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Abstract: (1) Background: Length of stay (LOS) is a commonly reported metric used to assess surgical
success, patient outcomes, and economic impact. The focus of this study is to use a variety of
machine learning algorithms to reliably predict whether a patient undergoing posterior spinal fusion
surgery treatment for Adult Spine Deformity (ASD) will experience a prolonged LOS. (2) Methods:
Patients undergoing treatment for ASD with posterior spinal fusion surgery were selected from the
American College of Surgeon’s NSQIP dataset. Prolonged LOS was defined as a LOS greater than
or equal to 9 days. Data was analyzed with the Logistic Regression, Decision Tree, Random Forest,
XGBoost, and Gradient Boosting functions in Python with the Sci-Kit learn package. Prediction
accuracy and area under the curve (AUC) were calculated. (3) Results: 1281 posterior patients were
analyzed. The five algorithms had prediction accuracies between 68% and 83% for posterior cases
(AUC: 0.566–0.821). Multivariable regression indicated that increased Work Relative Value Units
(RVU), elevated American Society of Anesthesiologists (ASA) class, and longer operating times
were linked to longer LOS. (4) Conclusions: Machine learning algorithms can predict if patients
will experience an increased LOS following ASD surgery. Therefore, medical resources can be more
appropriately allocated towards patients who are at risk of prolonged LOS.

Keywords: machine learning; length of stay; adult spinal deformity; posterior spine fusion surgery

1. Introduction

Length of stay (LOS) is a commonly reported metric used to assess surgical success
and patient outcomes. However, in the face of rising healthcare costs, LOS is also a
measure often targeted to reduce these expenses. Bundled payments have become more
prevalent, and therefore, tremendous efforts have been made to safely minimize patient
LOS. Procedures such as total shoulder (TSA) and hip arthroplasties (THA) are sometimes
performed as outpatient procedures, which are on average 30% less costly than the same
procedures that require admission [1].

However, more invasive orthopedic procedures, such as spinal fusion for adult spinal
deformity (ASD), cannot inherently make this transition due to patient immobility, intra-
operative blood loss, and inadequate perioperative pain control. In such cases, ensuring
that patients avoid unnecessary extensions in length of stay is imperative. A study by
Boylan et al. conducted on adolescent scoliosis surgery costs indicated that each additional
day of hospitalization incurred more than $1100 in insurance costs and close to $5200 in
hospitals costs [2]. Furthermore, patients who experience a prolonged LOS can accrue an
additional $19,000 in total hospital costs compared to shorter LOS counterparts [3]. Similar
trends have been published for spinal fusion surgery for ASD, thereby prompting the need
for further research efforts to either reduce LOS or avoid unnecessary extensions [4].
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Several studies have identified risk factors for increased LOS after spinal fusion
surgery for ASD. Phan et al. found that increased operative time was associated with pro-
longed LOS for adult spinal deformity surgery [5]. In a multicenter study, Klineberg et al.
identified age, heart disease, Charlson Comordity Index scores, number of levels fused,
infection, neurologic deficits, and intraoperative complications as risk factors for increased
LOS [6]. Another study using Danish hospital data corroborated these findings by showing
that increased age and Charlson Comorbidity Index scores lead to increased LOS [7]. Al-
though risk factors are useful in identifying patients predisposed to longer LOS, they cannot
deterministically predict whether a given patient will go on to experience a prolonged LOS.
However, machine learning algorithms can synthesize these studies and predict whether a
given patient will undergo a short or long hospitalization based on several demographic
and comorbidity data taken collectively rather than considering risk factors individually.

In this investigation, Logistic Regression (LR), Decision Tree (DT), Random Forest
(RF), XGBoost (XGB), and Gradient Boosting (GB) classifiers are used to predict whether
posterior fusion surgery patients will experience a short or long LOS using the National
Surgical Quality Improvement Database (NSQIP), a large repository of surgery case data
supported by the American College of Surgeons (ACS) [8].

2. Methods

The ACS-NSQIP database was queried to select patients that underwent spine fusion
surgery for ASD between 2006 and 2018. This cohort consisted of patients with current
procedural terminology (CPT) codes of posterior (22800, 22802, and 22804) spinal fusions.
A long LOS for posterior procedures was considered greater than or equal to 9 days. Both
metrics are above the 75th percentile in their respective LOS distributions [6]. Patients with
LOS equal to 8 days were excluded from the sample population. Hospitalizations shorter
than 8 days for posterior spinal fusion were considered short LOS. A two-sided t-test was
performed between key variables of the short and long LOS patient groups to determine
statistically significant differences among both patient groups with a significance level set
at 0.05, a priori.

Predictive variables included sex, race, American Society of Anesthesiologist’s (ASA)
class, steroid use (Steroid), smoking history (Smoke), body mass index (BMI), surgeon Work
Relative Value Units (Work RVU), age, and operating time (Op Time) as well pre-operative
lab values: white blood cell count (WBC), creatinine levels (CREAT), platelet count (PLATE),
hematocrit levels (HCT), blood urea nitrogen (BUN), sodium levels (SODM), and alkaline
phosphatase (ALKPH). Work RVUs serve as a proxy for surgical invasiveness as they
take into consideration factors, such as physician skill, effort, and time to perform the
surgery. Patients that had undergone emergency surgery or had missing data in one or
more missing predictive categorical values were excluded from the analysis. Due to the
high proportion of missing preoperative laboratory values, a nearest neighbor imputation
algorithm was applied to the missing laboratory values. Nearest neighbor imputations find
correlations among patients with and without a value for a given variable. Based on these
correlations, the nearest neighbor algorithm can be utilized to predict the missing value [9].

Patients were then randomly partitioned into two groups for the posterior procedural
groups. The first group, consisting of 90% of the data, was designated as the training
group. The second group, with the remaining patient data, formed the testing group.
LR algorithms utilize a binomial logistic regression to predict prolonged LOS, while DT,
RF, XGB, and GB algorithms use decision trees of various complexity to predict LOS. DT
algorithms are less complex, and therefore, less thorough than RF algorithms. XGB and
GB algorithms are the most complex algorithms, and therefore, they are thought to have
the best predictive power. LR algorithms are less computationally intensive than DT,
RF, XGB, and GB algorithms; however, this often comes at the expense of accuracy and
predictability [10–13]. The five algorithms were used to predict patient LOS for the posterior
patients with the Sci-Kit Learn package in Python (National Institute for Research in
Computer Science and Automation, Rocquencourt, France) [14]. The algorithms’ predictive
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capacities were determined through analysis of the testing group. Prediction accuracy, area
under the curve (AUC), and Brier scores were calculated to measure the strengths of the
algorithms. Prediction accuracy is the proportion of patients correctly predicted as having
a short or long LOS. AUC is a measure of how effective the algorithm is at distinguishing
between patients who were and were not readmitted. The best AUC score is 1, indicating
perfect distinctive capacity, while the worst AUC score is 0.5, indicating poor predictive
accuracy [15–17]. Brier scores indicate how accurate the probabilities used to determine
the predictions are, with a score close to 0 indicating high probabilistic predictive power,
while a score closest to 1 indicates poor probabilistic predictive power [18].

3. Results

In total, 1907 patients that underwent posterior ASD surgery were examined. After
removing missing values, 1281 patients were analyzed. The mean LOS for posterior ASD
patients was 6.8 days. Among posterior cases, 262 patients had undergone a short LOS
(20.5%). A comparative breakdown of short and long LOS cases by CPT code is displayed
in Figure 1.
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Figure 1. A breakdown of short and long LOS distribution by CPT code.

For the posterior fusion patients, the two-sided t-test results indicated that there
was a statistically significant difference between short and long LOS among patients
for the following variables: Caucasian, elevated ASA class, steroids, BMI, Work RVUs,
age, operating time, HCT, BUN, and SODM. The full results of the two-tailed t-test of
proportions and means are detailed in Table 1.

For posterior fusion patients, the five machine learning algorithms had AUC values of
between 0.566 and 0.821 and prediction accuracies of between 68.4% and 83.1%. The Brier
scores (Brier) for all five algorithms among posterior cases was close to 0, indicating a high
prediction accuracy. The complete set of machine learning metrics are outlined in Table 2.
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Table 1. A demographics table of patients with short and long LOS for posterior spine fusion cases.

Short LOS Long LOS p-Value

% Male 360 (34.88%) 85 (32.44%) 0.46
Caucasian 794 (76.94%) 156 (59.54%) <0.0001
ASA > 2 530 (51.36%) 210 (80.15%) <0.0001
Steroid 44 (4.26%) 20 (7.63%) 0.02
Smoke 159 (15.41%) 42 (16.03%) 0.8

BMI 27.3 28.5 0.01
Work RVU 28.9 32 <0.0001
Age (years) 51.3 57.5 <0.0001

Operation Time
(minutes) 321 440.5 <0.0001

WBC 7.1 7.4 0.18
CREAT 0.9 0.9 0.3
PLATE 252.5 249 0.49
HCT 40.3 38.9 <0.0001
BUN 15.3 16.3 0.03

SODM 139.2 138.5 <0.0001
ALKPH 83.9 89.6 0.06

LOS 4.5 15.3 <0.0001
Total 1032 262

Table 2. The results of the machine learning analysis of the five machine learning algorithms for the
posterior cases.

AUC Prediction Accuracy (%) Brier

LR 0.814 83.1% 0.13
DT 0.566 68.4% 0.29
RF 0.821 78.5% 0.14

XGB 0.736 73.1% 0.20
GB 0.782 80.8% 0.14

The corresponding ROC curves for each procedure show the tradeoff between the false
positive and false negative rate (Figure 2). As seen from both ROC curves, sensitivity and
1-specificity are directly correlated, indicating that sensitivity and specificity are directly
correlated.
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The calibration curves for the five algorithms are depicted in Figure 3 for posterior
cases. The XGB and GB algorithms align closest with the dotted midline (Mid), indicating
strong accuracy relative to the other three algorithms for posterior cases [19,20].
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Figure 3. Calibration curves of the five machine learning algorithms for posterior cases.

The multivariable regression indicated that increased Work RVU, elevated ASA class,
and longer operating times were linked to longer LOS for posterior cases (Table 3). A forest
plot of the regression results is graphed in Figure 4.

A complete summary of the results is outlined in a flowchart in Figure 5.

Table 3. Results of the multivariable regression analysis for posterior cases.

Posterior

Odds Ratio Lower Upper p-Value

BMI 0.98 0.93 1.03 0.49
Work RVU 1.34 1.15 1.55 <0.001

Age 1.00 0.97 1.02 0.71
Male 0.69 0.33 1.43 0.32

Caucasian 0.27 0.02 3.30 0.31
ASA > 2 4.26 2.08 8.74 <0.001
Steroid 1.07 0.19 5.85 0.94
Smoke 1.01 0.43 2.37 0.98

Op Time 1.00 1.00 1.01 <0.001
WBC 1.02 0.86 1.22 0.82

CREAT 0.42 0.08 2.12 0.29
PLATE 1.00 1.00 1.01 0.29
HCT 0.95 0.88 1.03 0.20
BUN 1.01 0.95 1.08 0.74

SODM 1.04 0.93 1.17 0.50
ALKPH 1.00 0.99 1.01 0.84
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Figure 5. A flowchart visualization of the results.



J. Clin. Med. 2021, 10, 4074 7 of 9

4. Discussion

Prolonged LOS following ASD surgery has the potential to pose a substantial financial
burden to both the patient and the healthcare system [4,19]. This is particularly seen
in neurosurgery and orthopedic spine cases, where current research has found that an
extended LOS was linked to higher complication rates and hospital costs among relevant
cases. Ansari et al. found that prolonged LOS was associated with higher risks of read-
mission in neurosurgery patients; however, the paper concedes that this may have been
due to underlying patient comorbidities rather than LOS itself [20]. Among lumbar fusion
patients, extended LOS has been linked to increased risk of anemia requiring transfusion,
altered mental status, pneumonia, readmission, and hardware complications requiring
reoperation [21]. One previous study in neurosurgical patients revealed that a physical
therapy consultation and discharge to a specialized nursing facility were both associated
with a 2.4 day and 6.2 day longer LOS, respectively [22].

While many risk factors have been identified for increased LOS, no systematic model
has been presented to determine whether a patient will experience a short or long LOS. This
study not only found statistically significant differences in comorbidity and demographic
related data between patients and their LOS, but more importantly, it demonstrated the
efficacy of using tree-based machine learning techniques to predict short vs. long LOS.
The implications of these results are significant because they contribute to a more com-
prehensive understanding of a patient’s individual risk profile and may allow for more
appropriate resource allocation and accurate discharge planning practices. The variables
used in the machine learning algorithm have been used to formulate a user interface
webpage link for LOS prediction after ASD (https://asdlos.herokuapp.com/).

Four of the five algorithms (LR, RF, XGB, and GB) tested in this study had AUC
values greater than 0.7 and were, thus, highly effective in predicting and distinguishing
between the test cases [23]. The results of this study compare favorably against similar
publications exploring the implementation of machine learning in both spine and other
orthopedic subspecialties. Prior studies using machine learning to predict intraoperative
blood loss, prolonged LOS, patient reported outcome measures, and discharge disposition
in the fields have utilized similar tree-based approaches or neural networks with similar or
inferior results [24–29]. The results of this paper provide further evidence that machine
learning has much utility in orthopedic surgery, as the current study builds upon existing
literature using machine learning in spinal surgery. Moreover, Kobayashi et al. found that
elevated ASA Class and longer operating times were associated with increased LOS after
posterior spine fusion, of which the results of this study concur with [30]. Adogwa et al.
identified surgeon practice style and preference as risk factors for extended LOS, which
aligns with our study’s findings that surgeon Work RVU and operating time were asso-
ciated with increased LOS [31]. However, operating time cannot be solely attributed to
surgeon style or preference, as there may be patient comorbidities that lead to an increased
operative time [32].

The Risk Assessment Prediction Tool (RAPT) is a validated six-question survey de-
signed to predict patient discharge disposition following total joint arthroplasty. It helps
both patients and physicians better understand barriers to discharge and aids in the shared
decision-making process to streamline the discharge process [33]. Similarly, the results
of this study could be extrapolated as a foundation for the development of a similar tool.
It would be tremendously helpful for patient and physician alike to be able to quantify
a patient’s risks prior to surgery. This not only allows for a more appropriate setting of
expectations, but also enables the entire patient care team to devise an individualized care
plan aimed at maximizing patient safety and satisfaction while simultaneously reducing
length of stay.

Despite the strength of the machine learning algorithms presented, the study does
have some potential limitations. The NSQIP dataset is a national database, and the results
of studies from the database may not be clinically relevant to individual hospitals or
medical institutions. Furthermore, for the algorithms to be most clinically useful, they

https://asdlos.herokuapp.com/
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must be based on a sample that is truly reflective of the population of patients undergoing
spine fusion surgery for ASD treatment. However, the NSQIP database is overrepresented
with patients from large teaching hospitals and underrepresented with patients from
smaller community hospitals. Thus, the algorithms presented here are based on somewhat
skewed data [34]. Moreover, due to the inherent limitations of CPT coding, we were unable
to distinguish between cervical, thoracic, and lumbar spinal constructs in the patient
population. Finally, the number of patients undergoing spine fusion surgery for ASD
treatment is characteristically low, thus reducing the power of any inferential statistical
procedure, such as machine learning [35].

5. Conclusions

The results of this investigation indicate that machine learning algorithms, specifically
tree-based, are effective in predicting the LOS duration for patients undergoing spinal
fusion surgery to treat ASD. The clinical implications of these algorithms can be immense,
as patients and their providers can be empowered with a way to predict the expected LOS
after surgery. With this information in hand, specific measures can be taken to reduce
LOS and, consequently, reduce expenses for both patients and hospitals alike. More
research is warranted to determine the overall effectiveness of these algorithms relative to
hospital-specific cases.
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