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Abstract: Introduction. Lumbosacral dysfunctions and the resulting pain syndromes, such as low-
back pain (LBP), are one of the most common musculoskeletal problems being faced by society
around the world. So far, a contributory role of thoracolumbar fascia (TLF) dysfunction in some
cases of LBP has been suggested. Research also confirms that muscle resting activity level in the
TLF area is increased in people with LBP. Myofascial release (MFR) is a therapeutic option offered
to patients with chronic low-back pain (CLBP). The therapy aims to improve flexibility and sliding
between layers of soft tissue, and thus decrease muscle activity, reduce pain intensity, and improve
functional performance. Objective. This study aims to assess changes in resting activity of selected
muscles within the TLF in a group of patients with CLBP immediately after a single MFR treatment
and one month after the intervention. Methods. A total of 113 patients with CLBP completed the
study. Simple randomization was applied to assign subjects to study groups. The experimental
group (n = 59) underwent a single session of MFR therapy. No therapeutic intervention was applied
to the control group (n = 54). Surface electromyography was used to evaluate positive treatment
effects in patients immediately after receiving the therapy (experimental group) and after one month
(experimental and control group). Results. A statistically reliable decrease in the activity of erector
spinae (ES) and multifidus muscles (MF) was observed after a single session of MFR therapy. Effects
of the treatment were present immediately after receiving the therapy and one month after the
intervention. Conclusions. A single MFR treatment in patients with CLBP immediately reduces
the resting activity levels of ES and MF. Results of measurements carried out one month after the
treatment confirm that the therapeutic effects were maintained.
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1. Introduction

Lumbosacral dysfunctions and the resulting pain syndromes, such as LBP, are one
of the most common musculoskeletal problems that affect our society. Chronic low-back
pain is problematic for patients, because the condition limits their physical fitness for
a long time, and it is diagnostically challenging for physicians due to the condition’s
complex multifactorial etiology [1]. Nevertheless, even in 90% of LBP cases, establishing
an unambiguous cause of the symptoms is impossible and the condition is described as
non-specific low-back pain (NLBP) [2].

So far, a contributory role of thoracolumbar fascia (TLF) dysfunction in some cases
of LBP has been suggested. The TLF covers a substantial portion of muscles of the back
and has significantly more sensory nerve endings than the underlying muscles [3,4]. Fur-
thermore, it has been confirmed that patients with LBP also exhibit structural changes in
the TLF that may lead to incorrect tensions that increase muscle dysfunction and generate
pain, making it difficult to address conditions that have been present for a long time [5,6].
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It is believed that two of the likely causes of NLBP are local myofascial disorders of the
richly innervated TLF and distal disorders that impact nerves that supply the area where
the pain is felt through numerous functional connections, thus inducing lumbosacral spine
disorders. Some authors suggest defining a specific category for myofascial pain syndrome
(MPS) that would be associated with microtrauma that irritates nociceptor nerve endings
in the TLF [7], increased concentration of CGRP (calcitonin gene-related peptide) and SP
(substance P) in an inflamed TLF [8], as well as reduction of sliding movements between
TLF layers [9].

LBP is a condition associated with changes in muscle activity in the trunk. The above
has been confirmed by surface electromyography, which is a simple and non-invasive
diagnostic method for measuring electrical activity of selected muscle groups both in
static conditions and during movement [10]. Resting activity of paraspinal muscles in the
lumbosacral spine (erector spinae and superficial fibers of the multifidus) in patients with
LBP in a relaxed standing position is significantly greater than that of people without the
condition [11,12].

One treatment option for LBP is manual myofascial release techniques that aim to
increase elasticity and sliding between layers of soft tissues, thus decreasing muscle activity
and pain intensity as well as improving a patient’s functional fitness [13–15]. So far,
there are no studies examining immediate changes in muscle activity following a single
MFR session.

2. Study Objective

Assessment of changes in resting activity of selected muscles of the thoracolumbar
fascia after a single MFR treatment in a group of patients with CLBP immediately after the
intervention, and one month after the therapy. To achieve the aforementioned goals, the
following research hypotheses were formed:

Hypothesis 1. Resting activity of the erector spinae and multifidus muscles in a relaxed standing
position will be lower immediately after the intervention and 1 month after the treatment compared
to that recorded before the treatment.

Hypothesis 2. Change in muscle activity will be greater in the experimental group compared to
the control group.

3. Methods
3.1. Study Design

The study was conducted between June 2019 and March 2020. A total of 158 people
with LBP volunteered to participate in the study. Subjects were enrolled using an original
interview questionnaire and a functional exam according to the following criteria.

The inclusion criteria were:

• Age 40–60 years;
• Chronic low-back pain (lasting more than 3 months).

The exclusion criteria were:

• Neurological conditions, previous surgical treatment, spine injury, contraindications to
MFR treatment (acute inflammations, viral and bacterial infections, infectious diseases,
fever, deep vein thrombosis, active malignant disease, aneurysms), contraindications
to surface electromyography (sEMG) exam (pacemaker, artificial heart valve);

• Physiotherapeutic interventions in the last 6 months;
• The following coexisting conditions—cancer, diabetes, osteoporosis, pregnancy; diges-

tive system, cardiovascular system, rheumatic, psychic, and gynaecological diseases.

We excluded patients who exhibited neurological symptoms during a functional exam
that consisted of:

• The slump test;
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• The Babinski test and ankle clonus test;
• Sciatic nerve tests (straight leg raise and bowstring test), femoral nerve test (in the

supine lying position and side-lying position);
• Knee and ankle reflexes test, strength testing of indicator muscles in the lumbosacral

spine;
• Evaluation of exteroceptive sensation along dermatomes associated with lumbosacral

nerve roots.

At this stage researchers excluded 39 subjects from the study: several people refused
to participate in the study (n = 19) and others (n = 20) did not meet the study inclusion
criteria or met the study exclusion criteria. Simple randomization was applied to assign
119 subjects to study groups. Subject allocation was done using a set of 119 sealed envelopes.
Each envelope contained a sheet of paper with an even or odd number (1–119), and each
enrolled participant was asked to draw one sealed envelope. Subjects with odd numbers
(n = 60) were allocated to the experimental group (EG) that underwent MFR therapy. The
remaining participants with even numbers (n = 59) were assigned to the control group (CG)
and did not receive any therapeutic intervention. The EG was assessed three times—before
the intervention, immediately after the intervention, and one month after the therapy,
whereas the CG was assessed twice—before the intervention and one month after the
study. The study participants were asked to refrain from any physiotherapy treatment
in the month between the intervention and the control visit. At the assessment visit one
month after the therapy, researchers excluded one subject from the EG (ankle injury) and
5 subjects from the CG (2 participants missed the control visit, and 3 people received
physiotherapy for the spine within the last month). Ultimately, 113 subjects completed
the study. Researchers used the Consolidated Standards of Reporting Trials (CONSORT)
statement to improve the RCT reporting quality (Figure 1) [16]. The experimental group
consisted of 27 women and 33 men, aged 41–60 (Me = 49.36; SD = 5.91). The control group
consisted of 28 women and 26 men, aged 41–60 (Me = 48.91; SD = 5.38). Most respondents
claimed that they perform or used to perform mainly white-collar work (EG = 72.27%;
CG = 53.70%) in sedentary position (EG = 77.97%; CG = 53.70%).

Figure 1. The study flow diagram. CLBP—chronic low-back pain, EG—experimental group, CG—
control group, sEMG—surface electromyography, MFR—myofascial release.
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3.2. Measurements

Surface electromyography was registered from the TLF to determine resting muscle
activity level. For this purpose, the researchers used a 4-channel Noraxon MyoTrace
400 electromyograph, MyoResearch XP Clinical Edition 1.08 software, and disposable
hypoallergenic Ag/AgCl gel electrodes. We used the equipment, prepared the exam,
collected and rectified signals in accordance with the SENIAM guidelines [17]. During
the study we recorded sEMG signals of the erector spinae (ES) and the multifidus muscle
(MF) in the lumbosacral spine. Electrode placement is shown in Figure 2. The reference
electrode was placed on the spinous process.

Figure 2. Arrangement of surface electrodes.

The study protocol consisted of 4 consecutive parts:

1. Assessment of the resting activity in a relaxed standing position (10 s);
2. Trunk flexion (forward bend) within available range of motion performed with knee

extension (5 s);
3. Maintaining trunk flexion with knee extension and relaxed shoulder girdle and upper

limbs (5 s);
4. Returning to a standing position—trunk extension (5 s).

Raw sEMG signals were rectified and then polished using a Root Mean Square algo-
rithm (RMS). Since several measurements were conducted at time intervals and the results
were compared between the groups, it was necessary to normalize the signal amplitude.
Study participants were patients with LBP, and therefore it was not possible to establish
maximum isometric tension for the examined muscles against static resistance (before
the actual measurement), the amplitude of which is commonly used as a reference value
among healthy and athletic individuals [18]. Using a protocol containing dynamic activities,
including concentric muscle work during trunk extension (stage 4), made it possible to
use a solution, according to which the maximum voluntary contraction (MVC) obtained
from the actual measurement served as a reference value (Figure 3). MVC is defined as
the arithmetic mean of the amplitude of the highest segment of the signal with a constant
duration of 1000 ms. The recorded data was converted from microvolts to percentage of
the reference value without altering the shape of the EMG curve [18,19].

Since the aim of this study was to assess changes in the resting activity of ES and MF
muscles in a standing position, the statistical analysis was performed using mean values of
%MVC recorded in the first stage of the study.
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Figure 3. sEMG record [%MVC] following signal amplitude normalization. Author’s content.

3.3. Intervention

The experimental group received a single session of MFR therapy. To ensure the
highest quality of techniques, strokes and optimal tissue control, the researchers used MFR
Songbird Fascial Release Wax which is a natural wax used in MFR. The techniques were
applied according to the guidelines described by Luchau and engaged all three layers
of TLF [13]. The sequence of the techniques, performed in accordance with principles
laid out by Myers and Manheim, allowed us to address soft tissues gradually, moving
from the most superficial layers to deeper structures [20,21]. The following techniques
were applied—in the supine lying position: skin rolling [14], local relaxation of ES using
cross-handed stretch [21], pelvic and spinal distraction [14]; and in the side-lying position:
longitudinal stretching of the ES and the MF muscles in fetal position [14], hook and stretch
of the posterior and middle layers of thoracolumbar fascia [15], release of the quadratus
lumborum (direct stretching [14] and hook and stretch [15]). Each technique was performed
on both sides, and the whole intervention lasted for 40 min.

3.4. Statistical Analyses

Reported data analyses, visualizations and necessary data operations were performed
using R statistical environment, ver. 3.6.2. Operations on data were carried out using the
data.table library, whereas the graphs were plotted using elementary R functions as well
as ggplot2 and bayesplot libraries. To test the research hypotheses, hierarchical Bayesian
regression was employed using the brms library [22]. The therapeutic effects in the EG
were analyzed by matching the data to the null model. It should be noted that the null
model presented merely a random effect to a patient. The next stage involved estimating
parameters of the measurement model that contained effects coded 0/1 (immediately after
the intervention and one month after therapy vs. before therapy). Greater predictive power
of the measurement model compared to the null model suggests the validity of the research
hypothesis regarding the effectiveness of the intervention in the EG. That is, of course,
assuming that the observed effects are in the assumed direction. The researchers conducted
a stepwise comparative analysis of the CG and the EG. In the first step, data were fitted to
the null model, then the main effects model (the EG model) and finally to the main effects
and interaction model (the EGI model). The EG model contained main effects for the group
(coded 0 for the CG and 1 for the EG), and the measurement (coded 0 for pre-treatment
and 1 for one month following the intervention). The EGI model contained main effects
and the interaction effect between a group and the intervention. Best fit was obtained with
the EGI model, which suggests that a change in the CG parameter is reliably different from
the change in the EG parameter.

To compare the predictive power of the estimated regression models, the researchers
used two information criteria calculated using the cross-validation method—the leave-
one-out information criterion (LOOIC), and the k-fold information criterion (KFOLDIC).
Both statistics measure the predictive power of the model outside the sample, i.e., the
model’s ability to correctly predict new observations. Since the LOOIC and KFOLDIC
values are based on logarithms of probabilities, differences between their values always
indicate a strong evidence in favor of the better model. That is because differences between
110 and 100 and between 1010 and 1000 are equally strong evidence—10 units, irrespectively
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of the baseline statistics—in favor of the better-fitted model. LOOIC was the default
statistic; however, in case of unreliable LOOIC approximation, KFOLDIC was used [23].
The interpretation of both statistics is simple–lower values indicate a better fit to the data.
Similarly to other information criteria, differences greater than 3 (absolute) units constitute
weak evidence in favor of a better model. A 4–7 difference constitutes medium-strong
evidence, whereas a difference >10 is strong evidence in favor of the better model [24].
Moreover, to provide an intuitive measure of the effect’s magnitude, we reported R-squared
for Bayesian for models using a continuous dependent variable [25].

4. Results

The research hypotheses were tested using the MVC variable proportion, which is
a four-dimensional right-skewed continuous variable within the 0–1 range (Figure 4). For
the purpose of improving the stability of the parameter estimation procedure, the %MVC
was converted to proportions (decimal), that is the 0–1 range. Moreover, the researchers
applied the lognormal probability distribution used in analysis of such variables.

Figure 4. Histograms and box plots for the two-dimensional MVC variable. The graphs are based on
all the data collected from the EG and the CG.

To test the H1 research hypothesis that the values of the % MVC variable would be
lower immediately after the intervention and one month after treatment compared to the
result before treatment, the researchers performed hierarchical four-dimensional lognormal
regression analyses. The proper model was better fitted to the data than the null model
(LOOIC difference = −11), and the effect of time measurement accounted for approximately
2% of left MF variance, right MF variance, and left ES (Table 1). The measurement time for
the right ES accounted for 5% of the %MVC variance, thus suggesting that the greatest effect
was recorded for this muscle. As expected, reliably lower %MVC values were recorded for
all muscles immediately after the intervention and one month after treatment, compared to
the result measured before treatment (Figure 5).
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Figure 5. Results of hierarchical four-dimensional lognormal regression analysis with MVC as
the dependent variable and the measurement as the main effect in the study group. Left panels:
a posteriori distributions of regression coefficients. The shaded areas represent 95% confidence areas.
Right panels: estimated marginal means. The points represent means of a posteriori distributions,
whereas vertical lines indicate 95% confidence intervals.

Table 1. Summary of regression models’ fitness to the data used for testing the research Hypothesis 1.

Dependent
Variable Model LOOIC/KFOLDIC Dependent

Variable 2 R-Squared EG Total R-Squared

MVC

null model −1945

MF left

- -MF right
ES left

ES right

measurement −1956

MF left 0.02 [0.01, 0.05] 0.74 [0.64, 0.80]
MF right 0.02 [0, 0.05] 0.58 [0.43, 0.69]

ES left 0.02 [0, 0.05] 0.62 [0.52, 0.70]
ES right 0.05 [0.02, 0.09] 0.69, [0.62, 0.74]

LOOIC—the leave-one-out information criterion, KFOLDIC—k-fold information criterion, MVC—maximum voluntary contraction, MF—
multifidus muscle, R-squared EG—R-squared for the measurement effects and a group. Total R-squared is a variance explained by a random
effect to a study participant.
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To test the H2 research hypothesis that the change of the %MVC variable would be
greater in the EG than the CG, the researchers also performed hierarchical four-dimensional
lognormal regression analyses. The model with the interaction effect proved to be better
fitted to the data than the model with the main effects (KFOLDIC difference = −21),
and the null model (LOOIC difference = −15). Obtained results suggest there are reliable
differences for %MVC between the study groups. Main effects as well as measurement time
and group interaction accounted for 7% of the left MF variance, 6% of the right MF variance,
2% of the left ES, and 3% of the right ES (Table 2). As predicted, a reliably greater decrease
in %MVC values for measurements for all muscles was recorded in the EG compared to
the CG (Figure 6); however, these effects are more evident for the multifidus muscle.

Figure 6. Results of hierarchical four-dimensional lognormal regression analysis with MVC as the dependent variable, and
the measurement and the group as predictors. Left panels: a posteriori distributions of regression coefficients. The shaded
areas represent 95% confidence areas. Right panels: estimated marginal means. The points represent means of a posteriori
distributions, whereas vertical lines indicate 95% confidence intervals.
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Table 2. Summary of regression models’ fitness to the data used for testing the research Hypothesis 2.

Dependent
Variable Model LOOIC/KFOLDIC Dependent

Variable 2 R-Squared EG total R-Squared

MVC (kfold)

null model −1865

MF left

- -MF right
ES left

ES right

EG −1859

MF left 0.06 [0.01, 0.13] 0.73 [0.63, 0.80]
MF right 0.04 [0, 0.11] 0.58 [0.43, 0.70]

ES left 0.01 [0, 0.04] 0.63 [0.52, 0.72]
ES right 0.02 [0, 0.06] 0.67 [0.58, 0.73]

EGI −1880

MF left 0.07 [0.02, 0.14] 0.75 [0.67, 0.82]
MF right 0.06 [0.02, 0.12] 0.60 [0.46, 0.72]

ES left 0.02 [0, 0.06] 0.64 [0.53, 0.73]
ES right 0.03 [0.01, 0.07] 0.68 [0.6, 0.74]

LOOIC—the leave-one-out information criterion, KFOLDIC—k-fold information criterion, MVC—maximum voluntary contraction, MF—
multifidus muscle, R-squared EG—R-squared for the measurement effects and a group. Total R-squared is a variance explained by a random
effect to a study participant.

5. Discussion

LBP is among the most common musculoskeletal problems affecting modern society
worldwide. Complex multifactorial etiology of this condition significantly hinders the
diagnosis of the primary cause. Therefore, numerous authors undertake research to under-
stand better the complexity of LBP. Connective tissue problems have been dismissed as
causes of LBP until recently, and in recent years there has been a growing interest in this
matter. Currently, thanks to the groundbreaking results of Willard [26], Schleip et al. [27,28]
and Stecco et al. [9,29,30] we know more about the physiology of the connective tissue and
understand better its crucial role in proper functioning of the motor system. For this reason,
too, the researchers continue looking for more effective methods of conservative treatment
that bring quicker and longer-lasting therapeutic effects, while analyzing their impact on
the myofascial system. The analysis of the results of studies evaluating the effects of MFR
therapy in patients with LBP revealed that most researchers used original and standardized
interview questionnaires, in which the respondents subjectively rated their pain intensity
before and after the intervention. According to our current knowledge, no studies investi-
gated immediate changes in muscle activity in patients with LBP following a single MFR
session. Therefore, the authors decided to examine this study gap and objectively measure
the parameters using sEMG. Our study findings demonstrate that there is a statistically
reliable reduction in muscle activity within TLF following a single MFR treatment. Thera-
peutic results are present immediately after the intervention. Furthermore, measurements
carried out one month after the intervention confirm that therapeutic effects are maintained
because with time, values of the above parameters did not revert to the baseline values ob-
tained before the treatment. While a reliable reduction in the resting activity of ES and MF
muscles was observed in the EG, the researchers also noted an increase of this parameter
in the CG after one month. Even though reliable differences were observed in the study
groups for the activity of both muscles, greater differences were found in the MF activity.
Our literature review yielded that there are no studies that would analyze the impact
of a single MFR session on the immediate change in resting muscle activity in the TLF.
Moreover, reliability of an immediate impact of MFR on patients with LBP was confirmed
several times by authors who used other objective research tools. The findings in those
studies confirm that even a single MFR session significantly increases lumbar spine range
of motion [31], improves sliding movements between TLF layers [32,33], and, according
to Shah et al., improves lumbar paraspinal blood flow [34]. A paper by Arguisuelas et al.
examines myoelectric activity before and after several sessions of myofascial treatment [35].
Those authors, using a 4-step study protocol identical to the one outlined in this paper,
analyzed only the activity of ES in forward bend position, which should be significantly
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reduced due to the flexion–relaxation phenomenon (FRP). Following 4 sessions of MFR in
the TLF there was a bilateral normalization of the ES muscle activity and an improvement
of FRP in participants who did not exhibit a considerable decrease in myoelectric activity
during full trunk flexion before the intervention. Given the fact that there are multiple
myofascial connections throughout the body, designing a single myofascial release stan-
dard protocol for patients with LBP seems highly challenging. However, based on positive
outcomes following a single and several sessions of MFR, we believe that this topic needs
further investigation and our intention is to undertake it in the future.

6. Conclusions

1. A single MFR treatment in a group of patients with CLBP immediately decreases
resting activity of the erector spinae and multifidus muscles in the lumbodorsal spine
area. The comparison of the results with those of the control group results reveal that
the effects are definitely stronger for the multifidus muscle.

2. Data collected a month after the treatment confirm maintenance of the treatment
effect in terms of muscular activity of the erector spinae and multifidus muscles in
the lumbosacral spine.

7. Limitation

The authors acknowledge certain limitations of their analysis. These include the lack
of use of sham therapy in the control group and the limited ability to control the study
participants in the period between measurements, especially in the psycho-emotional
aspect, which could have a potential impact on resting muscle activity.
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