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Abstract: Introduction: Breast cancer is the most frequently diagnosed cancer globally and is one
of the most important contributors to cancer-related deaths. Earlier diagnosis is known to reduce
mortality, and better biomarkers are needed. MiRNA clusters often co-express and target mRNAs in
a coordinated fashion, perturbing entire pathways; they thus merit further exploration for diagnostic
or prognostic use. MiR-379/656, at chromosome 14q32, is the second largest miRNA cluster in
the human genome and implicated in various malignancies including glioblastoma, melanoma,
gastrointestinal tumors and ovarian cancer highlighting its potential importance. In this study, we
focus on the diagnostic and prognostic potentials of MiR-379/656 in breast cancer and its molecular
subtypes. Materials and Methods: We analyzed miRNA and mRNA next generation sequencing
data from 903 primary tumors and 90 normal controls (source: The Cancer Genome Atlas). The
differential expression profile between tumor and normal was analyzed using DeSEQ2. Penalized
logistic regression modelling (lasso regression) was used to assess the predictive potential of MiR-
379/656 expression for tumor and normal samples. The association between MiR-379/656 expression
and overall patient survival was studied using Cox Proportional-Hazard Model. The target mRNAs
(validated) of MiR-379/656 were annotated via pathway enrichment analysis to understand the
biological significance of the cluster in breast cancer. Results: The differential expression analysis
for 1390 miRNAs (miRnome) revealed 310 upregulated (22.3%) and 176 downregulated (12.66%)
miRNAs in breast cancer patients compared with controls. For MiR-379/656, 32 miRNAs (32/42; 76%)
were downregulated. The MiR-379/656 cluster was found to be the most differentially expressed
cluster in the human genome (p < 10−30). The Basal and Luminal B subtypes showed at least 83%
(35/42) of the miRNAs to be downregulated. The binomial model prioritized 15 miRNAs, which
distinguished breast cancer patients from controls with 99.15 ± 0.58% sensitivity and 77.78 ± 5.24%
specificity. Overall, the Basal and Luminal B showed the most effective predictive power with
respect to the 15 prioritized miRNAs at MiR-379/656 cluster. The decreased expression of MiR-
379/656 was found to be associated with poorer clinical outcome in Basal and Luminal B subtypes,
increasing tumor stage and tumor size/extent, and overall patient survival. Pathway enrichment
for the validated targets of MiR-379/656 was significant for cancer-related pathways, especially
DNA repair, transcriptional regulation by p53 and cell cycle checkpoints (adjusted p-value < 0.05).
Conclusions: Genome informatics analysis of high throughput data for MiR-379/656 cluster has
shown that a subset of 15 miRNAs from MiR-379/656 cluster can be used for the diagnostic and
prognostic purpose of breast cancer and its subtypes—especially in Basal and Luminal B.

Keywords: MiR-379/656; 14q32; breast cancer; prognosis; diagnosis; miRNA; biomarker

1. Introduction

Breast cancer is characterized by uncontrolled proliferation in the lobules, ducts or
in the fatty and the fibrous connective tissue within the breast. WHO administered Inter-
national Agency for Research on Cancer (IARC) data show that breast cancer leads to the
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highest number of cancer cases and deaths in women [1]. This emphasizes the constant need
of development of treatment and surveillance strategies for better disease management.

MiRNAs, 20–22 nucleotides in length, are epigenetic regulators that usually function as
repressors of gene expression [2]. MiRNAs have been known to play important regulatory
roles in disease pathogenesis, particularly in cancer [3–5]. Moreover, miRNAs affect many
cancer-related processes including proliferation, cell cycle control, apoptosis, differentiation,
migration, metabolism and stress response [6–8]. One of the first reports implicating the
involvement of miRNAs in cancer came in early 2000 where miR-15a and miR-16-1 at 13q14
were found to be downregulated or deleted in approximately 68% of the patients suffering
from B-cell chronic lymphocytic leukemia [9]. Since then, a number of miRNAs have
been discovered to play important regulatory roles in different types of cancer including,
breast, colon, gastric, lung, prostate and thyroid [10,11]. Besides, tissue specificity, stability
and easy detection in bodily fluids such as blood, serum, and urine provide powerful
opportunities for development of miRNA-based biomarkers in cancer diagnostics and
therapeutics [12]. For example, a recent report showed that the expression of miR-23a-
3p, miR-130a-5p, miR-144-3p, miR-148a-3p and miR-152-3p, in plasma, can be used as
biomarkers for early diagnosis of breast cancer [13].

Distribution of miRNAs in the genome is not random, and genomic clusters are
frequently seen [14,15]. There are currently 132 such genomic clusters that contain over
20% of known miRNAs [16]. MiRNA clusters are defined as miRNA genes located within
10 Kb of distance on the same chromosome and in the same strand of DNA [17]. MiRNA
clusters are frequently co-regulated and co-expressed, targeting multiple mRNA/Protein
within the same or similar pathways [18–21]. MiR-17~92 at chromosome 13q31 shows over-
expression in different malignancies including breast cancer, lung cancer, B-cell lymphomas
and acute lymphoblastic leukemia [22–25]. MiRNA members of MiR-17~92 target mRNAs
in a coordinated manner to promote proliferation, increase angiogenesis and sustain cell
survival [26–28]. Similarly, MiR-221/222 targets TRPS1, a member of the GATA family
of transcriptional repressors in breast cancer. TRPS1 inhibits epithelial to mesenchymal
transition (EMT) by directly inhibiting expression of ZEB2 [29]. MiR-99a~125b cluster
represses many mRNAs of TP53, Erb and MAPK signaling pathways in multiple myeloma
cells [30]. There has been extensive research on miRNAs implicated in cancers; however,
studies on large miRNA clusters in cancer are rare. MiR-379/656 on chromosome 14q32 is
the second largest miRNA cluster in humans (~45 Kb) and harbors 42 miRNA encoding
genes. MiR-379/656 is situated within the imprinted domain, DLK1-DIO3, unique to
placental mammal lineage, and shows enriched expression in brain and placenta [31].
The cluster plays an important role in growth and development [32] and is implicated in
various malignancies [33–37] including breast cancer [34,38,39]. These reports have been
based on a limited number of samples or a limited number of candidate miRNAs. To date,
the diagnostic and prognostic potentials of the entire MiR-379/656 cluster as a biomarker
in breast cancer and its subtypes remain unknown. We present a comprehensive analysis
of miRNA and mRNA next generation sequencing data that addresses the clinical and
biological relevance of MiR-379/656 in breast cancer and its molecular subtypes.

2. Materials and Methods
2.1. Genomic Annotation of Clustered miRNAs

The genomic locations of the miRNAs were downloaded from miRBase v18 [40].
MiRNAs within 10 kb of distance, on the same chromosome and on the same strand, were
clustered together. We identified 431 miRNAs to be nested within 132 miRNA clusters
(Supplementary Material Table S1).

2.2. Downloading and Preprocessing TCGA Data

The miRNA and mRNA expression data of TCGA BRCA and the associated clinical
information were downloaded using the R package, TCGAbiolinks [41]. Samples with
median tumor purity < 0.6 were filtered out, as per the recommended threshold [42].
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There were 1870 miRNAs in total, which were measured across 993 samples. Of which,
480 miRNAs with total read count <10 were removed to improve the accuracy of the
analysis (Supplementary Material Table S2). The PVCA module of R package, Expres-
sionNormalizationWorkflow [43] was used to determine the proportion of variance con-
tributed by different sources of plausible biological (Supplementary Material Table S3)
and technical variations (Supplementary Material Table S4). For each biological feature,
the contributed variation was <10% (Supplementary Material Figure S1). The residual
variation was 86.5%, which might be due to inter-individual differences. In case of technical
features, each confounding variables contributed to <10% variation in miRNA expression
(Supplementary Material Figure S2). The residual variation was 81.3%, which might be
due to inter-individual differences. Survival data and molecular subtype information of
TCGA BRCA patient samples were obtained from UCSC Xena browser [44].

2.3. Differential miRNA Expression Analysis in Breast Cancer

The curated miRNA expression matrix consisted of 1390 miRNAs and 993 samples
(903 primary tumors and 90 normal controls). The primary tumors were further classified
on the basis of their molecular subtypes (PAM50)—Basal (136), Her-2 (59), Luminal A (491)
and Luminal B (179). Prior to differential expression analysis, the relationship between sam-
ple condition (tumor and normal) and different environmental variables was determined
using Fisher’s exact test and T-test (Supplementary Material Table S4). It was observed
that there was a significant difference between the number of tumor and normal samples
sequenced on different Illumina platforms (p-value < 0.01). To determine if this association
had an impact on miRNA expression, the data quality was assessed by sample clustering
(Supplementary Material Figure S3). The samples formed two distinct clusters with sample
condition (tumor, normal). However, with sequencing platform (Illumina Hi-Seq and Illu-
mina GA) the two separate clusters were difficult to define, implying no major contribution
to the differential expression. The differential miRNA expression was analyzed using the
R package, DESeq2 [45]. The expression values were normalized for sequencing depth
and library composition using variance stabilizing transformation and were used for all
the subsequent analysis. The significant differences in the expression between different
tumor and normal controls were assumed at absolute log2 fold change ≥0.6 and adjusted
p-value < 0.05. For clustered miRNAs, the significance of differential expression of clustered
miRNAs were determined by two-proportions z-test using base R function, “prop.test”.
The differential expression of the miRNA cluster was compared to a standard defined by
the complement of that cluster, i.e., miRNAs not in the cluster.

2.4. Logistic Regression Analysis of MiR-379/656 Expression

The expression matrix was randomly divided into training data (70%; 633 primary
tumors and 63 normal samples) and test data (30%; 270 primary tumors and 27 normal
samples), using R package, caret [46]. Univariate binomial logistic regression models
were built on training data using the base R function; “glm” and miRNAs where the
p-value of regression model was <0.05 were removed. Then, lasso regularized logistic
regression with 10-fold cross validation was performed on training data with the remaining
miRNAs using R package, glmnet [47], to select lambda (λ) parameter with minimum
prediction error. Final lasso regularized logistic regression model was built with lambda
(λ) where the prediction error was minimum and excluded the miRNA variables with
minor contributions (see results for details). The test data were used for subsequent model
diagnostics. The area under curve (AUC) of receiver characteristics operating (ROC) curve
was used to estimate the accuracy of the model over all possible thresholds. Confusion
matrix obtained at optimal threshold was used to compute the sensitivity and specificity
of the model. This process of building classification model and its subsequent evaluation
were repeated 10 times with different sets of training and test data obtained via resampling.
MiRNAs prioritized in 8 out 10 repetitions were further used to build separate regression
models with respect to different molecular subtypes of BRCA.



J. Clin. Med. 2021, 10, 4071 4 of 15

2.5. Cox (Proportional Hazards) Regression Analysis of MiR-379/656

Principal component analysis (PCA) was performed to reduce the dimensions of MiR-
379/656 expression using the base R function, “prcomp”. The first principal component
(PC1), which captured maximum variation in the data, was used to represent the MiR-
379/656 meta-expression (Supplementary Material Figure S4). The meta-expression values
were then examined for differences among different clinical features of breast cancer (tumor
grade, tumor size/extent and molecular subtypes) using Mann–Whitney U-Test. The
overlap of patients between tumor grade, tumor size/extent and molecular subtypes was
determined using UpSetR plot [48]. No overlap was observed between a particular tumor
grade and tumor size/extent with molecular subtype (Supplementary Figures S5 and S6).

For survival analysis, patients’ follow-up information was used where overall survival
(OS) was defined as the time starting from the date of diagnosis or treatment start until the
time of death [49]. The association with patient survival was evaluated using univariate Cox
Proportional-Hazard regression analysis. The models were adjusted for all clinical features
that showed association with MiR-379/656 meta-expression. Further, Kaplan–Meier curves
along with log-rank tests were used to determine statistical differences between the survival
of high and low groups, defined by the median expression value as cutoff. The survival
analysis was performed using R packages, survival [50,51] and survminer [52].

2.6. Functional Enrichment Analysis of Validated Gene Targets of MiR-379/656

The list of validated gene targets of MiR-379/656 were obtained using miRTarBase
7.0 [53]. To improve the reliability of the analysis, only 901 primary tumor samples with
paired miRNA and mRNA expression were considered. Since miRNAs negatively reg-
ulate the expression of cognate target genes, anti-regulated miRNA-mRNA pairs were
identified using R package, psych [54]. MiRNA-mRNA pairs with spearman correla-
tion coefficient ≤−0.2 and adjusted p-value < 0.05 were shortlisted to understand the
crosstalk among the deregulated pairs of miRNA-mRNA. Interaction networks were
plotted using R package, ggraph [55] and tidygraph [56]. The significantly correlated
mRNAs of anti-regulated miRNA-mRNA pairs were used for functional enrichment anal-
ysis using the R interface of REACTOME pathway database, ReactomePA [57] and R
package, clusterProfiler [58]. Pathways with adjusted p-value < 0.05 were considered as
significantly enriched.

2.7. Data Processing and Statistical Analysis

Data processing and all statistical analyses mentioned above were performed using
programming software, R Foundation For Statistical Computing, Vienna, Austria (version
4.0.3). Statistical significance was assumed if p < 0.05. Statistical plots and other data
visualizations were generated using the R package, ggplot2, unless specified otherwise [59].

3. Results
3.1. MiR-379/656 Is the Most Significant Differentially Expressed Cluster in Breast Cancer

The differential expression analysis for 1390 miRNAs (miRnome) revealed 310 upreg-
ulated (22.3%) and 176 downregulated (12.66%) miRNAs in breast cancer tumor samples
compared with normal controls (Figure 1A and Supplementary Material Table S6). In case
of MiR-379/656, 32 miRNAs (32/42; 76%) were downregulated (Supplementary Material
Figure S7). Similar observations were made when differential expression was studied in
68 paired samples (Supplementary Material Table S6). MiR-379/656 downregulation (con-
fidence intervals: 51% C.I [1]–80% C.I [2]) compared with the 11% downregulation of all
miRNAs outside the cluster (1348 miRNAs, used as control) revealed that the proportions
were significantly different (p < 10−30) (Figure 1B). This indicated that downregulation of
the MiR-379/656 cluster in breast cancer was biologically relevant and not attributable to
non-specific downregulation of miRNAs.
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Figure 1. Differential miRNA expression analysis in breast cancer. (A) The volcano plot showing miRNA with large fold
changes (x-axis) along with statistical significance (y-axis) in breast cancer. The dotted horizontal line denotes p-value of
0.05, and the dotted vertical lines denote absolute log2FC > 0.6. The color represents the biological significance, and size
represents statistical significance. The upregulated genes are toward right and downregulated genes are toward the left of
the volcano plot. (B) The plot represents the 2 × 2 contingency table that compares the proportion of downregulation of
miRNAs in the cluster with the standard defined by its complement, i.e., downregulation of miRNAs not in the cluster.
The bar-plot represents the downregulation proportions, and the vertical line on the bar represents the 95% C.I. The value
above the bars represents the p-value of the proportion test. (C) The plot represents the proportion test for all 132 clustered
miRNAs in the genome. The upper panel shows the p-value of the proportion test, and the dotted horizontal line denotes
p-value of 0.05. The lower panel shows the distribution of differential expression of miRNAs in each cluster where the
dotted horizontal represents clusters with 3 or more miRNAs. (D) The bar-plot showing miRNA with large fold changes
along with statistical significance in molecular subtypes of breast cancer. The downregulated genes are represented by
purple color, and upregulated genes toward right are denoted by yellow color.

Next, we examined if downregulation of the entire MiR-379/656 cluster was also
noticeable in specific molecular subtypes of breast cancer. Differential expression analysis of
each subtype against the controls revealed Basal and Luminal B to have at least 83% (35/42)
of the miRNAs to be significantly downregulated (Figure 1D; Supplementary Material
Table S10). In Her-2 and Luminal A subtypes, the downregulation of miRNAs encoded
in miR-379/656 was noted at 43% and 69% respectively. Interestingly, in Her-2 subtype,
MiR-323b was upregulated explaining the molecular basis of significant upregulation of
MiR-323b with paired samples (Supplementary Material Table S7).

For a comparative and comprehensive analysis of all clustered miRNAs in breast cancer, we
compared the expression of MiR-379/656 against all the miRNA clusters (miRBase V18; [40]).
We found 14 clusters apart from MiR-379-656 that showed significant over-representation of
dysregulated miRNAs (Figure 1C, Supplementary Material Tables S8 and S9). MiR-379/656
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was found to be the most significant differentially expressed cluster in the human genome.
Amongst others, MiR17~92 on chromosome 13 has been reported as a polycistronic on-
comir cluster with coordinated function to promote proliferation, increase angiogen-
esis and sustain cell survival [60]. The cluster showed 66% upregulation (p < 0.05)
in our analysis and served as a positive control for the analysis pipeline (Figure 1C,
Supplementary Material Tables S8 and S9). Within chromosome 14 and within the im-
printed domain DLK1-DIO3, another cluster, anti-Rtl1, also showed 75% downregulation
(p < 10−05) (Figure 1C, Supplementary Material Tables S8 and S9). Significant downregula-
tion at a genome-wide significance level for both clusters on chromosome 14q suggested
disruption of epigenomic features regulating imprinting at DLK1-DIO3 in breast cancer.
The largest cluster on the human genome, the imprinted miRNA cluster on chromo-
some 19, with 46 miRNA encoding genes, showed non-differential expression in breast
cancer (Figure 1C, Supplementary Material Tables S8 and S9)—serving as the negative
control. Thus, our analysis indicated that the potential epigenetic dysregulation for the
MiR-379/656 cluster was specific and relevant for breast cancer pathogenesis and progres-
sion. In the subsequent sections, we further analyze the clinical and biological significance
of this observation.

3.2. MiR-379/656 Accurately Classifies Tumor and Normal Samples—Especially Basal and
Luminal B Subtypes

To understand the clinical relevance of MiR-379/656 downregulation, the prognostic
potential of MiR-379/656 for accurate classification of tumor and normal samples was eval-
uated. First, using univariate logistic regression on training data, miRNAs unlikely to con-
tribute to the pathophysiology were removed (p > 0.05; Supplementary Material Table S11).
For the remaining miRNAs, most showed an association of lower expression with the
disease/tumor (negative β coefficient). This was expected since the cluster was down-
regulated in breast cancer. After removing the miRNA variables based on the lambda
value from 10-fold cross validation (Supplementary Material Table S12), the model pri-
oritized 15 miRNAs in 8 out of 10 repetitions (Supplementary Material Figure S8). The
expression level of these 15 miRNAs were able to correctly identify breast cancer patients
from controls with 98.43 ± 1.31% accuracy (AUC of ROC; Figure 2A). The sensitivity and
specificity to distinguish breast cancer tumors from normal controls was 99.15 ± 0.58% and
77.78 ± 5.24%, respectively.
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We also evaluated the prognostic potential of the subset of 15 prioritized miRNAs at
MiR-379/656 for accurate classification of different molecular subtypes (Supplementary Ma-
terial Table S13; Figure 2B). The sensitivities of each molecular subtype were 98.70 ± 1.62%,
95.10 ± 4.50%, 91.70 ± 6.24% and 56.5 ± 2.62% for Luminal A, Luminal B, Basal and Her-2,
respectively. Whereas the specificity measure of Her-2, Basal, Luminal B and Luminal A
was observed at 87.90 ± 1.74%, 77.00 ± 1.73%,54.80 ± 2.36% and 17.80 ± 2.36%, respec-
tively. MiR-495 had the best trade-off between sensitivity (95.48 + 1.81%) and specificity
(86.11 ± 10.64%) among all molecular subtypes of BRCA. Overall, the subset of 15 miRNAs
at MiR-379/656 predicted tumor outcome with high accuracy—especially for Basal and
Luminal B molecular subtypes.

3.3. MiR-379/656 Is Associated with Poor Clinical Outcome in Breast Cancer

We studied the association of 15 prioritized miRNA expression with different clinical
features of breast cancer (Figure 3A). The meta-expression of these 15 miRNAs showed
decreased expression in Basal and Luminal B subtypes of breast cancer. Further, the expres-
sion decreased with increasing tumor stage and tumor size/extent. For survival analysis,
the hazard ratio was adjusted for molecular subtype, tumor size and tumor stage to negate
the effect of different clinical features on patient survival. The adjusted hazard ratio (HRadj)
of most of the 15 miRNAs in breast cancer was <1, implying that decreased expression
was associated with worse patient outcome. However, the inter-tumor variability in the
miRNA expression profiles revealed a wider spread (95% CI) of the hazard ratio—resulting
in marginal significance for most of the candidate miRNAs (Figure 3B). Notable exceptions
were miR-487a, miR-889 and miR-379. Kaplan–Meier survival plots revealed significantly
worse patient outcomes associated with lower expressions for these miRNAs (miR-487a,
miR-379 and miR-494; Figure 3C). These findings implicated that decreased MiR-379/656
expression was associated with poorer clinical outcome.

3.4. MiR-379/656 Target Genes Are Enriched for Cancer-Relevant Pathways

To understand the biological significance of altered expression of the 15 prioritized
miRNAs in breast cancer, the experimentally validated mRNA targets were annotated via
pathway enrichment analysis. The correlation analysis between these 15 miRNAs and
their target mRNAs revealed possible miRNAs-mRNAs regulatory networks (Supplemen-
tary Material Table S14). Of the 15 miRNAs, 12 miRNAs were found to be negatively
correlated with 103 of its validated targets across 114 interactions, among which MiR-410,
MiR-889, MiR-377 and MiR-381 were identified as hub-miRNAs to interact with at least
15 mRNA targets (Figure 4A). Next, the target mRNAs were screened for enrichment of
REACTOME signaling pathways. We observed 21 REACTOME signaling pathways to
be enriched for the target mRNAs of MiR-379/656 (Supplementary Material Table S15).
Cancer-related pathways, especially DNA repair, transcriptional regulation by p53 and
cell cycle checkpoints were among the most significantly enriched pathways (Figure 4B).
This implied that a cluster-wide downregulation of MiR-379/656 can trigger perturba-
tions of entire mRNA/protein network and regulate oncogenic signaling pathways in a
coordinated manner.
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their target mRNAs revealed possible miRNAs-mRNAs regulatory networks (Supple-
mentary Material Table S14). Of the 15 miRNAs, 12 miRNAs were found to be negatively 
correlated with 103 of its validated targets across 114 interactions, among which MiR-410, 
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15 mRNA targets (Figure 4A). Next, the target mRNAs were screened for enrichment of 
REACTOME signaling pathways. We observed 21 REACTOME signaling pathways to be 

Figure 3. Correlation of MiR-379/656 with clinical features in breast cancer. The boxplot showing the meta-expression of
15 prioritized miRNAs at MiR-379/656 defined by the first principal component across different (A) molecular subtypes,
tumor stages and tumor size/extent of breast cancer. The value above the boxplot represents the p-value of Mann–Whitney
U-Test of different group comparisons. (B) The forest plot represents the hazard ratio along with 95% C.I. of the subset
of 15 miRNAs at MiR-379/656. (C) The Kaplan–Meier survival curves of MiR-487a, MiR-379 and MiR-494. The patients
in high- and low-expression groups are determined by the median expression value cut-off. The log-rank p denotes the
p-value of the test comparing the differences in the distribution of survival in the two groups.
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Figure 4. Pathway enrichment of target mRNAs of MiR-379/656 in breast cancer. (A) Interac-
tion network plot of MiR-379/656 and negatively correlated target mRNAs. The purple-circled
node represents the miRNAs, and the blue-squared nodes represent the mRNAs connected via
edges representing interactions. (B) The dot-plot showing the top 20 statistically significant RE-
ACTOME pathways enriched for anti-regulated target mRNAs. Each point represents a pathway,
arranged according to the overlapping count of genes, and the color of the point indicates −log10
adjusted p-value.

4. Discussion

MiR-379/656, the second largest miRNA cluster in the human genome, has been
implicated in tumor progression or poor clinical outcome suggesting its potential as a
cancer biomarker. In a smaller study, we had shown 46% downregulation of the cluster
in 80 breast cancer tumor samples compared with controls [34]. This observation was
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supported by others including linking the expression of MiR-379/656 to epithelial mes-
enchymal transition, and stemness [39]. Candidate miRNAs from the cluster, namely,
miR-127-5p, miR-544a and miR-655-3p were shown to inhibit metastasis development
in an animal model of breast cancer lung colonization [38]. The data we presented in
this report are the most comprehensive analysis to date, of the miR-379/656 cluster as a
diagnostic and prognostic marker for breast cancer. Our unbiased genome-wide expression
analysis of mRNA and miRNA in almost 1000 tumor samples shows that the cluster is
profoundly dysregulated, with 76% of the miRNAs significantly downregulated in tumor
samples compared with controls. In the entire dataset, there were 68 paired samples (tumor
and normal tissue from the same patient), and a separate analysis of that small subset
also revealed the same cluster-wide downregulation. Further, we identified a subset of
15 miRNAs that can be used for diagnostic and prognostic purposes of breast cancer and its
subtypes—especially for Basal and Luminal B (83% and 86% of the clustered miRNA down-
regulated, respectively). As expected, molecular subtypes with greater downregulation of
MiR-379/656 had a better ‘trade-off’ between specificity and sensitivity. The expression
level of the 15 miRNA panel could diagnose breast cancer samples from controls with
99.15% sensitivity and 77.78% specificity (Figure 2A). Among the four main subtypes, all
except Her-2 showed more than 91% sensitivity, while Her-2 showed the highest specificity
(87.90%). It is possible that the 15 prioritized miRNAs were not sufficient to capture the
molecular characteristics for identification of the HER2 subtype. In addition, the use of
multinomial classification instead of binomial logistic regression to classify the molecular
subtypes might have yielded different predictions. We chose to use the binomial logistic
regression because of the unequal proportion of samples (Basal-136, Her-2-59, Luminal
A-491 and Luminal B-179). This would have resulted in a ‘class imbalance’ in a multinomial
model, which would eventually affect the accuracy of the prediction.

We previously reported the expression level of the MiR-379/656 cluster to be a predic-
tor of the tumor grade for brain cancer (Gliomagenesis; [33])—where lower expression of
the cluster was correlated with higher tumor grade. In the same study, we also showed
that higher miRNA expression was associated with better survival. In this report, we
observe the same trend with breast cancer and its subtypes. The decreased expression of
the 15 miRNA panel correlated with increasing tumor stage, increasing tumor size/extent
and Basal and Luminal B molecular subtypes (Figure 3A). We observed that the decreased
miRNA expression was associated with worse patient outcome, albeit with marginal sig-
nificance. However, a large amount of patient information was lost during follow up (right
censoring), which may have impacted the survival analysis. Taken together, this neces-
sitates further investigation using independent datasets. Our study identified MiR-495,
MiR-379 and MiR-487a as potential biomarkers for breast cancer. In our analysis, MiR-495
had more than 94% sensitivity and more than 77% specificity in each molecular subtype
of breast cancer. MiR-495 is reported to be dysregulated in several cancers, including
breast cancer. It modulates the transition of G1 to S phase by regulating the expression
of protein Bmi-1 in breast cancer [61]. The long non-coding RNA, SNHG20, regulates
HER2 via miR-495 and participates in proliferation, invasion and migration of breast can-
cer cells [62]. MiR-495 targets STAT-3 to inhibit cell proliferation and migration and to
induce apoptosis in breast cancer [63]. The observed downregulation of miR-495 can thus
enhance proliferation and migration and reduce apoptosis for breast cancer cells. MiR-379
is reported to have decreased expression in breast cancer patients compared with normal
controls [64]. MiR-379 expression showed positive correlation with increasing tumor stage
and expression of Cyclin B1. MiR-487a is not directly implicated in breast cancer; however,
the miRNA shows deregulation in other cancers [65,66]. These reports support our findings
and provide interesting opportunities for the development of miRNA-based biomarkers
for early detection of breast cancer.

MicroRNAs are higher order epigenetic regulators. Owing to the imperfect comple-
mentarity of the miRNA and the target mRNA sequences, individual miRNAs can bind
and regulate multiple mRNAs [67]. Thus, altered expression of one or few miRNAs can
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alter the expression of hundreds of mRNAs, and the cascading effect can create havoc
in biological systems. As shown in Figure 4B, the subset of 15 miRNAs are expected to
perturb pathways relevant for cancer pathophysiology. Cluster-wide downregulation of
MiR-379/656 and anti-Rtl1 cluster suggested that epigenomic features responsible for
maintenance of imprinting at DLK1-DIO3 might be disrupted in breast cancer. The loss
of imprinting in tumors is unexpectedly high, rendering it as one of the most common
molecular mechanisms in cancer [68,69]. Corroborative evidence suggests that imprint-
ing defects alter the expression of MiR-379/665 [70–72]. We have previously shown that
downregulation of MiR-379/656 in glioblastoma multiforme (GBM) was consistent with
hyper methylation of the locus [34]. In lung cancer, hypo methylation of DLK1-DIO3 locus
has been correlated with overexpression of miRNAs encoded in the cluster [73,74]. For
MiR-379/656 cluster, spanning ~45 Kb in the genome, it will be interesting to explore the
possible mechanisms responsible for the said dysregulation in cancers.

This study relies on data gathered from a single source (TCGA), which may influence
the findings. Thus, additional data mining and analysis are required to confirm consistency
with the TCGA results, and the results are needed to be validated in cell lines and/or
patient samples. In future, non-invasive or minimally invasive methods relying on liquid
biopsies or circulating tumor cells can be considered for the development of MiR-379/656-
based breast cancer diagnostics and/or prognostics. Future studies can determine whether
MiR-379/656 and/or the cognate mRNA targets implicated in “cancer-related pathways”
can be targeted for reversal of phenotypes.

5. Conclusions

Aberrant expression of miRNAs leads to disease pathogenesis, particularly cancer.
This effect may be more pronounced for miRNA clusters. Here, we report a subset of
miRNAs at the MiR-379/656 cluster, which can be used for diagnostic and prognostic
purposes of breast cancer and its subtypes—especially Basal and Luminal B.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/jcm10184071/s1. Figure S1: Estimation of proportion of variation in miRNA gene expression
contributed by known biological features. Information related to smoking history, alcohol history,
BMI, height and weight was either missing or not reported. The bar-plot shows the weighted
proportion of variance (y-axis) across different confounding variables. Figure S2: Estimation of
proportion of variation in miRNA gene expression contributed by known technical variables. Each
sample in the TCGA project is assigned a barcode. For example, TCGA-02-0001-01C-01D-0182-01
where “02” refers to the site from where the sample is obtained (tissue source site or TSS); “0001”
refers to the serial number participant of the study, “01C” where 01 refers to tumor (sample) and
C refers to the third vial, “01D” first portion of DNA sample (portion), “0182” refers to plate
number (plate) and “01” refers to the center where sequencing or characterization was performed.
In addition to sequencing platform, relevant information related to other possible batch effect (TSS,
sample, portion, plate, center) was extracted from the TCGA barcode. Since all of the samples
were processed at Canada’s Michael Smith Genome Sciences Centre, the center information was
excluded from the analysis. The bar-plot shows the weighted proportion of variance (y-axis) across
different confounding variables. Figure S3: Data quality assessment by sample clustering. Principal
component analysis (PCA) plot, which shows samples clustered along their first two principal
component analysis when (A) colored by sample condition and (B) colored by sequencing platform.
Data from tumors and controls form two distinct clusters (left panel), whereas data generated in
different sequencing platforms do not contribute majorly to the differential analysis (right panel).
Figure S4: Scree-plot showing eigenvalues for each individual principal component of 15 prioritized
miRNAs. Figure S5: UpSetR plot showing different intersection sets between tumor stages and
molecular subtypes. Figure S6: UpSetR plot showing different intersection sets between tumor
size/extent and across molecular subtypes. Figure S7: Heat map showing the differential expression
of 41 miRNAs at MiR-379/656 in primary tumor and normal controls. Each row represents a
miRNA and each column denotes a sample. MiR-300 was not captured by in the current assay. The
color gradient indicates the differences in the log2 normalized miRNA expression. The marginal
bar plot represents log2 fold change where the dotted vertical line denotes log2FC of −0.6. The
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most significant downregulated miRNAs (MiR-329-2, MiR-495, MiR-299, MiR-377, MiR-381 and
MiR-379) were highlighted. Figure S8: Recurrence of miRNAs prioritized in lasso regularized
classification models in different resampled datasets. The height of the histogram shows the count
of recurrence of miRNA, and the color denotes the resampling number. Table S1: List of clustered
miRNAs in human genome. Table S2: MiRNA expression across TCGA-BRCA samples. Table S3:
Information related to batch effects of TCGA-BRCA samples. Table S4: Clinical information of TCGA-
BRCA samples. Table S5: Relationship between sample condition (tumor, normal) and different
environmental factors. Fisher’s exact test is performed for categorical variables and T-test for
continuous variables. Table S6: Differential expression analysis of miRNA expression in breast cancer
across 903 primary tumors and 90 normal controls. Table S7: Paired differential expression analysis
of MiR-379/656 expression in BRCA. Table S8: Two-proportion z-test comparing the proportion
of downregulated clustered miRNAs against proportion of downregulated miRNAs not in cluster.
Table S9: Two-proportion z-test comparing the proportion of upregulated clustered miRNAs against
proportion of upregulated miRNAs not in cluster. Table S10: Differential expression analysis of
miRNA expression in breast cancer across different molecular subtype of breast cancer and 90 normal
controls. Table S11: Coefficient of univariate binomial logistic regression model of contributing
miRNA variables in breast cancer. Table S12: Coefficient of penalized binomial logistic regression
model with lasso regularization. Table S13: Coefficient of univariate binomial logistic regression
model of contributing miRNA variables in breast cancer molecular subtypes. Table S14: Correlation
coefficient between 15 prioritized miRNAs at MiR-379/656 and their validated targets. Table S15: List
of REACTOME pathways enriched for validated targets of 15 prioritized miRNAs at MiR-379/656
sorted by Gene count.
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