor for survival of macrophages at the inflammatory
site after injection of the Bacille Calmette-Guerin (BCG) vaccine [83]. Additionally, pro-
longed dietary sodium administration increases activation of stress-sensitive neurons of
the hypothalamic paraventricular nucleus and basolateral amygdala, leading to stress
coping behaviors in mice [84]. In a clinical study including 44 healthy volunteers who
received a 250 mL intravenous bolus of 3% saline solution to increase plasma osmolality to
315 mOsm/L, the authors showed that both hyponatremia and plasma hyperosmolality
did not induce an increase in circulating markers of inflammation and led to a decrease
in the level of TNFα and IL-8 at an unchanged level of IL-6 plasma concentration [85].
Another study documented that the increase in plasma osmolality following mannitol
at a dose of 0.5 g/kg body weight significantly limited cardiopulmonary bypass-related
inflammatory response, with a reduction of pro-inflammatory and an increase of anti-
inflammatory cytokines [86]. It is noteworthy that the majority of studies analyzing the
effects of hyperosmolality on the immune system are based on experimental observations.
Therefore, one can only speculate that hyperosmolality seems to have a beneficial effect on
the immune system, and this hypothesis should be confirmed in further studies.

7. Plasma Hyperosmolality and the Blood–Brain Barrier

Hyperosmolar therapy is the cornerstone treatment of ICH. Administration of hy-
perosmolar agents increases the osmotic gradient between blood and brain, forcing the
water flux from the brain to blood through the BBB. In the central nervous system of
mammals, the BBB is created at the level of the endothelial brain cells, where multiple
protein complexes accumulate at the cell-junctions, restricting the paracellular diffusion of
ions and other polar solutes, hence effectively blocking the penetration of macromolecules.
Unfortunately, therapeutic hyperosmolar agents can reversibly open thigh junctions in the
cerebrovascular endothelium, and their conductivity depends on the degree of plasma
hyperosmolality [87–90]. An experimental study has shown a temporal induction of neu-
roinflammatory response following intracarotid infusion of mannitol [89]. Elevation of
cytokines, chemokines, trophic factors, and cell adhesion molecules was noted within
5 min after mannitol administration that persisted for 4 days. It is noteworthy that the
BBB’s susceptibility to increase plasma osmolality decreases with age and is the greatest in
fetuses and premature infants [90].

Currently, the effect of a rapid increase of plasma osmolality on the function of the BBB
is used to increase delivery of poorly penetrating medications to the brain (Figure 4). This
type of treatment may be especially attractive for treating malignant brain tumors [91,92].
Administration of a small volume of chemotherapeutics after mannitol into the tumor circu-
lation increases their therapeutic properties without the need for increased systemic doses
and without adverse effects [91]. A lot of preclinical and clinical studies have convincingly
documented the high potency of this approach to elevate the delivery of chemotherapy
and other medications to the brain. Experimental studies have also presented a better brain
delivery of other drugs, such as antiepileptic drugs or docosahexaenoic acid (DHA), in
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hypertonicity-related hyperpermeability of the BBB [93,94]. Interestingly, an increase of
DHA attenuates BBB disruption, and reduces cerebral edema and TBI-induced neuroin-
flammation [94,95].

Figure 4. General scheme showing the effect of hyperosmolality on the blood–brain barrier. Thera-
peutic increase in plasma osmolality intense water removal from the brain. Experimentally raised
osmolality to the high value disrupts the blood–brain barrier from opening the tight junction for
intracerebral shifts of chemotherapeutics, water, and other water-soluble and insoluble agents.

It is difficult to show a destructive effect of plasma hyperosmolality on the BBB in
patients treated for TBI. An experimental and therapeutic decrease in BBB permeability
is induced by intra-arterial administration of mannitol. Hence, many clinicians prefer
HTS over mannitol to increase plasma osmolality, because HTS does not affect the BBB
permeability. However, a decrease in BBB permeability following hypertonicity seems
to be useful in treating secondary brain damage from different antioxidants and anti-
inflammatory agents. This hypothesis needs confirmation in future studies.

8. Conclusions

Osmotherapy is the cornerstone treatment of ICH. An increase in plasma osmolality
to the recommended 320 mOsm/kg H2O is commonly achieved by mannitol or HTS. The
choice of osmotic agents is still the subject of debate, and HTS seems to be preferred over
mannitol. An increase in plasma osmolality may impair cardiac, kidney, immune, and BBB
function, however a deleterious effect of mannitol-induced hyperosmolality has only been
clinically documented with respect to kidney and cardiac function. An increase in plasma
osmolality per se above 313 mOsm/kg H2O may by itself impair cardiac function. Future
trials are awaited to bring more answers and solutions.
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